Inverse Kinematic Task (IKT)

Mathematical formulation of IKT

$$
\begin{gathered}
\mathbf{M}_{e}=\mathbf{M}_{1}^{0} \mathbf{M}_{2}^{1} \mathbf{M}_{3}^{2} \mathbf{M}_{4}^{3} \mathbf{M}_{5}^{4} \mathbf{M}_{6}^{5} \\
\underbrace{\left[\begin{array}{cc}
\mathbf{R}_{e} & \mathbf{t}_{e} \\
\mathbf{0}^{\top} & 1
\end{array}\right]}_{\substack{\text { pose of the } \\
\text { end effector }}}=\prod_{i=1}^{6} \mathbf{M}_{i}^{i-1}(\theta_{i}+\underbrace{\theta_{i_{\text {offset }}}, d_{i}, a_{i}, \alpha_{i}}_{\text {DH parameters }}) \\
\underbrace{\prod_{i=1}^{6} \mathbf{M}_{i}^{i-1}\left(\theta_{i}+\theta_{i_{\text {offset }}}, d_{i}, a_{i}, \alpha_{i}\right)-\left[\begin{array}{cc}
\mathbf{R}_{e} & \mathbf{t}_{e} \\
\mathbf{0}^{\top} & 1
\end{array}\right]}_{12 \text { nonzero functions } \mathbf{f}(\theta)}=\mathbf{O}
\end{gathered}
$$

We can solve 12 equations $\mathbf{f}\left(\theta_{1}, \ldots, \theta_{6}\right)=\mathbf{f}(\boldsymbol{\theta})=\mathbf{0}$ either numerically or symbolically.

Newthon's method (numerical method)

Denote by $\boldsymbol{\theta}^{*}$ one of the solutions to $\mathbf{f}(\boldsymbol{\theta})=\mathbf{0}$ and by \mathbf{J} the Jacobian matrix $\frac{\partial \mathbf{f}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \in C(\boldsymbol{\theta}, \mathbb{R})^{12 \times 6}$.
Two basic operations of the Newthon's method are:

$$
\begin{gathered}
\boldsymbol{\theta}_{0}=\text { something close to } \boldsymbol{\theta}^{*} \quad \text { (initialization) } \\
\boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\mathbf{J}^{+}\left(\boldsymbol{\theta}_{k}\right) \mathbf{f}\left(\boldsymbol{\theta}_{k}\right) \quad \text { (improve the previous guess) }
\end{gathered}
$$

Symbolic method

- Equations $\mathbf{f}(\boldsymbol{\theta})$ are polynomial in $\cos \theta_{i}$ and $\sin \theta_{i}$
- New variables: $c_{i}=\cos \theta_{i}, s_{i}=\sin \theta_{i}$
- New polynomial equations:

$$
18 \text { equations }\left\{\begin{array}{l}
\mathbf{f}\left(c_{1}, s_{1}, \ldots, c_{6}, s_{6}\right)=\mathbf{0} \\
c_{i}^{2}+s_{i}^{2}=1 \quad \forall i=1, \ldots, 6
\end{array}\right.
$$

Groebner bases (symbolic method)

System of polynomial equations

Groebner basis (lexicographic ordering)
Solving univariate polynomials $+$
Backsubstitution

Solutions

Monomials and terms

(1) Monomial is a product of variables, e.g., $x^{3} y^{5}$ or the constant 1
(2) Term is a product of a nonzero constant with a monomial, e.g., $3 x^{2} y z w^{4}$
(3) Consider 3 variables x, y, z and order them, e.g.,

$$
x>y>z
$$

Every monomial can be written now as $\mathbf{x}^{\boldsymbol{\alpha}}$ with $\mathbf{x}=(x, y, z)$ and $\boldsymbol{\alpha} \in \mathbb{Z}_{\geq 0}^{3}$, e.g.,

$$
y^{2} x^{3} z=\mathbf{x}^{\boldsymbol{\alpha}} \quad \text { with } \quad \boldsymbol{\alpha}=(3,2,1)
$$

(9) We say that term $a \mathbf{x}^{\boldsymbol{\alpha}}$ divides term $b \mathbf{x}^{\boldsymbol{\beta}}$ if

$$
\beta_{i}-\alpha_{i} \geq 0 \quad \forall i=1, \ldots, n
$$

Lexicographic monomial ordering

(1) We define the relation

$$
\mathbf{x}^{\boldsymbol{\alpha}} \geq \operatorname{lex} \mathbf{x}^{\boldsymbol{\beta}}
$$

if the left-most nonzero element of $\boldsymbol{\alpha}-\boldsymbol{\beta}$ is positive or $\boldsymbol{\alpha}=\boldsymbol{\beta}$.
(2) For example,

$$
\mathbf{x}^{\boldsymbol{\alpha}}=x^{3} y^{3} z \geq \operatorname{lex} x^{3} y^{2} z^{10}=\mathbf{x}^{\boldsymbol{\beta}}
$$

since

$$
\boldsymbol{\alpha}-\boldsymbol{\beta}=(3,3,1)-(3,2,10)=(0,1,-9)
$$

(3) We can extend this relation to terms by saying that

$$
a \mathbf{x}^{\boldsymbol{\alpha}} \geq_{\operatorname{lex}} b \mathbf{x}^{\boldsymbol{\beta}} \Longleftrightarrow \mathbf{x}^{\boldsymbol{\alpha}} \geq_{\operatorname{lex}} \mathbf{x}^{\boldsymbol{\beta}}
$$

Multivariate Polynomial Division Algorithm

```
Algorithm 1: Multivariate Polynomial Division Algorithm
    Input: \(f, F=\left(f_{1}, \ldots, f_{s}\right), \geq\) (monomial ordering)
    Output: \(\left(q_{1}, \ldots, q_{s}\right), r\) such that \(f=\sum_{i=1}^{s} q_{i} f_{i}+r, \mathrm{LT}_{\geq}(r)\) is not
                divisible by any of \(\operatorname{LT}_{\geq}\left(f_{i}\right)\) or \(r=0\)
    \(1 q_{1} \leftarrow \ldots \leftarrow q_{s} \leftarrow r \leftarrow 0\)
\(2 p \leftarrow f\)
3 while \(p \neq 0\) do
\(4 \quad i \leftarrow 1\)
5 divisionoccured \(\leftarrow F A L S E\)
\(6 \quad\) while \(i \leq s\) and divisionoccured \(=F A L S E\) do
\(7 \quad\) if \(\mathrm{LT}_{\geq}\left(f_{i}\right)\) divides \(\mathrm{LT}_{\geq}(p)\) then
    8
    -
    9
10
11
12
                    \(i \leftarrow i+1\)
    if divisionoccured \(=F A L S E\) then
                \(r \leftarrow r+\mathrm{LT}_{\geq}(p)\)
                \(p \leftarrow p-\mathrm{LT}_{\geq}(p)\)
16 return \(\left(q_{1}, \ldots, q_{s}\right), r\)
```

