Parallel programming
Python Numba - 1

FAKULTA .
ELEKTROTECHNICKA
CVUT V PRAZE

What I1s “numba”?

Numba is a powerful Python library that compiles Python code to
machine code on-the-fly, enhancing execution speed

It eliminates the need for manually rewriting code in a lower-level
language, making it accessible and user-friendly

Numba's just-in-time compilation optimizes your Python code without
the need for external compilation steps, resulting in faster execution

It supports CPU and GPU acceleration, making it a versatile tool for
performance enhancement

Numba

Why using “numba”?

\
Speed Up Your Python Code

Numba isn't just about speed,; it's about breaking free from
Python's Global Interpreter Lock (GIL), enabling multi-
threaded Python code execution

Numba's optimization capabillities result in significant speed
Improvements, making it a preferred choice for scientific
computing

You can apply Numba to data-intensive tasks like simulations,

numerical computations, and more

’”fNumba & CUDA GPU Programming

* CUDAIs a parallel computing platform and API created by
NVIDIA for GPU acceleration, and Numba seamlessly
integrates with it

* Numba extends its capabilities to GPU programming, allowing
you to harness the massive parallel processing potential of
GPUs

* With Numba and CUDA, you can accelerate data-intensive
tasks, such as image processing and simulations, by orders
of magnitude

Terminology

Host PCle GPU

* host: the CPU Al

Compute | Compute

« device: the GPU))
* host memory: the system main memory

e device memory: onboard memory on a GPU card

* kernels: a GPU function launched by the host and executed on
the device

e device function: a GPU function executed on the device which
can only be called from the device (i.e. from a kernel or another

device function)

Setting up python numba

* You can install the NVIDIA bindings with:
$ conda install nvidia::cuda-python

* Orif you are using pip:
$ pip install cuda-python

e Easy to work in Google Colab:
https://colab.research.google.com

e Additional info:
https://numba.readthedocs.io/en/stable/cuda/overview.html

CUDA recap

Multthreaded QUDA Program

GPU with 2 5Ms GPU with 4 SMs

SMO SM1 SMO SM1 5M 2 SM 3

CUDA Kernels

A kernel function is a GPU function that iIs meant to be called
from CPU code

Kernels cannot explicitly return a value: all result data must be
written to an array passed to the function

Kernels explicitly declare their thread hierarchy when called:
the number of thread blocks, the number of threads per block

While a kernel is compiled once, it can be called multiple times
with different block sizes or grid sizes

See the example of kernel declaration and invocation in the
first&second sections of the provided .ipynb notebook

Blocks of threads

* The block size (the number of threads per block) is
often crucial:

- Software side: the block size determines how many
threads access a given area of shared memory

- Hardware side: the block size must be large enough
for full occupation of execution units
(recommendations can be found in the CUDA C
Programming Guide)

Inside block/grid:

- humba.cuda.threadldx

- numba.cuda.blockldx
Dimensions:

- humba.cuda.blockDim

- numba.cuda.gridDim
Absolute positions:
- numba.cuda.grid(ndim)

- numba.cuda.gridsize(ndim)

Grd

Block (O 0)

Blode (1, 0) Block (2, 0)

Block (@ 1}

Blodk (1, 1) %HEI}

Block (1, 1)

Data transfer

* Allocate device array:
- numba.cuda.device_array(...)
- numba.cuda.device_array_like(...)

 Copy the data from host to device:
- numba.cuda.to_device(...)

 Copy the data from device to host:
- numba.cuda.copy_to _host(...)

Coding exercise

* Implement matrix-matrix multiplication using
Python Numba:

- transfer the data to device
- declare and invoke the kernel

- recelve the result from device

Thread Block

'y

5
e

i, il
o

TN

Grid O

Blode (0, 0) Block (1, 0) Block (2 0)

Blodk (0, 1) || Block (1, 1) || Black (2, 1)

Grid 1

Block (0, 0)

Block (0, 1)

Block (0, 2)

MMM Y

+ Perblock shared
- I Yy

-

Block (1, 0)

Block (1, 1)

Block (1 2)

——

Perthread lom=l

Global memonry

Shared memory

A limited amount of shared memory can be allocated on the
device to speed up access to data

That memory will be shared (i.e. both readable and writable)
amongst all threads belonging to a given block and has
faster access times than regular device memory

It also allows threads to cooperate on a given solution. You can
think of it as a manually-managed data cache

The memory is allocated once for the duration of the kernel

Shared memory & synchronization

numba.cuda.shared.array(shape, type)

- Allocate a shared array of the given shape and type on the
device

- The function must be called from the device
numba.cuda.syncthreads()
- Synchronize all threads in the same thread block

- This function implements the pattern of barrier

Local memory

* Local memory is the memory area private to a thread.

- numba.cuda.local.array(shape, type)

* Using local memory helps to allocate some scratchpad area
when scalar local variables are not enough

 The memory is allocated once for the duration of the kernel

Constant memory

* Constant memory is an area of memory that is read only,
cached and off-chip: numba.cuda.const.array _like(arr)

* Accessible by all threads

 Allocated from the host

Coding exercise

* Implement the vector normalization using
Python Numba:
- transfer the data to device

- declare and invoke the kernel
- make each thread responsible for a separate part of a vector

- use the shared memory

References

e Fundamental tutorial on numba:

https://numba.readthedocs.io/en/stable/cuda/index.html

* Selected pages:

https://numba.readthedocs.io/en/stable/cuda/kernels.html

https://numba.readthedocs.io/en/stable/cuda/memory.html

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19

