Solving systems of multivariate polynomial equations by eigenvectors

- Solving polynomial systems using lexicographic GB and Buchberger may be time-consuming and numerically unstable (leads to large matrices Π_i.)

- An alternative approach allows to compute all solutions at once as eigenvector problem.

Example using one polynomial in one unknown

$f = x^3 - 6x^2 + MX - 6 = (x-1)(x-2)(x-3) = 0$

The roots can be found as eigenvalues of the companion matrix

$\Pi x = \begin{pmatrix} 0 & 0 & 6 \\ 1 & 0 & -11 \\ 0 & 1 & 6 \end{pmatrix}$
- Roots can be found by computing eigenvectors of M_x^T

- Let's consider remainders of all polynomials $g \in \mathbb{Q}[x]$ on division by f
 - It is the set of all polynomials r of degree at most 2
 - All polynomials of degree at most 2 are left unchanged by the long division by f and all monomials of a higher degree will get rewritten using f in terms of polynomials of degree at most 2

- We can write:

$$r = a_2x^2 + a_1x + a_0, \quad a_0, a_1, a_2 \in \mathbb{Q}$$

- We can identify each remainder r with a 3-dimensional vector $v = [a_0, a_1, a_2]^T \in \mathbb{Q}^3$

- The set of all such remainders is in one-to-one correspondence with \mathbb{Q}^3
- Now consider the mapping $M_x : \mathbb{Q}[x] \to \mathbb{Q}[x]$ on polynomials given by
 $M_x(h) = (xh) \mod f$

- It maps polynomials of degree at most 2 back to polynomials of degree at most 2:
 $M_x(1) = x \cdot 1 \mod f = x \mod f = x$
 $M_x(x) = x \cdot x \mod f = x^2 \mod f = x^2$
 $M_x(x^2) = x \cdot x^2 \mod f = x^3 \mod f = 6x^2 - M_x(x) + 6$

- M_x is a linear mapping since for all $g, h \in \mathbb{Q}[x], a \in \mathbb{Q}$ we have:
 $M_x(g + h) = (x \cdot g + x \cdot h) \mod f = (xg) \mod f + (xh) \mod f = M_x(g) + M_x(h)$
 $M_x(ah) = (a \cdot x \cdot g) \mod f = a(xg) \mod f = a \cdot M_x(g)$

\Rightarrow M_x is a linear mapping on the set of all polynomials of degree 2
$M_x(a_2x^2 + a_1x + a_0) = a_2 M_x(x^2) + a_1 M_x(x) + a_0 M_x(1)$
Every linear mapping has a matrix of the mapping w.r.t. a fixed basis.

Let us choose the standard monomial basis \([1, x, x^2]\) in the linear space of \(\mathbb{Q}[x]\) of polynomials of degree at most 2 and write the above represented by vectors in \(\mathbb{Q}^3\).

We will express monomials as vectors using the basis \([1, x, x^2]\)

\[
M_x(1) = M_x \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
\]

\[
M_x(x) = M_x \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
\]

\[
M_x(x^2) = M_x \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
\]

To get the matrix of the mapping \(M_x\) we write

\[
M_x \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = M_x
\]

\(\Rightarrow\) matrix \(M_x\) of \(M_x\) w.r.t. the standard monomial basis is the companion matrix.
Let us evaluate polynomials \(g \in \mathbb{Q}(x) \) on the roots of \(f \).

- Consider a root \(p \) of \(f \), i.e., a solution to the equation \(f(x) = 0 \) \((f(p) = 0)\).

- In our example \(f(x) = x^3 - 6x^2 + Mx - 6 \) we have 3 roots \(p_1, p_2, p_3 \).

