
Parallel programming

Python Numba - 1

2 / 19

What is “numba”?

● Numba is a powerful Python library that compiles Python code to
machine code on-the-fly, enhancing execution speed

● It eliminates the need for manually rewriting code in a lower-level
language, making it accessible and user-friendly

● Numba's just-in-time compilation optimizes your Python code without
the need for external compilation steps, resulting in faster execution

● It supports CPU and GPU acceleration, making it a versatile tool for
performance enhancement

3 / 19

Why using “numba”?

● Speed Up Your Python Code

● Numba isn't just about speed; it's about breaking free from
Python's Global Interpreter Lock (GIL), enabling multi-
threaded Python code execution

● Numba's optimization capabilities result in significant speed
improvements, making it a preferred choice for scientific
computing

● You can apply Numba to data-intensive tasks like simulations,
numerical computations, and more

4 / 19

 Numba & CUDA GPU Programming

● CUDA is a parallel computing platform and API created by
NVIDIA for GPU acceleration, and Numba seamlessly
integrates with it

● Numba extends its capabilities to GPU programming, allowing
you to harness the massive parallel processing potential of
GPUs

● With Numba and CUDA, you can accelerate data-intensive
tasks, such as image processing and simulations, by orders
of magnitude

5 / 19

Terminology

● host: the CPU
● device: the GPU
● host memory: the system main memory
● device memory: onboard memory on a GPU card
● kernels: a GPU function launched by the host and executed on

the device
● device function: a GPU function executed on the device which

can only be called from the device (i.e. from a kernel or another
device function)

6 / 19

Setting up python numba
● You can install the NVIDIA bindings with:

$ conda install nvidia::cuda-python

● Or if you are using pip:

$ pip install cuda-python

● Easy to work in Google Colab:
https://colab.research.google.com

● Additional info:

https://numba.readthedocs.io/en/stable/cuda/overview.html

7 / 19

CUDA recap

8 / 19

CUDA Kernels

● A kernel function is a GPU function that is meant to be called
from CPU code

● Kernels cannot explicitly return a value: all result data must be
written to an array passed to the function

● Kernels explicitly declare their thread hierarchy when called:
the number of thread blocks, the number of threads per block

● While a kernel is compiled once, it can be called multiple times
with different block sizes or grid sizes

● See the example of kernel declaration and invocation in the
first&second sections of the provided .ipynb notebook

9 / 19

Blocks of threads

● The block size (the number of threads per block) is
often crucial:

- Software side: the block size determines how many
threads access a given area of shared memory

- Hardware side: the block size must be large enough
for full occupation of execution units
(recommendations can be found in the CUDA C
Programming Guide)

10 / 19

 Threads & Blocks positioning
Inside block/grid:

- numba.cuda.threadIdx

- numba.cuda.blockIdx

Dimensions:

- numba.cuda.blockDim

- numba.cuda.gridDim

Absolute positions:

- numba.cuda.grid(ndim)

- numba.cuda.gridsize(ndim)

11 / 19

Data transfer
● Allocate device array:

- numba.cuda.device_array(…)

- numba.cuda.device_array_like(…)

● Copy the data from host to device:

- numba.cuda.to_device(…)

● Copy the data from device to host:

- numba.cuda.copy_to_host(…)

12 / 19

Coding exercise

● Implement matrix-matrix multiplication using
Python Numba:

- transfer the data to device

- declare and invoke the kernel

- receive the result from device

13 / 19

Different GPU memory types

14 / 19

Shared memory

● A limited amount of shared memory can be allocated on the
device to speed up access to data

● That memory will be shared (i.e. both readable and writable)
amongst all threads belonging to a given block and has
faster access times than regular device memory

● It also allows threads to cooperate on a given solution. You can
think of it as a manually-managed data cache

● The memory is allocated once for the duration of the kernel

15 / 19

 Shared memory & synchronization

● numba.cuda.shared.array(shape, type)

- Allocate a shared array of the given shape and type on the
device

- The function must be called from the device

● numba.cuda.syncthreads()

- Synchronize all threads in the same thread block

- This function implements the pattern of barrier

16 / 19

Local memory

● Local memory is the memory area private to a thread:

- numba.cuda.local.array(shape, type)

● Using local memory helps to allocate some scratchpad area
when scalar local variables are not enough

● The memory is allocated once for the duration of the kernel

17 / 19

Constant memory

● Constant memory is an area of memory that is read only,
cached and off-chip: numba.cuda.const.array_like(arr)

● Accessible by all threads

● Allocated from the host

18 / 19

Coding exercise

● Implement the vector normalization using
Python Numba:

- transfer the data to device

- declare and invoke the kernel

- make each thread responsible for a separate part of a vector

- use the shared memory

19 / 19

References

● Fundamental tutorial on numba:
https://numba.readthedocs.io/en/stable/cuda/index.html

● Selected pages:
https://numba.readthedocs.io/en/stable/cuda/kernels.html

https://numba.readthedocs.io/en/stable/cuda/memory.html

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19

