
Parallel programming

Matrix Algorithms
in OpenMP and MPI

/

Today's topic

• Coding seminar

• Goals
• Practice the theory from the lectures
• Practice OpenMP and MPI

• 4 Tasks
• Matrix multiplication (OpenMP)
• LU factorization (OpenMP)
• Gauss elimination (MPI)
• Gauss elimination with cyclic row distribution (MPI)

2 16

/

Matrix multiplication

• Consider 2 matrix A and B and we want matrix C as

• = ⋅C A B

• Matrix multiplication
• Computational operations: 2n3
• Memory operations: 3n2

• Naive algorithm might not be efficient
• Too many memory operations

• Cache size is limited

• If we are able to reuse data we can do something better
• Use blocks!

3 16

/

Block matrix multiplication

• We can divide A into blocks of row and B into block of
columns
• If rows and columns are too large, they won’t fit in the cache!

• Divide A and B into blocks of size × b b

• Then C 11=A 11⋅B 11 + A 12⋅B 21 + A 13⋅B 31
• Each A ij⋅B ji operation has 2b 2 memory operations and 2b 3

computational operations

• Chose b so that entire block can fit into the cache!

4 16

/

Parallel block matrix multiplication

• Using block matrix multiplication

• Use task to parallelize the algorithm
• Beware of race conditions

• Beware of correct data sharing among threads

5 16

/

Matrix Multiplication

MatrixMultiplication.cpp
● Open provided template and fill empty functions

according to guidelines

6 16

/

LU Factorization
• LU factorization of matrix A

• = ⋅A L U
• L is lower triangular matrix

• U is upper triangular matrix

• Usefull for solving linear equations
• ⋅ = A x b

• ⋅(⋅) = L U x b
• L⋅ = y b => get vector using backward triangular substitution

• U⋅ = x y => get vector using backward triangular substitution

• How we get L and U matrixes?
• Gaussian ellimination

• Complexity:
• Data are (O n2)
• Number of computations (O n3)

7 16

/

LU Factorization example

8 16

/

Block LU Factorization
• Block algorithm will be effiecient

• Block distribution of matrixes:

• Blocks A00,L00 and U00 are of size ×b b

• Blocks A10,L10 and U10 are of size (−)×n b b

• Blocks A01,L01 and U01 are of size ×(−)b n b

• Blocks A11,L11 and U11 are of size (−)×(−)n b n b

• It holds:
• L00⋅U00=A00

• L10⋅U00=A10

• L00⋅U01=A01

• L10⋅U01 + L11⋅U11=A11
9 16

/

Parallel LU Factorization

1. Compute L00 and U00

• Factorizing A00 = L00⋅U00

2. Compute U01

• A01 = L00⋅U01

• U01 is full matrix and L00 is triangular matrix => Triangular solve

3. Compute L10

• A10 = L10⋅U00

• U00 is triangluar matrix and L10 is full matrix => Triangular solve

4. Update A’11 of A11 is set to
• L11⋅U11 = A11 − L10⋅U01 = A’11

• L10⋅U01 is matrix multiplication that can be done in parallel

5. Recursively solve A’11 = L10⋅U01

10 16

/

LU Decomposition

LUDecomposition.cpp
● Open provided template and implement parallel

LU factorization of matrix A using OpenMP

11 16

/

Gauss Elimination

• Usefull for solving system of linear equations
• Row reduction
• Can also be used to compute the rank of a matrix, the determinant of

a square matrix, and the inverse of an invertible matrix

• Sequence of row operations
• Multiplying a row by a nonzero number
• Adding a multiple of one row to another row

• Each row operation need pivot row that defines
the multiplying coefficients

12 16

/

Gauss Elimination Pseudocode

for k = 1 to (n-1)
for i = (k+1) to n

factor = A(i, k) / A(k, k)
for j = k to n

A(i, j) = A(i, j) - factor * A(k, j)
end for
b(i) = b(i) - factor * b(k)

end for
end for

for i = n to (step-1)
x(i) = b(i)
for j = i+1 to n

x(i) = x(i) - A(i, j) * x(j)
end for
x(i) = x(i) / A(i, i)

end for

13 16

/

Distributed Gauss Elimination

1. Scatter the matrix rows

2. For each iteration select pivot row

3. Processor with pivot row in k-th iteration perform
operation on pivot row to get 1 at k-th position

4. Processor with pivot row broadcasts the pivot row

5. Perform row reduction for rows under the pivot row
to get 0 at k-th position

6. Repeat steps 2.-5. until get to last row

7. Gather the updated rows at processor 0

14 16

/

Row distribution for distributed Gauss Elimination

• Using naive distribution may not be the efficient
method
• After process update all its rows, it won‘t do any work

• Using cyclic row distribution
• More efficient (processes will be working almost until the end)

15 16

/

Gauss Elimination

GaussEliminationBlock.cpp
● Open provided template and implement parallel

Gauss Elimination with block row distribution
using MPI. Follow provided guidelines.

GaussEliminationCyclic.cpp
● Open provided template and implement parallel

Gauss Elimination with cyclic row distribution
using MPI. Follow provided guidelines.

16 16

	Slide 1
	Slide41
	Slide46
	Slide48
	Slide49
	Slide 6
	Slide42
	Slide43
	Slide44
	Slide45
	Slide 11
	Slide50
	Slide51
	Slide52
	Slide53
	Slide 16