Let us evaluate polynomials \(x, x^2, x^3 \) on the roots \(p_i \):

\[
\begin{align*}
x(p_i) &= p_i = p_i, \\
x^2(p_i) &= p_i^2 = p_i, \\
x^3(p_i) &= p_i^3 = p_i.
\end{align*}
\]

\[
\begin{align*}
\lambda(p_i) &= p_i, \\
\lambda(p_i)^2 &= p_i, \\
\lambda(p_i)^3 &= p_i.
\end{align*}
\]

Now since \(x^3(p_i) = M_x(x^2)(p_i) = (6x^2 - Mx + 6)(p_i) \) we get

\[
(6x^2 - Mx + 6)(p_i) = x(p_i) x^2(p_i).
\]
We can write

\[(6x^2 - 11x + 6)(p_i) = x(p_i)x^2(p_i)\]

\[
\begin{bmatrix}
1(p_i) \\
x(p_i) \\
x^2(p_i)
\end{bmatrix}
=
\begin{bmatrix}
x(p_i) \\
x^2(p_i) \\
x^3(p_i)
\end{bmatrix}
=
\begin{bmatrix}
x(p_i) \\
x^2(p_i)
\end{bmatrix}
\]

\[
\begin{bmatrix}
\Lambda(p_i) \\
x(p_i) \\
x^2(p_i)
\end{bmatrix}
=
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
6 & -11 & 6
\end{bmatrix}
\begin{bmatrix}
1(p_i) \\
x(p_i) \\
x^2(p_i)
\end{bmatrix}
\]

\[
\begin{bmatrix}
\Lambda(p_i) \\
\pi(p_i) \\
\pi^2(p_i)
\end{bmatrix}
=
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
6 & -11 & 6
\end{bmatrix}
\begin{bmatrix}
\Lambda(p_i) \\
\pi(p_i) \\
\pi^2(p_i)
\end{bmatrix}
\]

\[
p_i \cdot \vec{\nu}_i = M_x^T \vec{\nu}_i
\]

\[
\Rightarrow (p_i, \vec{\nu}_i) \text{ are eigenvalue-eigenvector pairs of } M_x^T
\]

- Eigenvalues \(p_i\) are evaluations of \(x\) on the roots of \(f\) and eigenvectors \(\vec{\nu}_i\) are evaluations of the standard basis \([1 x x^2]\) on the roots of \(f\)
- This observation holds true in general
- For a polynomial f of degree n we are getting a $n \times n$ matrix with n eigenvalues counting with multiplicities

- When the matrix M_x has separated one-dimensional eigenspaces, which happens always when eigenvalues are pairwise distinct, i.e., when f has all roots with multiplicity one, we can compute basis v_i of each eigenspace and get v_i as

$$\vec{v}_i = \frac{1}{\mu_i} \vec{w}_i, \quad i = 1, ..., n$$

- Solutions to f are obtained from \vec{v}_i as $p_i = x(p_i) = v_{i2}$

- It is possible to generalize this to more general mapping

$$M_{a, b} : \mathbb{Q}[x] \to \mathbb{Q}[x], \quad M_{a, b}(g) = (a \cdot g) \mod f$$

by replacing x by a general polynomial $h \in \mathbb{Q}[x]$
The key concept for deriving the relationship between the solutions to \(f(x) = 0 \) and the eigenvectors of \(M_\alpha \) (\(M_x \)) in the univariate case was the remainder \(r \) of \(h \) on the division by \(f \) gave the values of \(h \) on the roots of \(f \).

\[
\begin{align*}
\hat{h} &= q \cdot f + r \\
\hat{h}(p) &= q(p)f(p) + r(p) \\
h(p) &= r(p)
\end{align*}
\]

Long division produced \(r = h - qf \) such that \(r \) was “the simplest” polynomial evaluating on the roots of \(f \) to the same values as \(h \).

We could also see this as removing from \(h \) all what can be generated by \(f \), i.e. \(\langle f \rangle = \{ g \cdot f \mid g \in \mathbb{C}[x] \} \).

We can also say that \(r \) is equivalent to \(h \) writing \(h \equiv r \) when \(h - r = q \cdot f \in I = \langle f \rangle \).
Solving systems of multivariate polynomial equation by eigenvectors
- Generalization to systems of p.e. in several unknowns

- In the multivariate case

\[I = \langle f_n, \ldots, f_1 \rangle = \{ \sum g_i f_i : g_i \in \mathbb{Q}[x_1, \ldots, x_n] \} \]

- In the univariate case the remainders \(r \) on the long division by \(f \) had a good property that all monomials of \(r \) were strictly smaller (when ordered by the degree) than the LM of \(f \)

- The maximal degree of \(r \) was equal to the number of solutions \(-1 \) \((m-1)\)
and \(r \) was a linear combination of exactly \(m \) monomials (counting \(x^n \))

- That gave \(m \times m \) multiplication matrix \(M_r \)

- This was thanks to the fact that the ideal \(\langle f \rangle \) was in one-to-one correspondence with its generator \(f \)
- In the multivariate case $I = \langle f_1, \ldots, f_k \rangle$ can be generated by infinitely many different sets of generators and in general there is no direct connection between the multidegrees of the LMs of a particular generator set and the number of solutions.

