
Parallel programming

Python Numba - 2



/

Automatic Parallelization in Numba

● Performance Boost:
● Harness the full potential of your CPU cores
● Speed up computationally intensive tasks

● Simplicity and Readability:
● No need for complex parallel programming 

constructs
● Write code in Python as usual and let @njit handle 

the parallel magic

2 / 18



/

How it works

• @jit's parallel option automates parallelization and 

optimizations

• Identification of operations with parallel semantics

• Fusion of adjacent operations to form parallel kernels

• Fully automated process without user program 

modifications

3 / 18



/

Automatic Parallelization

• Setting the parallel option @jit(parallel = True) allows 

to automatically parallelize a function or its part and 

perform other optimizations

• Numba attempts to identify such operations in a user 

program, and fuse adjacent ones together, to form one 

or more kernels that are automatically run in parallel

4 / 18



/

Supported operations

All the operations which include common arithmetic 

functions between arrays and scalars:

 Unary operations (+, -, ~) 

 Binary operations (+, -, *, /, %, >>, <<, ….)

 Comparison operators (==, !=, <, >, <=, >=)

Additionally Numba provides support for Numba ufunc (only 

in nopython mode) and user-defined DUFunc through 

vectorize()
5 / 18



/

Supported numpy functions

• numpy reduction functions (sum, prod, min, max, 

argmin, argmax)

• numpy math functions (mean, var, std)

• numpy array creation functions (zeros, ones, array, 

linspace)

• numpy dot() function

• Reduce operator for 1D numpy arrays

6 / 18



/

Explicit Parallel Loops

• Another feature of the code is the support for explicit 

parallel loops (again, add “parallel=True” into @jit) 

• One can use numba’s prange() instead of range() to 

specify that a loop can be parallelized

• Warning: the loop must not have cross iteration 

dependencies except for supported reductions

7 / 18



/

Example 1: Automatic Parallelization

• See the example of automatic parallelization in the 

provided .ipynb notebook with example codes

8 / 18



/

Beware race condition!

● Care should be taken, however, when reducing 
into slices or elements of an array 

● If the specified elements are written to 
simultaneously by multiple parallel threads, a 
race condition would occur

9 / 18



/

Example 2: Race Condition

• See the example of race condition in the provided .ipynb 

notebook with example codes

10 / 18



/

Scheduling of parallel task

• By default, Numba divides the iterations of a parallel 

region into chunks

• Approximately equally sized chunk is given to each 

configured thread

• This scheduling approach is equivalent to static 

scheduling in OpenMP

11 / 18



/

Scheduling of parallel task

• Conversely, if the work per iteration varies 

significantly, static scheduling approach leads to load 

imbalances

• Numba provides a mechanism to control how many 

iterations of a parallel region (i.e., the chunk size) go 

into each chunk

12 / 18



/

Example: setting the chunk size

• See the example of setting the chunk size in the 

provided .ipynb notebook with example codes

13 / 18



/

Parallel diagnostics report

● The parallel option in @njit provides diagnostic information

● Two ways to access diagnostics: 
● Environment Variable:

● Set NUMBA_PARALLEL_DIAGNOSTICS to enable 
diagnostics

● Convenient for controlling diagnostics globally
● Function Call:

● Use parallel_diagnostics() to access the same 
information

● Enables fine-grained control and flexibility

14 / 18



/

Parallel diagnostics report

● Level of Verbosity:

– Set an integer argument (1 to 4) to control verbosity 
– 1: Least verbose, 4: Most verbose

● Leverage @njit diagnostics: empower your 
parallelized code with insights!

15 / 18



/

Example: diagnostic report

• See the example of calling the diagnostic in the provided 

.ipynb notebook with example codes

16 / 18



/

Coding exercise: π Calculation

Implement the Monte-Carlo calculation of π using 

Numba automated parallelization:
● access the provided skeletons
● accelerate the process by automating the 

parallelization
● accelerate the process by setting an explicit chunk 

size
● call the diagnostic report

17 / 18



/

References

 Fundamental tutorial on numba:

https://numba.readthedocs.io/en/stable/cuda/index.html

 Selected pages:

https://numba.readthedocs.io/en/stable/user/parallel.html#

https://numba.readthedocs.io/en/stable/user/performance-t
ips.html

18 / 18

https://numba.readthedocs.io/en/stable/cuda/index.html
https://numba.readthedocs.io/en/stable/user/parallel.html
https://numba.readthedocs.io/en/stable/user/performance-tips.htmlttps:/numba.readthedocs.io/en/stable/cuda/memory.html
https://numba.readthedocs.io/en/stable/user/performance-tips.htmlttps:/numba.readthedocs.io/en/stable/cuda/memory.html

	Snímek 1
	Automatic Parallelization
	Snímek 3
	Snímek 4
	Supported operations
	Supported functions
	Explicit Parallel Loops
	Snímek 8
	Snímek 9
	Snímek 10
	Scheduling of parallel task
	Scheduling of parallel task (2)
	Example: setting the chunk size
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	References

