Parallel programming HW4 assignment

Markov Decision Process (MDP)

- Discrete-time stochastic control process.
- Set of states and actions
- Finite set of states S
- Finite set of actions A
- At each time step, the process is in some state s
- Decision maker may choose any action \boldsymbol{a} that is available in state s
- The process randomly moves into a new state \boldsymbol{s}^{\prime}
- Markov decision process is a 4-tuple (S, A, R_{a}, P_{a})
- S is a set of states called the state space
- \boldsymbol{A} is a set of actions called the action space (alternatively A_{s})
- $\boldsymbol{R}_{\boldsymbol{a}}\left(\boldsymbol{s}, \boldsymbol{s}^{\prime}\right)$ is the reward received after transitioning from state s to s^{\prime} due to action a
- $\boldsymbol{P}_{\boldsymbol{a}}\left(\boldsymbol{s}, \boldsymbol{s}^{\prime}\right)$ is the probability of the fact that taking the action a in state s at time step t will lead to state s^{\prime} at time step ${ }^{5}+1$
- $P\left(s_{t+1}=s^{\prime} \mid s_{t}=s, a_{t}=a\right)$
- Stochastic environment
- There is a nonzero probability, that action a will lead to desired state

Policy definition

- Given some state the policy returns an action to perform in this state
- Optimal policy is the policy which maximizes the long-term reward
- Reward is based on the chance that policy leads to desired state
- Our goal is to find that optimal policy.
- $\pi^{*}(s)=\arg \max _{\pi} V^{\pi}(s)$

Value Iteration

- Value iteration is an iterative algorithm based on Dynamic Programming.
- Requires to store two arrays.
- Array of values V, which contains real values
- Policy array π which contains actions
- At the end of the algorithm, $\boldsymbol{\pi}$ will contain the solution and \mathbf{V} will contain the discounted sum of the rewards to be earned.
- We are talking about policies instead of actions because of the stochastic behaviour of the environment
- Three steps of value iteration

1. Initialize state values
2. Improve values
3. Extract policy from values

Value Iteration

- Formally: We have a reward function which gives us the rewards for transitioning from one state to another, the state value of all terminal states is zero.
- Simplified: There is no reward function, and the value of the terminal states corresponds to the reward obtained for reaching them
- The simplified version assumes that a reward is obtained only in terminal states and depends only on them
- This task satisfies that assumption

Step 1 - Formally

- Initialize values, arbitrarily for non-terminal states and zero in terminal states

Step 2 - Formally

- Update the value for every non-terminal state using Bellman's equation:
- $V(s)=\max _{a \in A}\left(\sum_{s^{\prime}} P_{a}\left(s, s^{\prime}\right) \cdot\left[R_{a}\left(s, s^{\prime}\right)+\gamma \cdot V\left(s^{\prime}\right)\right]\right)$
- $P_{a}\left(s, \mathrm{~s}^{\prime}\right)$ is the transition probability from state s to state s^{\prime} by action a
- $R_{a}\left(s, \mathrm{~s}^{\prime}\right)$ is the reward for transitioning from state s to state s^{\prime} by action a
- $V(s)\left(\right.$ resp. $\left.V\left(s^{\prime}\right)\right)$ is value of state $s\left(\right.$ resp. $\left.s^{\prime}\right)$
- γ is the discount factor satisfying $\gamma \epsilon\langle 0,1\rangle$

Step 1 - Simplified

- Initialize values, arbitrarily for non-terminal states and a reward for reaching the terminal state in terminal states

Step 2 - Simplified

Update the value for every non-terminal state using simplified Bellman's equation:

- $V(s)=\gamma \cdot \max _{a \in A}\left(\sum_{s^{\prime}} P_{a}\left(s, s^{\prime}\right) \cdot V\left(s^{\prime}\right)\right)$
- $P_{a}\left(s, s^{\prime}\right)$ is the transition probability from state s to state s^{\prime} by action a
- $V(s)\left(\right.$ resp. $\left.V\left(s^{\prime}\right)\right)$ is value of state s (resp. $\left.s^{\prime}\right)$
- γ is the discount factor satisfying $\gamma \epsilon\langle 0,1\rangle$
- Use e.g. $\gamma=0.99$

Step 3

- For every state, get the best action from value function as
- $\pi(s)=\operatorname{argmax}_{a \in A}\left\{\sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) \cdot V\left(s^{\prime}\right)\right\}$
- $\pi(s)$ is a new policy (optimal action for state s)

Value iteration algorithm

- Repeat step 2 until convergence (difference between old and new value is smaller than some ס).
- Extract optimal policy from converged values (step 3)

Your state space

- 2D maze with walls and desired state
- Goal is to find optimal policy that will lead to desired state
- Given an agent (vehicle) with actions
- Go right
- Go left
- Go Up
- Go Down
- Each action has 80% success rate
- At 80% vehicle will go to desired direction
- At 10% vehicle will move to $+90^{\circ}$ direction
- At 10% vehicle will move to -90° direction
- Only accessible states are other fields of maze, walls are inaccessible
- Trying to move into a wall = staying in place

Your task

- Find optimal policy for given maze
- Use GPU with Numba library
- You can use provided maze generator to get another instances

Inputs and outputs

- Input is .txt file where
- In first line there are 2 integers \mathbf{w} and \mathbf{h} representing width and height
- On the rest \mathbf{h} lines there are exactly \mathbf{w} integers of values $\{0,1,2\}$, where
- 0 represents accesible state (field)
- 1 represents unaccesible state (wall)
- 2 represents desired state
- Output is .txt file with \mathbf{h} lines of \mathbf{w} integers where
- Each value representing optimal policy at given state
- 0 is „Go Up"
- 1 is „Go Right
- 2 is „Go Down"
- 3 is "Go Left"
- 5 is policy for unaccessible states (walls)
- 6 is for final state

Input Example

1313
$\begin{array}{lllllllllllll}0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
1200000000001
101111111111101
1000000000101
11101111111101
1000101000101
1011101010101
1000100010101
11101111110101
1010000010001
1011111110111111
1000000000001
1111111111111111

Output Example

5	5	5	5	5	5	5	5	5	5	5	5	5
5	5	3	3	3	3	3	3	3	3	3	3	5
5	0	5	5	5	5	5	5	5	5	5	0	5
5	3	3	3	3	3	3	3	3	3	5	0	5
5	5	5	0	5	5	5	5	5	5	5	0	5
5	1	1	1	5	2	5	1	1	2	5	0	5
5	0	5	5	5	2	5	0	5	2	5	0	5
5	0	3	3	5	1	1	0	5	2	5	0	5
5	5	5	0	5	5	5	5	5	2	5	0	5
5	2	5	3	3	3	3	3	5	1	1	0	5
5	2	5	5	5	5	5	0	5	5	5	5	5
5	1	1	1	1	1	1	0	3	3	3	3	5
5	5	5	5	5	5	5	5	5	5	5	5	5