- Furthermore, with a general set of generators F of I remainders on division by F are not well defined.
 - Different r's can be obtained when changing the order of f_j.

\[g \]

- Fortunately for reduced GB's we have a unique remainder r on division by G independently on the order in which are the generators G used in the division process.

- Remainder $r = g \mod \subseteq_0 G$ is thus defined uniquely by the ideal I and the monomial ordering \subseteq_0 used.
- Further \(r \) is a linear combination of monomials that are not divisible by any leading monomial of generators \(G \).

- The actual monomials may be different dependent on the monomial ordering \(\preceq \) used, but their number \(l \) will be the same.

- The relationship between \(l \) and the number of solutions \(m \) is in general \(l \geq m \).

 The equality occurs exactly when \(I \) is a radical ideal.

 - Radical ideal - \(I \) is such that \(f^k \in I \) for some \(k \) implies \(f \in I \).
 - Intuitively, radicality is connected to multiplicity of solutions.
 - Radical ideals have no multiplicities in any coordinate.
Generalize the eigenvector method to polynomial system \(F = \{ f_1, \ldots, f_n \} \) in \(n \) unknowns \(x_1, \ldots, x_n \)

1. Fix a particular monomial ordering \(\leq \).
2. Construct the reduced GB \(G \) of \(I = \langle F \rangle \) for \(\leq \).
3. Construct the set \(B \) of all monomials that are divisible by no leading monomial of all polynomials in \(G \).
4. Fix a polynomial \(g \in \mathbb{Q}[x_1, \ldots, x_n] \) such that \(g \) has different solutions e.g. take a random linear polynomial. This guarantees isolated one-dimensional eigenspaces for the radical ideal \(\langle F \rangle \).
5. Construct the multiplication matrix by finding remainders of \(g \cdot b \) for all \(b \in B \) on division by \(G \) w.r.t. \(\leq \).
6. Find eigenvalues and eigenvectors of \(Mg \) (for radical ideal eigenspaces are one-dimensional).
7. Recover the solutions from eigenvalues, eigenvectors and \(G \).

\(\leq \) - good ordering Grevlex - is archimedean - there is only finitely many monomials smaller than any monomial.
Consider a polynomial system $F = \{ f_1, f_2 \}$

\[
f_1 = 6x_1x_2 + 3x_2^2 - 10x_1 - 13x_2 + 10
\]

\[
f_2 = 3x_2^2 - 2x_1 - 5x_2 + 2
\]

The system has 3 solutions, all with multiplicity one. Ideal $\langle F \rangle$ is radical

\[
\langle 0 \rangle \equiv X_2 \leq \text{gre藤} \equiv X_1
\]

Monomials of F will be thus ordered as

\[
1 \leq_0 x_2 \leq_0 x_1 \leq_0 x_2^2 \leq_0 x_1x_2
\]

Solutions to 2 conics are

\[
[0,1], [1,0], [2,2]
\]
To get an eigenvalue / eigenvector problem, we need to find a multiplication matrix for a polynomial w.r.t. that we will generate all remainders on the division by GB of \(\langle F \rangle \).

With grevlex ordering we expect B to contain 3 smallest monomials \(1, x_1, x_2 \) (all remainders will be linear combinations of \(1, x_1, x_2 \)).

\[
\begin{align*}
 f_1 &= 6x_1x_2 + 3x_2^2 - 10x_1 - 13x_2 + 16 \\
 f_2 &= 3x_1^2 - 2x_1 - 5x_2 + 2 \\
 \text{LCM} (x_1x_2, x_2) &= x_1x_2^2 \\
 S(t_1, t_2) &= \frac{x_1x_2}{6x_1}, f_1 - \frac{x_1x_2}{2x_1} f_2 = \frac{x_2}{6} f_1 - \frac{x_4}{3} f_2 = \left(3x_2^3 + 4x_1x_2 - 13x_2^2 - 4x_1 + 10x_2 \right) / 6 \\
 f_3 &= S(t_1, t_2) = 3x_1^2 - 5x_1 - 2x_2 + 2 \quad G = \{ t_1, t_2 \} \cup \{ t_3 \} \\
 S(t_1, t_2) &= 0 \quad S(t_1, t_3) = 0 \quad S(t_2, t_3) = 0
\end{align*}
\]

\(\Rightarrow \) No new non-zero remainder has been generated \(\Rightarrow \) we have obtained GB of \(\langle F \rangle \).
We can simplify G to obtain reduced GB of $\langle F \rangle$.

