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HW4 assignment
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Markov Decision Process (MDP)

• Discrete-time stochastic control process.

• Set of states and actions
• Finite set of states 𝑆

• Finite set of actions 𝐴

• At each time step, the process is in some state 𝒔

• Decision maker may choose any action 𝒂 that is 

available in state 𝒔

• The process randomly moves into a new state 𝒔′
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Formal definition of MDP

• Markov decision process is a 4-tuple (𝑆, 𝐴, 𝑅𝑎, 𝑃𝑎)
• 𝑺 is a set of states called the state space

• 𝑨 is a set of actions called the action space (alternatively 𝐴𝑠) 

• 𝑹𝒂(𝒔, 𝒔′) is the reward received after transitioning from state 𝑠 to 
s′ due to action 𝑎

• 𝑷𝒂(𝒔, 𝒔′) is the probability of the fact that taking the action 𝑎 in 
state 𝑠 at time step 𝑡 will lead to state 𝑠′ at time step 𝑡 + 1
• 𝑃(𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎)

• Stochastic environment
• There is a nonzero probability, 

that action a will lead 
to desired state
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Policy definition

• Given some state the policy returns an action to 

perform in this state
• Optimal policy is the policy which maximizes the long-term 

reward

• Reward is based on the chance that policy leads to desired 
state

• Our goal is to find that optimal policy.

• 𝜋∗ 𝑠 = argmax𝜋 𝑉
𝜋(𝑠)
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Value Iteration

• Value iteration is an iterative algorithm based on 
Dynamic Programming.

• Requires to store two arrays.
• Array of values V , which contains real values
• Policy array π which contains actions

• At the end of the algorithm, π will contain the solution 
and V will contain the discounted sum of the rewards to 
be earned.

• We are talking about policies instead of actions because 
of the stochastic behaviour of the environment

• Three steps of value iteration
1. Initialize state values
2. Improve values
3. Extract policy from values
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Value Iteration

• Formally: We have a reward function which gives 
us the rewards for transitioning from one state to 
another, the state value of all terminal states is 
zero.

• Simplified: There is no reward function, and the 
value of the terminal states corresponds to the 
reward obtained for reaching them

• The simplified version assumes that a reward is 
obtained only in terminal states and depends only 
on them

• This task satisfies that assumption
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Step 1 - Formally

• Initialize values, arbitrarily for non-terminal 

states and zero in terminal states
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Step 2 - Formally

• Update the value for every non-terminal state using 

Bellman’s equation:

• 𝑉 𝑠 = max𝑎∈𝐴 (σ𝑠′ 𝑃𝑎(𝑠, 𝑠′) ⋅ [ 𝑅𝑎(𝑠, 𝑠′) + 𝛾 ⋅ 𝑉 𝑠′ ])

• 𝑃𝑎(𝑠, s′) is the transition probability from state 𝑠 to state 𝑠′
by action 𝑎

• 𝑅𝑎(𝑠, s′) is the reward for transitioning from state 𝑠 to state 
𝑠′ by action 𝑎

• 𝑉(𝑠) (resp. 𝑉(𝑠′)) is value of state 𝑠 (resp. 𝑠′)

• 𝛾 is the discount factor satisfying 𝛾𝜖 0,1
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Step 1 - Simplified

• Initialize values, arbitrarily for non-terminal 

states and a reward for reaching the terminal 

state in terminal states
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Step 2 - Simplified

• Update the value for every non-terminal state using 

simplified Bellman’s equation:

• 𝑉 𝑠 = 𝛾 ⋅ max𝑎∈𝐴(σ𝑠′ 𝑃𝑎(𝑠, 𝑠′) ⋅ 𝑉 𝑠′ )

• 𝑃𝑎(𝑠, s′) is the transition probability from state 𝑠 to 
state 𝑠′ by action 𝑎

• 𝑉(𝑠) (resp. 𝑉(𝑠′)) is value of state 𝑠 (resp. 𝑠′)
• 𝛾 is the discount factor satisfying 𝛾𝜖 0,1

• Use e.g. 𝛾 = 0.99
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Step 3

• For every state, get the best action from value 

function as
• 𝜋 𝑠 = argmax𝑎∈𝐴 σ𝑠′𝑃 𝑠′ 𝑠, 𝑎 ⋅ 𝑉(𝑠′)

• 𝜋 𝑠 is a new policy (optimal action for state s)
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Value iteration algorithm

• Repeat step 2 until convergence (difference 

between old and new value is smaller than 

some δ).

• Extract optimal policy from converged values 

(step 3)
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Your state space

• 2D maze with walls and desired state

• Goal is to find optimal policy that will lead to desired state

• Given an agent (vehicle) with actions
• Go right
• Go left
• Go Up
• Go Down

• Each action has 80% success rate
• At 80% vehicle will go to desired direction
• At 10% vehicle will move to +90o direction
• At 10% vehicle will move to -90o direction

• Only accessible states are other fields of maze, walls are 
inaccessible

• Trying to move into a wall = staying in place
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Your task

• Find optimal policy for given maze

• Use GPU with Numba library

• You can use provided maze generator to get 

another instances
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Inputs and outputs

• Input is .txt file where
• In first line there are 2 integers w and h representing width and 

height
• On the rest h lines there are exactly w integers of values {0,1,2}, 

where
• 0 represents accesible state (field)
• 1 represents unaccesible state (wall)
• 2 represents desired state

• Output is .txt file with h lines of w integers where
• Each value representing optimal policy at given state

• 0 is „Go Up“
• 1 is „Go Right
• 2 is „Go Down“
• 3 is „Go Left“
• 5 is policy for unaccessible states (walls)
• 6 is for final state
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Input Example
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Output Example
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