
Parallel Accelerators

Přemysl Šůcha

``Parallel algorithms'', 2017/2018

CTU/FEL

1

Topic Overview

• Graphical Processing Units (GPU) and CUDA

• Vector addition on CUDA

• Intel Xeon Scalable Processors

2

Graphical Processing Units

3

GPU – Nvidia - Roadmap

4

GPU - Use

• GPU is especially well-suited to address problems that

can be expressed as data-parallel computations.

• The same program is executed on many data elements

in parallel - with high arithmetic intensity.

• Applications that process large data sets can use a

data-parallel programming model to speed up the

computations (3D rendering, image processing, video

encoding, …)

• Many algorithms outside the field of image rendering

and processing are accelerated by data-parallel

processing too (machine learning, general signal

processing, physics simulation, finance, …).
5

GPU - Overview

• CPU code runs on the host, GPU code runs on the

device.

• A kernel consists of multiple threads.

• Threads execute in 32-thread groups called warps.

• Threads are grouped into blocks.

• A collection of blocks is called a grid.

6

GPU - Hardware Organization Overview

• GPU chip consists of one or more streaming

multiprocessors (SM).

• A multiprocessor consists of 1 (CC 1.x), 2 (CC 2.x), or 4

(CC 3.x, 5.x, 6.x, 7.x) warp schedulers. (CC = CUDA

Capability)

• Each warp scheduler can issue to 2 (CC 5 and 6) or 1

(CC 7) dispatch units.

• A multiprocessor consists of functional units of several

types.

7

Streaming Multiprocessor (SM) - Volta

8

GPU - Functional Units

• INT, FP32 (CUDA Core) - functional units that

executes most types of instructions, including most

integer and single precision floating point instructions.

• FP64 (Double Precision) - executes double-precision

floating point instructions.

• SFU (Special Functional Unit) - executes reciprocal

and transcendental instructions such as sine, cosine,

and reciprocal square root.

• LD/ST (Load/Store Unit) – handles load and store

instructions.

• TENSOR CORE – for deep learning matrix arithmetic.

9

GPU - Tensor Core

• V100 GPU contains 640 Tensor Cores: eight (8) per SM.

• Tensor Core performs 64 floating point FMA (fused

multiply–add) operations per clock.

• Matrix-Matrix multiplication (GEMM) operations are at

the core of neural network training and inferencing.

• Each Tensor Core operates on a 4x4 matrices.

10

Streaming Multiprocessor (SM)

• Each SM has a set of temporary registers split

amongst threads.

• Instructions can access high-speed shared

memory.

• Instructions can access a cache-backed constant

space.

• Instructions can access local memory.

• Instructions can access global space. (very slow in

general)

11

GPU Architecture - Volta

12

GPU Architectures

13

Tesla Product Tesla K40 Tesla M40 Tesla P100 Tesla V100

Manufacturing

Process

28nm 28nm 16nm 12nm

Transistors 7.1 Billion 8.0 Billion 15.3 Billion 21.1 Billion

SMs / GPU 15 24 28 40

F32 Cores / SM 192 128 64 64

F32 Cores / GPU 2880 3072 3584 5120

Peak FP32

TFLOPS

5 6.8 10.6 15.7

Peak FP64

TFLOPS

1.7 0,21 5.3 7.8

GPU Boost Clock 810/870 MHz 1114 MHz 1480 MHz 1530 MHz

TDP 235 W 250 W 300 W 300 W

Memory Interface 384-bit GDDR5 384-bit GDDR5 4096-bit HBM2 4096-bit HBM2

Maximum TDP 244W 250W 250W 300W

Single-Instruction, Multiple-Thread

• SIMT is an execution model where single instruction,

multiple data (SIMD) is combined with multithreading.

• The SM creates, manages, schedules, and executes

threads in groups of 32 parallel threads called warps.

• A warp start together at the same program address, but

they have their own instruction address counter and

register state and are therefore free to branch and

execute independently.

14

CUDA

• The NVIDIA GPU architecture is built around a scalable

array of multithreaded Streaming Multiprocessors (SMs).

• CUDA (Compute Unified Device Architecture) provides a

way how a CUDA program can be executed on any

number of SMs.

• A multithreaded program is partitioned into blocks of

threads that execute independently from each other.

• A GPU with more multiprocessors will automatically

execute the program in less time than a GPU with fewer

multiprocessors.

15

CUDA

16

Grid/Block/Thread

• threads can be identified using a

1-D, 2-D, or 3-D thread index,

forming a 1-D, 2-D, or 3-D block

of threads, called a thread

block.

