HW4 assignment




Markov Decision Process (MDP)

Discrete-time stochastic control process.

Set of states and actions

* Finite set of states S
* Finite set of actions A

At each time step, the process Is In some state s

Decision maker may choose any action a that is
available in state s

The process randomly moves into a new state s’




A0

§5 S8E383E 510

Formal definition of MDP

Y xe\?t( .L \

* Markov decision process is a 4-tuple (S, A, Ry, P,)

* S is a set of states called the state space

« Ais a set of actions called the action space (alternatively A,)
R,(s,s") is the reward received after transitioning from state s to

s’ due to action a
P,(s,s') is the probability of the fact that taking the action a in

state s at time step t will lead to state s’ at time step t + 1

P(st41 =S'Ist =s,a; = a)

e Stochastic environment

« There is a nonzero probability,
that action a will lead
to desired state




Policy definition

« (Given some state the policy returns an action to

perform in this state

« Optimal policy is the policy which maximizes the long-term
reward

 Reward is based on the chance that policy leads to desired
state

* Qur goalisto find that optimal policy.

- =

e (s) = argmax, V" (s)



Value lteration

Value iteration Is an iterative algorithm based on
Dynamic Programming.

Requires to store two arrays.

« Array of values V , which contains real values
« Policy array 1 which contains actions

At the end of the algorithm, 1 will contain the solution
and V will contain the discounted sum of the rewards to
be earned.

We are talking about policies instead of actions because
of the stochastic behaviour of the environment

Three steps of value iteration
1. |Initialize state values
2. Improve values
3. Extract policy from values




Value lteration

Formally: We have a reward function which gives
us the rewards for transitioning from one state to
another, the state value of all terminal states Is
ZEero.

Simplified: There is no reward function, and the
value of the terminal states corresponds to the
reward obtained for reaching them

The simplified version assumes that a reward Is
obtained only in terminal states and depends only
on them

This task satisfies that assumption




W<

 Initialize values, arbitrarily for non-terminal
states and zero in terminal states




Step 2 - Formally

« Update the value for every non-terminal state using
Bellman’s equation:

* V(s) = maxgeq (X Pa(s,s) - [Ra(s,5) + v - V(s)])

* P (s,s')is the transition probability from state s to state s’
by action a

* R,(s,s) is the reward for transitioning from state s to state
s’ by action a

* V(s) (resp. V(s")) is value of state s (resp. s')

* v isthe discount factor satisfying ye(0,1)




Step 1 - Simplified

 Initialize values, arbitrarily for non-terminal
states and a reward for reaching the terminal
state in terminal states




Y=

—

- Step 2 - Simplified

« Update the value for every non-terminal state using
simplified Bellman’s equation:

* V(s)=y- maXaEA(ZS’ Pp(s,s") - V(s"))
* P,(s,s")is the transition probability from state s to
state s’ by action a

o V(s) (resp. V(s")) is value of state s (resp. s’)

* v is the discount factor satisfying ye(0,1)
* Usee.g.y=0.99




* For every state, get the best action from value

function as

* 1(s) = argmaxqeqs{Xs P(s'[s, @) - V(s)}
* 1(s) is a new policy (optimal action for state s)




!

]

0=
~

.=+ Value iteration algorithm

A0
W0

« Repeat step 2 until convergence (difference
between old and new value is smaller than
some J).

« Extract optimal policy from converged values
(step 3)




Your state space

« 2D maze with walls and desired state
« Goalis to find optimal policy that will lead to desired state

« Given an agent (vehicle) with actions
e Goright
Go left
* GoUp
* GoDown

Each action has 80% success rate

* At 80% vehicle will go to desired direction
e At 10% vehicle will move to +90° direction
e At 10% vehicle will move to -90° direction

Only accessible states are other fields of maze, walls are
Inaccessible

Trying to move into a wall = staying In place




Your task

* Find optimal policy for given maze
« Use GPU with Numba library

* You can use provided maze generator to get
another instances




Inputs and outputs

Input IS .txt file where

Ihn flrﬁt line there are 2 integers w and h representing width and
eight

On the rest h lines there are exactly w integers of values {0,1,2},
where

O represents accesible state (field)

1 represents unaccesible state (wall)

« 2represents desired state

* Output Is .txt file with h lines of w integers where

Each value representing optimal policy at given state
e 0Ois,GoUp”

1is,Go Right

2 is ,,Go Down”“

3is ,Go Left”

5 is policy for unaccessible states (walls)

6 is for final state




o o~ < © © = ~
pr] —

©111111111111
1200000000001
1011111111101
1000000000101
1110111111101
1000101000101
1011101010101
leee0l100010101
1110111110101
1010000010001
1011111011111
1000000000001
1111111111111

13 13

Q
3
M
x
LLl
-
.
O
m

&d (= (5

@ &

(o=



0<%
o o

Q
O
&
O
X
LL]
o
-
Q.
o
-
@,

B o) <0
ot

0

0

12

10

O
O
U
O
O
O
U
O
¥

(T o T o T o T o T I R Y O o O W I W I W I W T Wy
ln Mmoo o0 OO0 ® @ L1 mun
(T o T o T o T T I O Y O Y O W I A I AT Wy
th on bnon bn o oA LN 0N LN
[ T o T o T T I T o O Y O I O N o O W O W B s AT Wy
oo ed ® 0 0nom® e W
th o bnon bt bt it b on LN LN
th on b o bn o & o LN ON LN e LN
(I T T o T O I O T I O I o T Y o T o AR W I o IR W
oot @ Aot ® on W
th o bn o bt o un bnbn o LN
mnmnwmomumd OO Lwmao o o in
L LA LA LD LD LA LA LA LALA LA LA LN




	Snímek 1: HW4 assignment
	Snímek 2: Markov Decision Process (MDP)
	Snímek 3: Formal definition of MDP
	Snímek 4: Policy definition
	Snímek 5: Value Iteration
	Snímek 6: Value Iteration
	Snímek 7: Step 1 - Formally
	Snímek 8: Step 2 - Formally
	Snímek 9: Step 1 - Simplified
	Snímek 10: Step 2 - Simplified
	Snímek 11: Step 3
	Snímek 12: Value iteration algorithm
	Snímek 13: Your state space
	Snímek 14: Your task
	Snímek 15: Inputs and outputs
	Snímek 16: Input Example
	Snímek 17: Output Example

