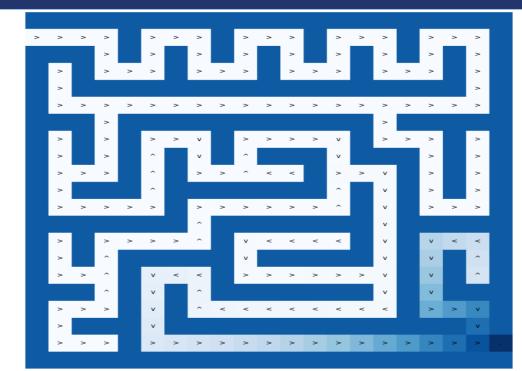
Parallel programming HW4 assignment

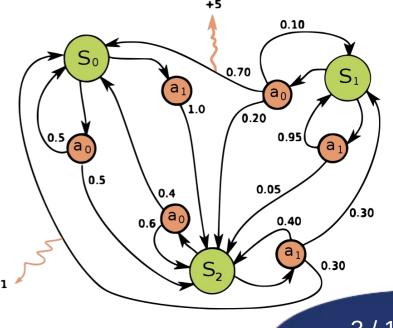


Markov Decision Process (MDP)

- Discrete-time stochastic control process
- Finite sets of states and actions
- At each time step the process starts with some state
- Decision is made among the actions available in the state
- The process randomly moves into a new state

Formal definition of MDP

- Markov decision process is a 4-tuple
 - is a set of states called the **state space**
 - is a set of actions called the **action space** (alternatively)
 - is the reward received after transitioning from state to
 - is the probability of the fact that taking the action in state at time step will lead to state at time step
- Stochastic environment
 - There is a nonzero probability, that action a will lead to desired state



Policy definition

• Given some state, the policy returns an action to perform in this state

 Optimal policy is the policy which maximizes the long-term reward

• Our goal is to find the optimal policy

Policy Iteration

- *Policy Iteration* is an iterative algorithm based on dynamic programming
- It requires to store two arrays:
 - Array of values **V** which contains real values
 - Policy array π which contains actions
- At the end of the algorithm, π contains the solution and V contains the discounted sum of the rewards to be earned
- We are talking about policies instead of actions due to *stochastic* behavior of the environment
- *Three steps* of the Policy Iteration algorithm:
 - Initialize random policy and actions for every state
 - Policy Evaluation
 - Policy Improvement

 Get an action for every state in the policy and evaluate the value function using Bellman's equation:

 $V(s) = max[a \in A] \{R(s, a) + \gamma * \Sigma[p(s' | s, a) * V(s')]\}$

- p(s' | s, a) transition probability from s to s' by action a
- **R(s, a)** reward from the current state
- *V(s)* (resp. *V(s')*) values of state *s* (resp. *s'*)
- **y** is the discount factor in range [0, 1)

• Get the best action from value function for every state:

```
\pi'(s) = argmax[a \in A] \{\Sigma[p(s' | s, a) * V(s')\}
```

- $\pi'(s)$ is the new policy (optimal action) for state s
- If the optimal action is better than the present policy action, then replace the current action by the best action

Policy iteration summary

• Iterate through the policy iteration and policy improvement steps

 If the policy did not change throughout an iteration, then we can consider that the algorithm has *converged*

Your state space

- 2D maze with walls and desired state
- Goal is to find optimal policy that will lead to desired state
- Given an agent (vehicle) with actions
 - Go right
 - Go left
 - Go Up
 - Go Down
- Each action has 80% success rate
 - At 80% vehicle will go to desired direction
 - At 10% vehicle will move to +90° direction
 - At 10% vehicle will move to -90° direction
- Only accessible states are other fields of maze, walls are inaccessible

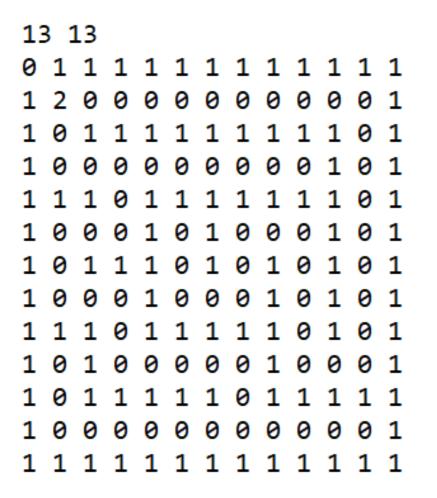
Inputs and outputs

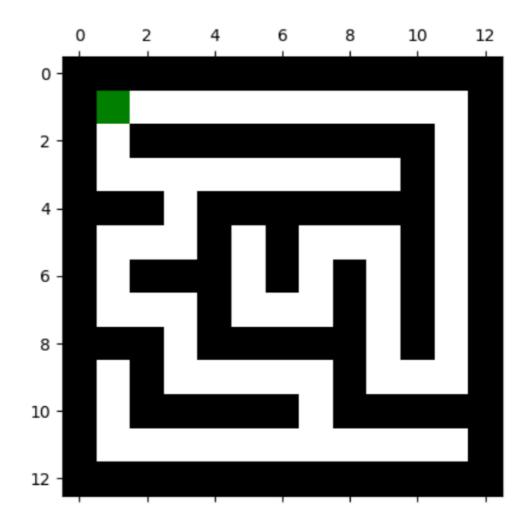
- Input is .txt file where
 - In first line there are 2 integers w and h representing width and height
 - On the rest h lines there are exactly w integers of values {0,1,2}, where
 - 0 represents accesible state (field)
 - 1 represents unaccesible state (wall)
 - 2 represents desired state

• Output is .txt file with **h** lines of **w** integers where

- Each value representing optimal policy at given state
 - 5 is policy for unaccessible states (walls) or final states
 - 0 is "Go Up"
 - 1 is "Go Right
 - 2 is "Go Down"
 - 3 is "Go Left"

Input Example





Output Example

