Parallel prOgrammlzng
Python Numba -

aly i
(¥
LR 1Ty

|

| - aumr ?
H J?ﬁl"rm-' =y eES

Performance Boost:
* Harness the full potential of your CPU cores

* Speed up computationally intensive tasks

Simplicity and Readability:

* No need for complex parallel programming
constructs

* Write code in Python as usual and let @njit handle
the parallel magic

How It works

@yit's parallel option automates parallelization and

optimizations
|dentification of operations with parallel semantics
Fusion of adjacent operations to form parallel kernels

Fully automated process without user program

modifications

Automatic Parallelization

* Setting the parallel option @jit(parallel = True) allows
to automatically parallelize a function or its part and

perform other optimizations

* Numba attempts to identify such operations in a user
program, and fuse adjacent ones together, to form one

or more kernels that are automatically run in parallel

N

.=-. Supported operations

All the operations which include common arithmetic

functions between arrays and scalars:
» Unary operations (+, -, ~
» Binary operations (+, -, *, /, %, >>, <<,)

» Comparison operators (==, =, <, >, <=, >=)

Additionally Numba provides support for Numba ufunc (only

In nopython mode) and user-defined DUFunc through

vectorize()

Supported numpy functions

numpy reduction functions (sum, prod, min, max,

argmin, argmax)
numpy math functions (mean, var, std)

numpy array creation functions (zeros, ones, array,

linspace)
numpy dot() function

Reduce operator for 1D numpy arrays

Explicit Parallel Loops

Another feature of the code Is the support for explicit

parallel loops (again, add “parallel=True” into @jit)

One can use numba’s prange() instead of range() to

specify that a loop can be parallelized

Warning: the loop must not have cross iteration

dependencies except for supported reductions

- ﬂExampIe 1: Automatic Parallelization

* See the example of automatic parallelization in the

provided .ipynb notebook with example codes

Beware race condition!

* Care should be taken, however, when reducing
Into slices or elements of an array

* If the specified elements are written to
simultaneously by multiple parallel threads, a
race condition would occur

e “Example 2: Race Condition

* See the example of race condition in the provided .ipynb

notebook with example codes

22> Scheduling of parallel task

By default, Numba divides the iterations of a parallel

region into chunks

Approximately equally sized chunk is given to each

configured thread

This scheduling approach is equivalent to static

scheduling in OpenMP

.=+ Scheduling of parallel task

* Conversely, if the work per iteration varies
significantly, static scheduling approach leads to load

Imbalances

* Numba provides a mechanism to control how many
iterations of a parallel region (i.e., the chunk size) go

Into each chunk

v _Example setting the chunk size

* See the example of setting the chunk size in the

provided .ipynb notebook with example codes

Parallel diagnostics report

* The parallel option in @njit provides diagnostic information

* Two ways to access diagnostics:

* Environment Variable:

* Set NUMBA PARALLEL _DIAGNOSTICS to enable
diagnostics

* Convenient for controlling diagnostics globally
* Function Call:

* Use parallel _diagnostics() to access the same
Information

* Enables fine-grained control and flexibility

Parallel diagnostics report

* Level of Verbosity:

— Set an integer argument (1 to 4) to control verbosity
- 1: Least verbose, 4: Most verbose

* Leverage @njit diagnostics: empower your
parallelized code with insights!

.= Example: diagnostic report

* See the example of calling the diagnostic in the provided

Ipynb notebook with example codes

“ Coding exercise: 1t Calculation

Implement the Monte-Carlo calculation of 71 using

Numba automated parallelization:
* access the provided skeletons

* accelerate the process by automating the
parallelization

* accelerate the process by setting an explicit chunk
size

* call the diagnostic report

no. of points generated inside the circle
no. of points generated inside the square

References

» Fundamental tutorial on numba:

https://numba.readthedocs.io/en/stable/cuda/index.html

> Selected pages:

https://numba.readthedocs.io/en/stable/user/parallel.html#

https://numba.readthedocs.io/en/stable/user/performance-t
IpS.htm|

18 /18

https://numba.readthedocs.io/en/stable/cuda/index.html
https://numba.readthedocs.io/en/stable/user/parallel.html
https://numba.readthedocs.io/en/stable/user/performance-tips.htmlttps:/numba.readthedocs.io/en/stable/cuda/memory.html
https://numba.readthedocs.io/en/stable/user/performance-tips.htmlttps:/numba.readthedocs.io/en/stable/cuda/memory.html

	Snímek 1
	Automatic Parallelization
	Snímek 3
	Snímek 4
	Supported operations
	Supported functions
	Explicit Parallel Loops
	Snímek 8
	Snímek 9
	Snímek 10
	Scheduling of parallel task
	Scheduling of parallel task (2)
	Example: setting the chunk size
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	References

