
Parallel programming

Introduction

2

Why should you care about it?

● Sometimes you want to get the result faster – the
algorithm with big amount of computation / big amount
of data
Application: scientific world (simulations,
calculations), big data computing (faster
proccessing, databases), machine learning,
deep learning

● Sometime you have limited time to fulfill task,
sequential way is too slow – real time processing

● Benefit: some general principles are applicable in thinking
about architecture of separate programs over related tasks

3

Why should you care about it?

● Parallel computing is a dominant player in scientific and cluster
computing. Why?

– Moore law (number of transistors doubles about every two years;
for same price, price per power halving) is reaching its limits

● Increase in transistor density is limited
● Memory access time has not been reduced at a rate comparable

with processing speed

4

Why should you care about it?

● How to get out of this trap?
– Most promising approach is to have multiple cores on a

single processor
– Number of cores growing, speed per core growing

slower

– Today's desktop computers 2023 offer
Intel Core i9-13900KS - 24 cores, 32 threads, 3,2GHz (TDP 253W), Boost 6 GHz.
AMD Ryzen 9 7950X3D - 16 cores, 32 threads, 4,2GHz (TDP 120W), Boost 5,7 GHz

– Parallel computing can be found at many devices
today:

5

Ok; However, It should be task for compiler
and not for me!!!

● Yes, compiler can help you, but without your guidance, it is
not able pass all the way to the successful result.
– Parallel programs often look very different than sequential ones

– An efficient parallel implementation of a serial program may not be
obtained by simply parallelizing each step

– Rather, the best parallelization may be obtained by stepping back
and devising an entirely new algorithm

– Instruction level paralelization

6

What is the aim of labs?

● To get the feel for parallel programming

1) Understand what makes the parallelisation complicated

2) Which problems can occur during the paralellisation

3) What can be a bottleneck

4) How to think about algorithms from the paralellisation point of
view

Familiar terms: race condition, false sharing, synchonizaton, deadlocks, communication
overhead, work disbalance, idling, another design of algorithm vs. sequential version

● To get basic skills in common parallel programming frameworks

1) for Multicore processors

2) for Computer clusters

3) for GPU (nice opportunity to play with)

7

Seminar topics

● OpenMP – for Multicore processors, easy way to parallelize
originally sequential code, UMA concept

● MPI – for Computer clusters, concept of units comunicating
through messages, NUMA concept

● Numba – computation on GPU

● Theoretical seminars – helps to prepare for the exam

8

Course web

● Course page https://cw.fel.cvut.cz/b231/courses/pag/start

– Detailed plan of the labs, grading

https://cw.fel.cvut.cz/b231/courses/pag/start

9

What does this course require?

● Knowledge of C, C++, basics of Python

● Analytical thinking and being open-minded

● Basic skills with Linux – shell, ssh, etc. (for MetaCentrum)

10

Setting up

● Installation at home

● Be prepared for coding next week

● Small helloworld examples prepared for you to check if
enviroment runs smoothly

● Recommendations follow

11

Our recommendations

Linux, Mac OS, Windows
● CMake and g++
● Recommended IDE: CLion

– https://download.cvut.cz, JetBrains
● Homework and semestral project skeletons provided only as

Cmake projects
● See next slides for your platform

Windows+Visual Studio? :(

● Use at your own risk

● Do not use MSVC (no support for newer OpenMP)

https://download.cvut.cz/

12

Ubuntu toolchain

● You can use inofficial PPA for the Clion, see
this link.

● Install g++ and cmake
>> sudo apt install g++ cmake [gdb]

● Install MPI library
>> sudo apt install libopenmpi-dev

https://github.com/JonasGroeger/jetbrains-ppa

13

Windows mingw toolchain

● Install msys2, see this link

● In the msys2 console do the following
>> pacman -Syu
>> pacman -Su
>> pacman -S base-devel mingw-w64-x86_64-toolchain
>> pacman -S mingw-w64-x86_64-msmpi

● Create MinGW toolchain in CLion, see this link. If msys2 is
installed in default location, set C:\msys64\mingw64 as
your MinGW Environment path (everything else should be
detected automatically), Setup in CLion Settings -> Cmake
-> Generator on value MINGW Makefiles

● Add msys2 directories to your PATH environment variable,
e.g.,
C:\msys64
C:\msys64\mingw64\bin

● If MPI library found, but program returns nonzero code and
no output printed, try install this link, magically helped

https://www.msys2.org/
https://www.jetbrains.com/help/clion/quick-tutorial-on-configuring-clion-on-windows.html#MinGW
https://www.microsoft.com/en-US/download/details.aspx?id=105289

14

Mingw CLion settings CMake

15

Windows alternative WSL toolchain

● Install WSL, see this link

– In powershell run: wsl --install

● Install Ubuntu distribution via microsoft store, see this link

● Open Ubuntu terminal, initiate system (user access setup,
first run), install following

– sudo apt-get update

– sudo apt install g++ cmake gdb

– sudo apt install libopenmpi-dev

● Set up WSL in Clion toolchains, see this link

https://learn.microsoft.com/en-us/windows/wsl/install#install-wsl-command
https://apps.microsoft.com/store/detail/ubuntu/9PDXGNCFSCZV
https://www.jetbrains.com/help/clion/quick-tutorial-on-configuring-clion-on-windows.html#WSL

16

WSL CLion settings Toolchains

17

WSL CLion settings CMake

18

MacOS toolchains

● Using g++ (recommended)

– Install g++ from Homebrew
>> brew install gcc

– Find the installed g++ executable. Usually a program called g++-FŇ where
FŇ is the version (can be found using TAB completion), e.g., g++-9

– Set g++-FŇ compiler in CLion: Settings → Build, execution, Deployment
→Toolchains → C++ compiler

● Using clang

– Install OpenMP runtime from Homebrew
>> brew install libomp

– Check where libomp is installed, usually /usr/local/opt/libomp
>> brew --prefix libomp

– Link OpenMP into CMakeLists.txt
include_directories("/usr/local/include" "/usr/local/opt/libomp/include")
link_directories("/usr/local/lib" "/usr/local/opt/libomp/lib")

● Install MPI
>> brew install open-mpi

https://brew.sh/
https://brew.sh/

19

Expected cmake console print for all

● Found OpenMP/MPI TRUE
OPENMP (needed for next week), MPI (there is
time to solve issues, used later)

20

Expected program outputs

● Expected console outputs for provided helloworld
programs to test your environment

● OpenMP (e.g. for 4 thread available processor)
Number of available threads 4
This is thread 1 speaking
This is thread 0 speaking
This is thread 2 speaking
This is thread 3 speaking
Parallel block finished

Process finished with exit code 0

● MPI
My ranking hello world example: 0
Total number of processes: 1

Process finished with exit code 0

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20

