Parallel programming Python Numba - 1

What is "numba"?

- Numba is a powerful Python library that compiles Python code to machine code on-the-fly, enhancing execution speed
- It eliminates the need for manually rewriting code in a lower-level language, making it accessible and user-friendly
- Numba's just-in-time compilation optimizes your Python code without the need for external compilation steps, resulting in faster execution
- It supports CPU and GPU acceleration, making it a versatile tool for performance enhancement

Why using "numba"?

- Speed Up Your Python Code
- Numba isn't just about speed; it's about breaking free from Python's Global Interpreter Lock (GIL), enabling multithreaded Python code execution
- Numba's optimization capabilities result in significant speed improvements, making it a preferred choice for scientific computing
- You can apply Numba to data-intensive tasks like simulations, numerical computations, and more

Numba & CUDA GPU Programming

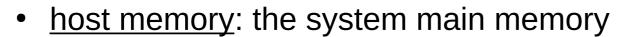
- CUDA is a parallel computing platform and API created by NVIDIA for GPU acceleration, and Numba seamlessly integrates with it
- Numba extends its capabilities to GPU programming, allowing you to harness the massive parallel processing potential of GPUs
- With Numba and CUDA, you can accelerate data-intensive tasks, such as *image processing and simulations*, by orders of magnitude



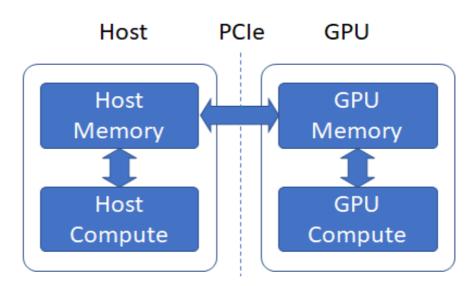
Terminology

host: the CPU

device: the GPU



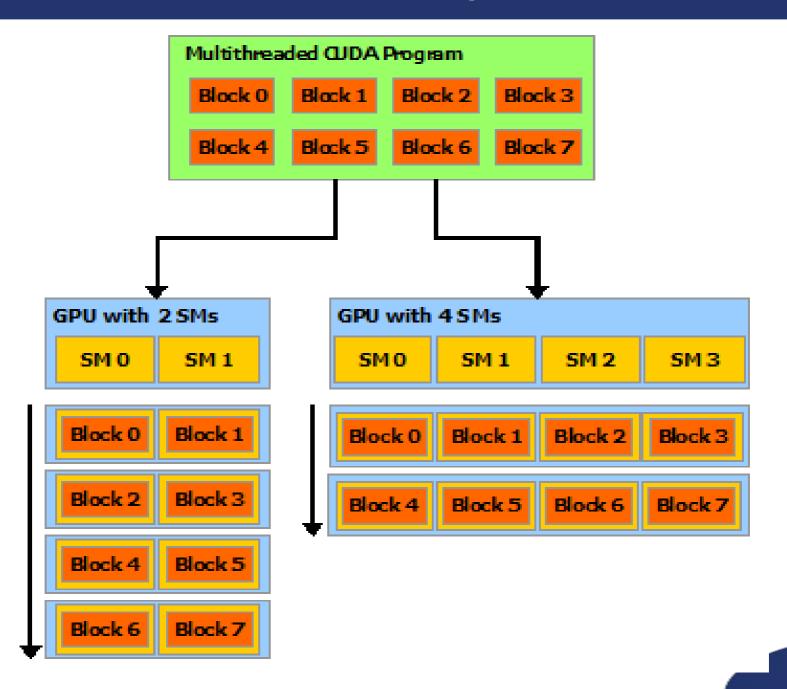
- device memory: onboard memory on a GPU card
- <u>kernels</u>: a GPU function launched by the host and executed on the device
- device function: a GPU function executed on the device which can only be called from the device (i.e. from a kernel or another device function)



Setting up python numba

- You can install the NVIDIA bindings with:
 \$ conda install nvidia::cuda-python
- Or if you are using pip:\$ pip install cuda-python
- Easy to work in Google Colab: https://colab.research.google.com
- Additional info: https://numba.readthedocs.io/en/stable/cuda/overview.html

CUDA recap



CUDA Kernels

- A kernel function is a GPU function that is meant to be called from CPU code
- Kernels cannot explicitly return a value: all result data must be written to an array passed to the function
- Kernels explicitly declare their thread hierarchy when called: the number of thread blocks, the number of threads per block
- While a kernel is compiled once, it can be called multiple times with different block sizes or grid sizes
- <u>See the example of kernel declaration and invocation in the first&second sections of the provided .ipynb notebook</u>

Blocks of threads

- The block size (the number of threads per block) is often crucial:
 - <u>Software side</u>: the block size determines how many threads access a given area of shared memory
 - <u>Hardware side</u>: the block size must be large enough for full occupation of execution units (recommendations can be found in the CUDA C Programming Guide)

