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Topic Overview 

• Graphical Processing Units (GPU) and CUDA

• Vector addition on CUDA

• Intel Xeon Scalable Processors
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Graphical Processing Units 
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GPU – Nvidia - Roadmap
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GPU - Use

• GPU is especially well-suited to address problems that 

can be expressed as data-parallel computations.

• The same program is executed on many data elements 

in parallel - with high arithmetic intensity.

• Applications that process large data sets can use a 

data-parallel programming model to speed up the 

computations (3D rendering, image processing, video 

encoding, …)

• Many algorithms outside the field of image rendering 

and processing are accelerated by data-parallel 

processing too (machine learning, general signal 

processing, physics simulation, finance, …).
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GPU - Overview

• CPU code runs on the host, GPU code runs on the 

device.

• A kernel consists of multiple threads.

• Threads execute in 32-thread groups called warps.

• Threads are grouped into blocks.

• A collection of blocks is called a grid.
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GPU - Hardware Organization Overview

• GPU chip consists of one or more streaming 

multiprocessors (SM).

• A multiprocessor consists of 1 (CC 1.x), 2 (CC 2.x), or 4 

(CC 3.x, 5.x, 6.x, 7.x) warp schedulers. (CC = CUDA 

Capability)

• Each warp scheduler can issue to 2 (CC 5 and 6) or 1 

(CC 7) dispatch units.

• A multiprocessor consists of functional units of several 

types.
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Streaming Multiprocessor (SM) - Volta
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GPU - Functional Units 

• INT, FP32 (CUDA Core) - functional units that 

executes most types of instructions, including most 

integer and single precision floating point instructions.

• FP64 (Double Precision) - executes double-precision 

floating point instructions.

• SFU (Special Functional Unit) - executes reciprocal 

and transcendental instructions such as sine, cosine, 

and reciprocal square root.

• LD/ST (Load/Store Unit) – handles load and store 

instructions.

• TENSOR CORE – for deep learning matrix arithmetic.
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GPU - Tensor Core 

• V100 GPU contains 640 Tensor Cores: eight (8) per SM.

• Tensor Core performs 64 floating point FMA (fused 

multiply–add) operations per clock.

• Matrix-Matrix multiplication (GEMM) operations are at 

the core of neural network training and inferencing.

• Each Tensor Core operates on a 4x4 matrices.
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Streaming Multiprocessor (SM)

• Each SM has a set of temporary registers split 

amongst threads.

• Instructions can access high-speed shared 

memory.

• Instructions can access a cache-backed constant 

space.

• Instructions can access local memory.

• Instructions can access global space. (very slow in 

general)
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GPU Architecture - Volta
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GPU Architectures
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Tesla Product Tesla K40 Tesla M40 Tesla P100 Tesla V100

Manufacturing 

Process

28nm 28nm 16nm 12nm

Transistors 7.1 Billion 8.0 Billion 15.3 Billion 21.1 Billion

SMs / GPU 15 24 28 40

F32 Cores / SM 192 128 64 64

F32 Cores / GPU 2880 3072 3584 5120

Peak FP32 

TFLOPS

5 6.8 10.6 15.7

Peak FP64 

TFLOPS

1.7 0,21 5.3 7.8

GPU Boost Clock 810/870 MHz 1114 MHz 1480 MHz 1530 MHz

TDP 235 W 250 W 300 W 300 W

Memory Interface 384-bit GDDR5 384-bit GDDR5 4096-bit HBM2 4096-bit HBM2

Maximum TDP 244W 250W 250W 300W



Single-Instruction, Multiple-Thread

• SIMT is an execution model where single instruction, 

multiple data (SIMD) is combined with multithreading.

• The SM creates, manages, schedules, and executes 

threads in groups of 32 parallel threads called warps.

• A warp start together at the same program address, but 

they have their own instruction address counter and 

register state and are therefore free to branch and 

execute independently.
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CUDA

• The NVIDIA GPU architecture is built around a scalable

array of multithreaded Streaming Multiprocessors (SMs).

• CUDA (Compute Unified Device Architecture) provides a 

way how a CUDA program can be executed on any 

number of SMs.

• A multithreaded program is partitioned into blocks of 

threads that execute independently from each other.

• A GPU with more multiprocessors will automatically 

execute the program in less time than a GPU with fewer 

multiprocessors.
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CUDA
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Grid/Block/Thread

• threads can be identified using a 

1-D, 2-D, or 3-D thread index, 

forming a 1-D, 2-D, or 3-D block 

of threads, called a thread 

block.

