RECAP:

Polynomials: \(f = \sum a_{\alpha} x^\alpha \quad f \in \mathbb{Q}[x_1, \ldots, x_n] \)
\(\alpha \in \mathbb{Z}^n_{\geq 0} \quad a_{\alpha} \in \mathbb{Q} \)

Nonomials: \(x^\alpha = x_1^{\alpha_1} \cdots x_n^{\alpha_n} \quad \alpha \quad \text{multi-degree} \)

Total degree: \(d = \alpha_1 + \cdots + \alpha_n \)

Polynomials cannot be in general divided

Monomial ordering - Lexicographic, Graded reverse Lex ordering

Leading term: \(\text{LT}(f) = \text{LC}(f) \cdot \text{LT}(f) \)

Leading coefficient \(\sim \) Leading monomial

\(\text{LC}(f) = a_{\text{multideg}(f)} \quad \text{LT}(f) = x_{\text{multideg}(f)} \)

\(\text{multideg}(f) = \max \{ \alpha \in \mathbb{Z}^n_{\geq 0} | \alpha \neq 0 \} \)

Division theorem + algorithm

\(f_i, F \in \mathbb{Q}(x_1, \ldots, x_n) \)

\(f = a_1 f_1 + \cdots + a_s f_s + r \)

\(a_i, r \in \mathbb{Q}(x_1, \ldots, x_n) \), either \(r = 0 \) or none of the monomials is divisible by any of \(\text{LT}(f_1), \ldots, \text{LT}(f_s) \)

Furthermore, \(a_i f_i \neq 0 \Rightarrow \text{multideg}(f) \geq \text{multideg}(a_i f_i) \)
One non-linear polynomial eq. in one unknown

- is well understood
- the problem can be formulated as a computation of eigenvalues of a matrix
- simple example

\[f = x^3 - 6x^2 + 11x - 6 = 0 \]

We can construct a companion matrix

\[
M_x = \begin{bmatrix}
0 & 0 & 6 \\
1 & 0 & -11 \\
0 & 1 & 6
\end{bmatrix}
\]

the characteristic polynomial of \(M_x \) is

\[
\det(M_x - xI) = \det\left(\begin{bmatrix}
-\frac{6}{x} & 0 & \frac{6}{x} \\
-1 & -\frac{11}{x} & 0 \\
0 & 1 & -\frac{6}{x}
\end{bmatrix} \right) = x^3 - 6x^2 + 11x - 6 = f
\]

Therefore eigenvalues of \(M_x \) (1, 2, 3) are the solutions to \(f(x) = 0 \)
Linear mapping represented by a matrix $M \in \mathbb{R}^{n\times n}$

Eigenvalues:

$Mx = \lambda x$

$Mx - \lambda x = 0$

$Mx - \lambda Ix = 0$

$(M - \lambda I)x = 0$

$x \neq 0 \Rightarrow \uparrow$

$\text{rank } (M - \lambda I) < n$

$\Rightarrow \det (M - \lambda I) = 0$
- This procedure applies in general when the coefficient at the monomial of f with the highest degree is equal to 1 (when we normalize the equation).

- Obviously, such normalization using division by a non-zero coefficient at the monomial of the highest degree produces an equivalent equation with the same solutions.

The general rule for constructing the companion matrix M_x for polynomial
\[f(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0 \]

\[
M_x = \begin{bmatrix}
0 & 0 & \cdots & 0 & -a_0 \\
1 & 0 & \cdots & 0 & -a_1 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 1 & 0 & -a_{n-1} \\
0 & \cdots & 0 & 1 & -a_n
\end{bmatrix}
\]

Note that the eigenvalue computation must be in general approximate in general, roots of polynomials of degrees higher than 4 can't be expressed as finite formulas in coefficients a_i using $\sqrt{}$.}$
System of linear polynomial equations in several unknowns

Consider the following system of 3 linear polynomial equations in 3 unknowns

\[2x_1 + x_2 + 3x_3 = 0 \]
\[4x_1 + 3x_2 + 2x_3 = 0 \]
\[2x_1 + x_2 + x_3 = 2 \]

and we write it in the standard matrix form

\[
\begin{bmatrix}
2 & 1 & 3 \\
4 & 3 & 2 \\
2 & 1 & 1 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
2 \\
\end{bmatrix}
\]

Using Gaussian elimination, we obtain an equivalent system

\[
\begin{bmatrix}
2 & 1 & 3 \\
0 & 1 & -4 \\
0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
-1 \\
\end{bmatrix}
\]

We see that the system has exactly one solution

\[x_1 = \frac{9}{2}, \quad x_2 = -4, \quad x_3 = -1 \]
- The key point of this method is to produce a system in a "triangulate shape" such that there is an equation in a single unknown x_3, an equation in two unknowns $f_2(x_2, x_3)$ and so on.

- We can solve for x_3 and then transform f_2 by a substitution into an equation in a single unknown and solve for x_2 and so on.

$$x_3^4 + 1 = 0 \quad , \quad x_2 - 4x_3 = 0 \quad , \quad 2x_1 + x_2 + 3x_3 = 0$$

is a so-called Gröbner basis.