• Blocks are organized into a 1-D,

2-D, or 3-D grid of thread

blocks.

2-D grid with 2-D thread blocks

17

Kernel

• CUDA C extends C by allowing the programmer to

define C functions, called kernels.

• threadIdx is a 3-component vector, so that threads can

be identified using a 1-D, 2-D, or 3-D thread index.

// Kernel definition

__global__ void VecAdd(float* A, float* B, float* C)

{

int i = threadIdx.x;

C[i] = A[i] + B[i];

}

int main()

{ ...

// Kernel invocation with N threads inside 1 thread block

VecAdd<<<1, N>>>(A, B, C);

}

18

Memory Hierarchy

• Each thread has private set

of registers and local

memory.

• Each thread block has

shared memory visible to

all threads of the block.

• All threads have access to

the same global memory.

• There are also two

additional read-only

memory spaces accessible

by all threads (constant

and texture memory). 19

GPU Programming - Example

• Element by element vector addition

[1] NVIDIA Corporation, CUDA Toolkit Documentation

v9.0.176, 2017.

20

Element by element vector addition

/* Host main routine */

int main(void)

{

int numElements = 50000;

size_t size = numElements * sizeof(float);

// Allocate the host input vectors A and B and output vector C

float *h_A = (float *)malloc(size);

float *h_B = (float *)malloc(size);

float *h_C = (float *)malloc(size);

// Initialize the host input vectors

for (int i = 0; i < numElements; ++i)

{

h_A[i] = rand()/(float)RAND_MAX;

h_B[i] = rand()/(float)RAND_MAX;

}

21

Element by element vector addition

// Allocate the device input vectors A and B and output vector C

float *d_A = NULL;

cudaMalloc((void **)&d_A, size);

float *d_B = NULL;

cudaMalloc((void **)&d_B, size);

float *d_C = NULL;

cudaMalloc((void **)&d_C, size);

// Copy the host input vectors A and B in host memory to the device

// input vectors in device memory

cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

22

Element by element vector addition

// Launch the Vector Add CUDA Kernel

int threadsPerBlock = 256;

int blocksPerGrid = (numElements + threadsPerBlock - 1) / threadsPerBlock;

vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, numElements);

// Copy the device result vector in device memory to the host result vector

// in host memory.

cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

23

Element by element vector addition

// Free device global memory

err = cudaFree(d_A);

err = cudaFree(d_B);

err = cudaFree(d_C);

// Free host memory

free(h_A);

free(h_B);

free(h_C);

return 0;

}

24

Element by element vector addition

/**

* CUDA Kernel Device code

*

* Computes the vector addition of A and B into C. The 3 vectors have the same

* number of elements numElements.

*/

__global__ void vectorAdd(float *A, float *B, float *C, int numElements)

{

int i = blockDim.x * blockIdx.x + threadIdx.x;

if (i < numElements)

{

C[i] = A[i] + B[i];

}

}

25

Tesla's AI chip

26

Dojo architecture

• The achitecture is focused

on ML

• Dojo is based on a custom

computing chip, the D1

chip, which is the building

block of a large multi-chip

module (MCM)-based

compute plane

• Training nodes are

interconned via a 2D mesh

27

Training node

• The smallest entity is a training

node

• 64-bit CPU (2GHz) fully

optimized for machine learning

workloads

• 1.25 MB of fast ECC-protected

SRAM

• optimized matrix multiply units

and SIMD instructions (FP32,

BFP16, CFP8, Int32, Int16, Int8)

• 1 teraflop of ML compute

• The training node has a modular

design
28

Training node

29

The D1 Chip

• created by an array of 354

training nodes

• 362 teraflops of machine learning

compute

• the bandwidth for the

communications between the

training nodes (on-chip bandwidt)

is 10 TBps (4 TBps off-chip).

• D1 is manufactured in 7 nm

technology

• The thermal design power (TDP)

of the chip is 400 W.
30

Dojo’s Training Tiles

• consisting of 25 D1 chips (5 x 5)

• bandwidth between the dies is preserved

• D1 chips can consume 10 kW

• 9 PFLOPs

31

Dojo’s Training Tiles

32

AI supercomputer

• Aim is to achieve 1.1EFLOPs in ML

33

Logical view

• DPU – Dojo Processing

Unit

• A virtual device that can

be sized according to the

application needs

34

References

• Tesla's AI chip REVEALED! (Project Dojo), presented at

Tesla AI Day

(https://www.youtube.com/watch?v=DSw3IwsgNnc)

35