• Blocks are organized into a 1-D, 

2-D, or 3-D grid of thread 

blocks.

2-D grid with 2-D thread blocks
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Kernel

• CUDA C extends C by allowing the programmer to 

define C functions, called kernels.

• threadIdx is a 3-component vector, so that threads can 

be identified using a 1-D, 2-D, or 3-D thread index.

// Kernel definition

__global__ void VecAdd(float* A, float* B, float* C) 

{

int i = threadIdx.x;

C[i] = A[i] + B[i];

}

int main()

{ ...

// Kernel invocation with N threads inside 1 thread block

VecAdd<<<1, N>>>(A, B, C); 

}

18



Memory Hierarchy

• Each thread has private set 

of registers and local 

memory.

• Each thread block has 

shared memory visible to 

all threads of the block.

• All threads have access to 

the same global memory.

• There are also two 

additional read-only 

memory spaces accessible 

by all threads (constant

and texture memory). 19



GPU Programming - Example

• Element by element vector addition

[1] NVIDIA Corporation, CUDA Toolkit Documentation 

v9.0.176, 2017. 
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Element by element vector addition

/* Host main routine */

int main(void)

{

int numElements = 50000;

size_t size = numElements * sizeof(float);

// Allocate the host input vectors A and B and output vector C

float *h_A = (float *)malloc(size);

float *h_B = (float *)malloc(size);

float *h_C = (float *)malloc(size);

// Initialize the host input vectors

for (int i = 0; i < numElements; ++i)

{

h_A[i] = rand()/(float)RAND_MAX;

h_B[i] = rand()/(float)RAND_MAX;

}
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Element by element vector addition

// Allocate the device input vectors A and B and output vector C

float *d_A = NULL;

cudaMalloc((void **)&d_A, size);

float *d_B = NULL;

cudaMalloc((void **)&d_B, size);

float *d_C = NULL;

cudaMalloc((void **)&d_C, size);

// Copy the host input vectors A and B in host memory to the device 

// input vectors in device memory

cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);
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Element by element vector addition

// Launch the Vector Add CUDA Kernel

int threadsPerBlock = 256;

int blocksPerGrid = (numElements + threadsPerBlock - 1) / threadsPerBlock;

vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, numElements);

// Copy the device result vector in device memory to the host result vector

// in host memory.

cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);
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Element by element vector addition

// Free device global memory

err = cudaFree(d_A);

err = cudaFree(d_B);

err = cudaFree(d_C);

// Free host memory

free(h_A);

free(h_B);

free(h_C);

return 0;

}
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Element by element vector addition

/**

* CUDA Kernel Device code

*

* Computes the vector addition of A and B into C. The 3 vectors have the same

* number of elements numElements.

*/

__global__ void vectorAdd(float *A, float *B, float *C, int numElements)

{

int i = blockDim.x * blockIdx.x + threadIdx.x;

if (i < numElements)

{

C[i] = A[i] + B[i];

}

}
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Tesla's AI chip
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Dojo architecture

• The achitecture is focused 

on ML

• Dojo is based on a custom 

computing chip, the D1 

chip, which is the building 

block of a large multi-chip 

module (MCM)-based 

compute plane

• Training nodes are 

interconned via a 2D mesh
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Training node

• The smallest entity is a training 

node

• 64-bit CPU (2GHz) fully 

optimized for machine learning 

workloads

• 1.25 MB of fast ECC-protected 

SRAM

• optimized matrix multiply units 

and SIMD instructions (FP32, 

BFP16, CFP8, Int32, Int16, Int8)

• 1 teraflop of ML compute

• The training node has a modular 

design
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Training node
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The D1 Chip

• created by an array of 354 

training nodes

• 362 teraflops of machine learning 

compute

• the bandwidth for the 

communications between the 

training nodes (on-chip bandwidt) 

is 10 TBps (4 TBps off-chip).

• D1 is manufactured in 7 nm 

technology

• The thermal design power (TDP) 

of the chip is 400 W.
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Dojo’s Training Tiles

• consisting of 25 D1 chips (5 x 5)

• bandwidth between the dies is preserved

• D1 chips can consume 10 kW

• 9 PFLOPs
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Dojo’s Training Tiles
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AI supercomputer

• Aim is to achieve 1.1EFLOPs in ML
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Logical view

• DPU – Dojo Processing 

Unit

• A virtual device that can 

be sized according to the 

application needs
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References

• Tesla's AI chip REVEALED! (Project Dojo), presented at 

Tesla AI Day

(https://www.youtube.com/watch?v=DSw3IwsgNnc)
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