- Note that if we reorder unknowns we get a different GB.
We can go even further and compute the reduced-row Echelon form of this system:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} \\ -1 \\ -1 \end{bmatrix}$$

In this case we obtained so-called reduced GB.

For a linear system with one solution there is a unique reduced GB for all orderings.

In general (for general systems) for different orderings, reduced-row Echelon forms are different and also reduced GBs are different.
Example. To illustrate this for a system of linear equations we have to consider less equations than unknowns

\[
\begin{bmatrix}
2 & 4 & 2 & 1 & 2 \\
2 & 4 & 1 & 2 & 8 \\
1 & 2 & 3 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\]

RREF

\[
\begin{bmatrix}
1 & 2 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\]

Different ordering

\[
\begin{bmatrix}
2 & 4 & 1 & 7 & 2 \\
1 & 2 & 8 & 2 & 4 \\
3 & 1 & 4 & 1 & 2
\end{bmatrix}
\begin{bmatrix}
x_3 \\
x_4 \\
x_5 \\
x_1 \\
x_2
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\]

RREF

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1/3 & -2/3 \\
0 & 0 & 1 & 2/3 & 2/3
\end{bmatrix}
\]

• The reduced-row Echelon form is unique for a given order of unknowns and it provides the reduced GB.

• Matrix of the RREF w.r.t one ordering is not equal to the matrix of the RREF w.r.t. another ordering and the corresponding reduced GB are also different.
Several non-linear polynomial eqs. in several unknowns

- Technique for transforming a system of polynomial equations with a finite number of solutions into a system that will contain a polynomial in the "last" unknown, say x_n

\Rightarrow will allow for solving for x_n and reducing the problem from n to $n-1$ unknowns and so on until we solve for all unknowns.

Example:

$$f_1 = x_1^2 + x_2^2 - 1 = 0$$
$$f_2 = 25x_1x_2 - 20x_2 - 15x_1 + 12 = 0$$

Matrix form:

$$\begin{bmatrix}
1 & 0 & 0 & 1 & 0 & -1 \\
0 & 25 & -20 & 0 & -15 & 12
\end{bmatrix}
\begin{bmatrix}
x_1^2 \\
x_4x_2 \\
x_2^2 \\
x_4 \\
x_1
\end{bmatrix} = \begin{bmatrix}
0 \\
0
\end{bmatrix}$$

$f = 0 \Rightarrow f \cdot g = 0$ for any $g \in \mathbb{Q}[x_1, x_2]$

E.g. $x_1 \cdot f_1 = 0$, $x_2 \cdot f_2 = 0$
- Adding "new equations" of the form $f_i \cdot g = 0$ to the original system produces a new system with the same solutions.

- Polynomials $f_i \cdot x^j$ are linearly independent when $f \neq 0$ since $x^j \cdot f$ has degree strictly greater than is the degree of f.

 \Rightarrow by adding $x \cdot f_i \cdot (g \cdot f)$ we have a chance to add another independent row to the matrix.

- Let's add $x^1 f_1$, $x_2 f_2$ to our system and write it in the matrix form:

\[
\begin{bmatrix}
 x^1 x_2 & x_2 & x^1 x_2 & x_2 & x^3 & x_2 & x^1 & 1 \\
 f_1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
 f_2 & 0 & 0 & 25 & -20 & 0 & 0 & -15 & 12 \\
 x_1 f_1 & 1 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \\
 x_2 f_2 & 25 & -20 & -15 & 12 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

- More rows have been added but also new monomials $x_1 x_2^2$ and x_3^3.
Eliminate it by the Gaussian elimination

\[\begin{bmatrix}
 x^4 & x^2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix} \]

The last row gives an equation in single unknown y

- We have been ordering monomials corresponding to the columns of the matrix such that we have all monomials in y at the end

- It can be shown that similar procedure works for every system of polynomial equations \(\{f_1, \ldots, f_k\} \in \mathbb{Q}[x_1, \ldots, x_n] \) with a finite number of solutions
In particular, there always are \mathbf{a} finite sets Π_i, $i=1, \ldots, \mathbf{a}$ of monomials such that the extended system

$$\{ f_1, f_2, \ldots, f_a \} \cup \{ m f_j \mid m \in \Pi_j, \ j=1, \ldots, \mathbf{a} \}$$

has matrix A with the following nice property:

- If the last columns of A correspond to all monomials in a single unknown $x_i, (y)$ (including 1), then the last non-zero row of matrix B, obtained by the Gaussian elimination of A produces a polynomial in single unknown $x_i, (y)$

- a very powerful technique
- a tool how to solve all systems of polynomial equations with a finite number of solutions
- In practice the main problem is how to find small sets \(I \); in acceptable time.

- The number of monomials of total degree at most \(d \) in \(n \) unknowns is given by the combination number \(\binom{n+d}{d} \).

\(\Rightarrow \) The size of the matrix \(A \) is growing very quickly.

- Practical algorithms (e.g. Fa) use many tricks how to select small sets of monomials and how to efficiently compute in exact arithmetics over \(\mathbb{Q} \).