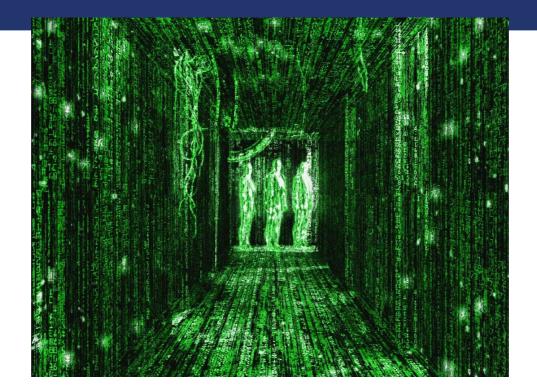
Parallel programming

Matrix Algorithms in OpenMP and MPI



Today's topic

- Coding seminar
- Goals
 - Practice the theory from the lectures
 - Practice OpenMP and MPI
- 4 Tasks
 - Matrix multiplication (OpenMP)
 - LU factorization (OpenMP)
 - Gauss elimination (MPI)
 - Gauss elimination with cyclic row distribution (MPI)

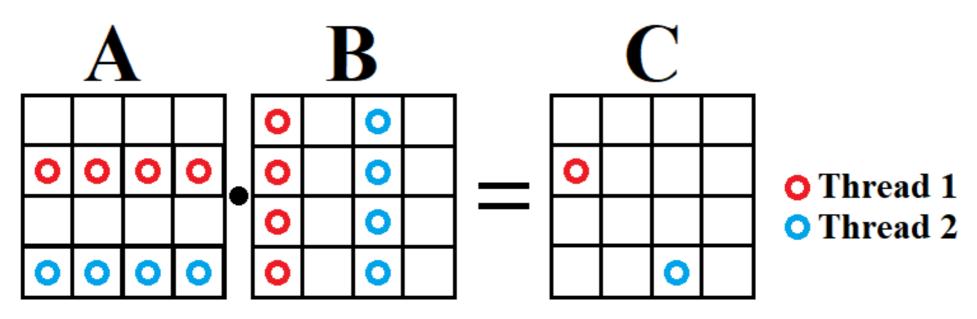
Matrix multiplication

- Consider 2 matrix A and B and we want matrix C as
 - $C = A \cdot B$
- Matrix multiplication
 - Computational operations: 2n³
 - Memory operations: 3n²
- Naive algorithm might not be efficient
 - Too many memory operations
 - Cache size is limited
- If we are able to reuse data we can do something better
 - Use **blocks**!

- We can divide A into blocks of row and B into block of columns
 - If rows and columns are too large, they won't fit in the cache!
- Divide A and B into blocks of size b \times b $\begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \\ B_{31} & B_{32} & B_{33} \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{pmatrix}$
- Then $C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21} + A_{13} \cdot B_{31}$
 - Each A_{ij} · B_{ji} operation has 2b² memory operations and 2b³ computational operations
- Chose *b* so that entire block can fit into the cache!

Parallel block matrix multiplication

- Using block matrix multiplication
- Use task to parallelize the algorithm
 - Beware of race conditions
 - Beware of correct data sharing among threads



MatrixMultiplication.cpp

 Open provided template and fill empty functions according to guidelines

LU Factorization

- LU factorization of matrix A
 - $\mathbf{A} = \mathbf{L} \cdot \mathbf{U}$
 - L is lower triangular matrix
 - **U** is upper triangular matrix
- Usefull for solving linear equations
 - $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$
 - $\mathbf{L} \cdot (\mathbf{U} \cdot \mathbf{x}) = \mathbf{b}$
 - $\mathbf{L} \cdot \mathbf{y} = \mathbf{b} =$ get vector using backward triangular substitution
 - $\mathbf{U} \cdot \mathbf{x} = \mathbf{y} =$ get vector using backward triangular substitution
- How we get L and U matrixes?
 - Gaussian ellimination
- Complexity:
 - Data are O(n²)
 - Number of computations **O**(**n**³)

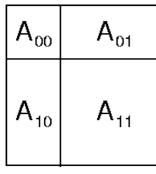
LU Factorization example

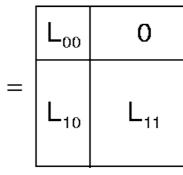
$$\begin{aligned} \text{Initialize } L &= 1 \text{ and } U = A \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 4 \\ 5 & 3 & 1 \end{pmatrix} \\ R_2 &\leftarrow R_2 - 3. R_1 \\ R_3 &\leftarrow R_3 - 5. R_1 \\ \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 5 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & -5 & -5 \\ 5 & -7 & -14 \end{pmatrix} \\ R_3 &\leftarrow R_3 - 2.5. R_2 \\ \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 5 & 2.5 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -5 & -5 \\ 0 & 0 & -7 \end{pmatrix} \\ L &= \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 5 & 2.5 & 1 \end{pmatrix} \\ U &= \begin{pmatrix} 1 & 2 & 3 \\ 0 & -5 & -5 \\ 0 & 0 & -7 \end{pmatrix} \end{aligned}$$