Threads & Blocks positioning

Inside block/grid:

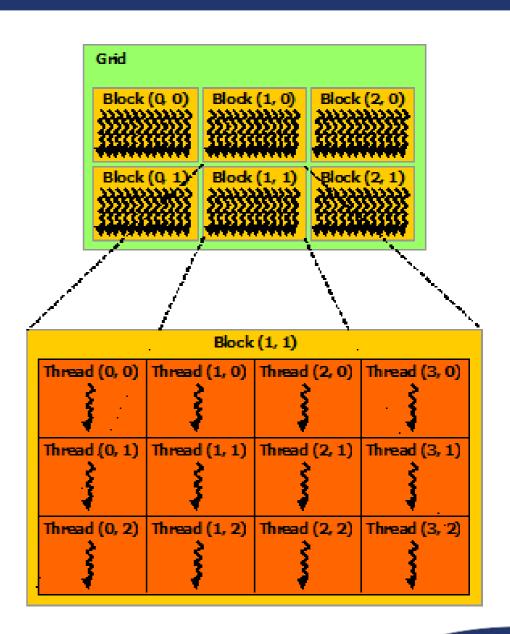
- numba.cuda.threadIdx
- numba.cuda.blockldx

Dimensions:

- numba.cuda.blockDim
- numba.cuda.gridDim

Absolute positions:

- numba.cuda.grid(ndim)
- numba.cuda.gridsize(ndim)



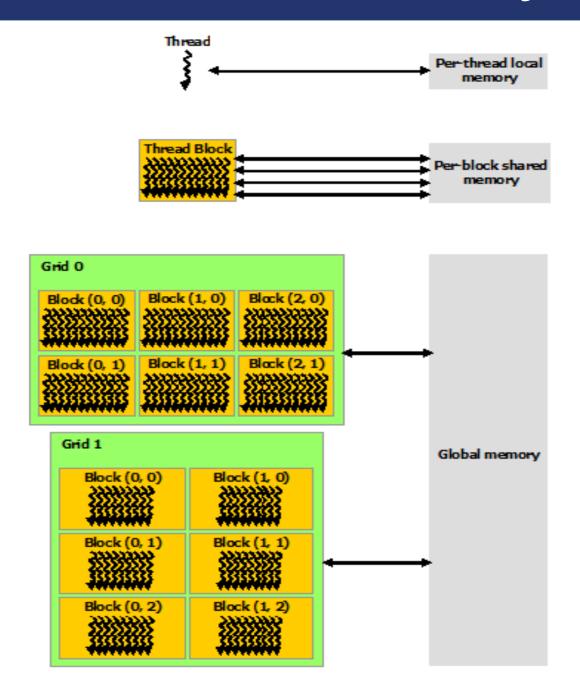
Data transfer

- Allocate device array:
 - numba.cuda.device_array(...)
 - numba.cuda.device_array_like(...)
- Copy the data from host to device:
 - numba.cuda.to_device(...)
- Copy the data from device to host:
 - numba.cuda.copy_to_host(...)

Coding exercise

- Implement matrix-matrix multiplication using Python Numba:
 - transfer the data to device
 - declare and invoke the kernel
 - receive the result from device

Different GPU memory types



Shared memory

- A limited amount of shared memory can be allocated on the device to speed up access to data
- That memory will be shared (i.e. both readable and writable) amongst all threads belonging to a given block and has faster access times than regular device memory
- It also allows threads *to cooperate* on a given solution. You can think of it as a manually-managed data cache
- The memory is allocated once for the duration of the kernel

Shared memory & synchronization

- numba.cuda.shared.array(shape, type)
 - Allocate a shared array of the given shape and type on the device
 - The function must be called from the device
- numba.cuda.syncthreads()
 - Synchronize all threads in the same thread block
 - This function implements the pattern of barrier

Local memory

- Local memory is the memory area private to a thread:
 - numba.cuda.local.array(shape, type)
- Using local memory helps to allocate some scratchpad area when scalar local variables are not enough
- The memory is allocated once for the duration of the kernel

Constant memory

 Constant memory is an area of memory that is read only, cached and off-chip: numba.cuda.const.array_like(arr)

Accessible by all threads

Allocated from the host

Coding exercise

- Implement the vector normalization using Python Numba:
 - transfer the data to device
 - declare and invoke the kernel
 - make each thread responsible for a separate part of a vector
 - use the shared memory

References

Fundamental tutorial on numba:

https://numba.readthedocs.io/en/stable/cuda/index.html

Selected pages:

https://numba.readthedocs.io/en/stable/cuda/kernels.html

https://numba.readthedocs.io/en/stable/cuda/memory.html