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What is “numba”?

● Numba is a powerful Python library that compiles Python code to 
machine code on-the-fly, enhancing execution speed

● It eliminates the need for manually rewriting code in a lower-level 
language, making it accessible and user-friendly

● Numba's just-in-time compilation optimizes your Python code without 
the need for external compilation steps, resulting in faster execution

● It supports CPU and GPU acceleration, making it a versatile tool for 
performance enhancement
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Why using “numba”?

● Speed Up Your Python Code

● Numba isn't just about speed; it's about breaking free from 
Python's Global Interpreter Lock (GIL), enabling multi-
threaded Python code execution

● Numba's optimization capabilities result in significant speed 
improvements, making it a preferred choice for scientific 
computing

● You can apply Numba to data-intensive tasks like simulations, 
numerical computations, and more
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          Numba & CUDA GPU Programming

● CUDA is a parallel computing platform and API created by 
NVIDIA for GPU acceleration, and Numba seamlessly 
integrates with it

● Numba extends its capabilities to GPU programming, allowing 
you to harness the massive parallel processing potential of 
GPUs

● With Numba and CUDA, you can accelerate data-intensive 
tasks, such as image processing and simulations, by orders 
of magnitude
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Terminology

● host: the CPU
● device: the GPU
● host memory: the system main memory
● device memory: onboard memory on a GPU card
● kernels: a GPU function launched by the host and executed on 

the device
● device function: a GPU function executed on the device which 

can only be called from the device (i.e. from a kernel or another 
device function)
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Setting up python numba
● You can install the NVIDIA bindings with:

$ conda install nvidia::cuda-python

● Or if you are using pip:

$ pip install cuda-python

● Easy to work in Google Colab:
https://colab.research.google.com

● Additional info:

https://numba.readthedocs.io/en/stable/cuda/overview.html
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CUDA recap
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CUDA Kernels

● A kernel function is a GPU function that is meant to be called 
from CPU code

● Kernels cannot explicitly return a value: all result data must be 
written to an array passed to the function

● Kernels explicitly declare their thread hierarchy when called: 
the number of thread blocks, the number of threads per block

● While a kernel is compiled once, it can be called multiple times 
with different block sizes or grid sizes

● See the example of kernel declaration and invocation in the 
first&second sections of the provided .ipynb notebook
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Blocks of threads

● The block size (the number of threads per block) is 
often crucial:

- Software side: the block size determines how many 
threads access a given area of shared memory

- Hardware side: the block size must be large enough 
for full occupation of execution units 
(recommendations can be found in the CUDA C 
Programming Guide)
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       Threads & Blocks positioning
Inside block/grid:

- numba.cuda.threadIdx

- numba.cuda.blockIdx

Dimensions:

- numba.cuda.blockDim

- numba.cuda.gridDim

Absolute positions:

- numba.cuda.grid(ndim)

- numba.cuda.gridsize(ndim)
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Data transfer
● Allocate device array:

- numba.cuda.device_array(…)

- numba.cuda.device_array_like(…)

● Copy the data from host to device:

- numba.cuda.to_device(…)

● Copy the data from device to host:

- numba.cuda.copy_to_host(…)
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Coding exercise

● Implement matrix-matrix multiplication using 
Python Numba:

- transfer the data to device

- declare and invoke the kernel

- receive the result from device
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Different GPU memory types
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Shared memory

● A limited amount of shared memory can be allocated on the 
device to speed up access to data

● That memory will be shared (i.e. both readable and writable) 
amongst all threads belonging to a given block and has 
faster access times than regular device memory

● It also allows threads to cooperate on a given solution. You can 
think of it as a manually-managed data cache

● The memory is allocated once for the duration of the kernel
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         Shared memory & synchronization

● numba.cuda.shared.array(shape, type)

- Allocate a shared array of the given shape and type on the 
device

- The function must be called from the device

● numba.cuda.syncthreads()

- Synchronize all threads in the same thread block

- This function implements the pattern of barrier
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Local memory

● Local memory is the memory area private to a thread:

- numba.cuda.local.array(shape, type)

● Using local memory helps to allocate some scratchpad area 
when scalar local variables are not enough

● The memory is allocated once for the duration of the kernel
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Constant memory

● Constant memory is an area of memory that is read only, 
cached and off-chip: numba.cuda.const.array_like(arr)

● Accessible by all threads

● Allocated from the host
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Coding exercise

● Implement the vector normalization using 
Python Numba:

- transfer the data to device

- declare and invoke the kernel

- make each thread responsible for a separate part of a vector

- use the shared memory
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References

● Fundamental tutorial on numba:
https://numba.readthedocs.io/en/stable/cuda/index.html

● Selected pages:
https://numba.readthedocs.io/en/stable/cuda/kernels.html

https://numba.readthedocs.io/en/stable/cuda/memory.html
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