The idea is to remove all monomials from polynomials of G that can be divided by the LT of G.

- It is a generalization of G-J elimination.

In this case, there is monomial x_2^3 in f_1 that is divisible by the leading term x_2 of f_2, hence we can remove it by subtracting f_2 from f_1.

The reduced GB is

\[
\begin{align*}
g_1 &= x_1x_2 - \frac{4}{3}x_1 - \frac{5}{6}x_2 + \frac{5}{3} \\
g_2 &= x_2^2 - \frac{2}{3}x_1 - \frac{5}{3}x_2 + \frac{2}{3} \\
g_3 &= x_1^2 - \frac{5}{3}x_1 - \frac{2}{3}x_2 + \frac{2}{3}
\end{align*}
\]
- The leading monomials of Gr, i.e. $x_1 x_2$, x_2^2 and x_1^2 reduce all monomials except for the three monomials $1, x_1, x_2$.

- These are the three monomials that will provide the basis of the linear space to form a multiplication matrix and to obtain eigenvalue/eigenvector problem providing us with the solution to the original system F.

\begin{align*}
\text{Standard monomials } x_1, x_2, 1 \text{ of } 6 \text{ are not divisible by a leading monomials } x_1^2, x_1 x_2, x_2^2 \text{ of } 6
\end{align*}
Let's consider mapping $M_g : \mathbb{Q}[x_1, x_2] \to \mathbb{Q}[x_1, x_2]$ by a polynomial $g \in \mathbb{Q}[x_1, x_2]$ defined by

$$M_g (h) = \overline{g \cdot h} \quad G \cdot GB \text{ of } F$$

The reduction of $g \cdot h$ as well as the computation of G is carried out w.r.t. the same monomial ordering.

- Matrices M_{x_1}, M_{x_2} ($y = x_1, y = x_2$) can be extracted from G

We have

$$g_1 = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\
1 & 1 & 0 & -\frac{1}{3} & -\frac{1}{3} & \frac{5}{3} \\
0 & 0 & 1 & -\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix}$$

We see

$$x_1 \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix} = \begin{bmatrix} x_1^2 \\ x_1 x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} \frac{5}{3} & \frac{2}{3} & -\frac{2}{3} \\ \frac{4}{3} & \frac{2}{3} & -\frac{2}{3} \\ \frac{1}{3} & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}$$

$$x_2 \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix} = \overline{x_1 x_2} \begin{bmatrix} x_1^3 \\ x_1^2 x_2 \\ x_1 x_2^2 \\ x_2^3 \\ x_2^2 \\ x_2 \end{bmatrix} = \begin{bmatrix} \frac{5}{3} & \frac{5}{3} & -\frac{1}{3} \\ \frac{2}{3} & \frac{4}{3} & -\frac{1}{3} \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}$$
Since the system \(F \) has 3 solutions with multiplicity one, \(\langle F \rangle \) is radical.

\[[1,0], [0,1], [2,2] \]

Since all three solutions have pairwise distinct \(x_1 \) (as well as \(x_2 \)) (0,1,2) we can choose \(g = x_1 \) and then \(M_g = Mx_1 \)

We compute eigenvectors of \(M_{x_1}^T \) and get 3 one-dimensional bases of 3 one-dimensional eigenspaces

\[\text{eigvec} (M_{x_1}^T) = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} \]

\(\text{corresponding to evaluations of} \)

\[\begin{bmatrix} x_1 \\ x_2 \\ \lambda \end{bmatrix} \]

on solutions \(p_1, p_2, p_3 \)

\(\Rightarrow \) we get 3 solutions \([1,0], [0,1], [2,2] \)