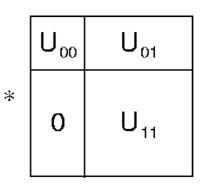
Initialize I - Lond II - A

Block LU Factorization

- Block algorithm will be effiecient
 - Block distribution of matrixes:







- Blocks A_{00} , L_{00} and U_{00} are of size b×b
- Blocks $\pmb{A}_{10}, \pmb{L}_{10}$ and \pmb{U}_{10} are of size $(n\!-\!b)\!\times\!b$
- Blocks $\pmb{A}_{01}, \pmb{L}_{01}$ and \pmb{U}_{01} are of size $b \times (n\!-\!b)$
- Blocks $\pmb{A}_{11}, \pmb{L}_{11}$ and \pmb{U}_{11} are of size $(n\!-\!b)\!\times\!(n\!-\!b)$
- It holds:
 - $L_{00} \cdot U_{00} = A_{00}$
 - $L_{10} \cdot U_{00} = A_{10}$
 - $L_{00} \cdot U_{01} = A_{01}$
 - $L_{10} \cdot U_{01} + L_{11} \cdot U_{11} = A_{11}$

Parallel LU Factorization

- 1. Compute L_{00} and U_{00}
 - Factorizing $\mathbf{A}_{00} = \mathbf{L}_{00} \cdot \mathbf{U}_{00}$
- 2. Compute U_{01}
 - $A_{01} = L_{00} \cdot U_{01}$
 - U_{01} is full matrix and L_{00} is triangular matrix => Triangular solve
- 3. Compute L₁₀
 - $\mathbf{A}_{10} = \mathbf{L}_{10} \cdot \mathbf{U}_{00}$
 - U_{00} is triangluar matrix and L_{10} is full matrix => Triangular solve
- 4. Update $\mathbf{A'}_{11}$ of \mathbf{A}_{11} is set to
 - $\mathbf{L}_{11} \cdot \mathbf{U}_{11} = \mathbf{A}_{11} \mathbf{L}_{10} \cdot \mathbf{U}_{01} = \mathbf{A}'_{11}$
 - $\mathbf{L}_{10} \cdot \mathbf{U}_{01}$ is matrix multiplication that can be done in parallel
- 5. Recursively solve $\mathbf{A'}_{11} = \mathbf{L}_{10} \cdot \mathbf{U}_{01}$

LUDecomposition.cpp

• Open provided template and implement parallel LU factorization of matrix A using OpenMP

Gauss Elimination

- Usefull for solving system of linear equations
 - Row reduction
 - Can also be used to compute the rank of a matrix, the determinant of a square matrix, and the inverse of an invertible matrix
- Sequence of row operations
 - Multiplying a row by a nonzero number
 - Adding a multiple of one row to another row
- Each row operation need **pivot** row that defines the multiplying coefficients

Gauss Elimination Pseudocode

```
for k = 1 to (n-1)
    for i = (k+1) to n
        factor = A(i, k) / A(k, k)
        for i = k to n
             A(i, j) = A(i, j) - factor * A(k, j)
        end for
        b(i) = b(i) - factor * b(k)
    end for
end for
for i = n to (step-1)
    x(i) = b(i)
    for j = i+1 to n
        x(i) = x(i) - A(i, j) * x(j)
    end for
```

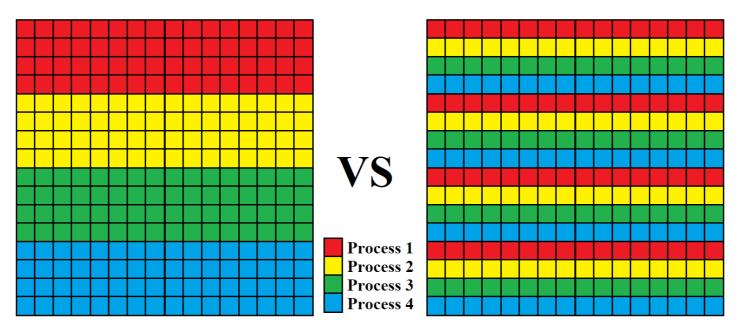
```
x(i) = x(i) / A(i, i)
end for
```


Distributed Gauss Elimination

- 1. Scatter the matrix rows
- 2. For each iteration select pivot row
- 3. Processor with pivot row in k-th iteration perform operation on pivot row to get 1 at k-th position
- 4. Processor with pivot row broadcasts the pivot row
- 5. Perform row reduction for rows under the pivot row to get 0 at k-th position
- 6. Repeat steps 2.-5. until get to last row
- 7. Gather the updated rows at processor 0

- Using naive distribution may not be the efficient method
 - After process update all its rows, it won't do any work
- Using cyclic row distribution
 - More efficient (processes will be working almost until the end)

15/16



GaussEliminationBlock.cpp

 Open provided template and implement parallel Gauss Elimination with block row distribution using MPI. Follow provided guidelines.

GaussEliminationCyclic.cpp

 Open provided template and implement parallel Gauss Elimination with cyclic row distribution using MPI. Follow provided guidelines.