
Parallel programming

HW4 assignment

/

Markov Decision Process (MDP)

● Discrete-time stochastic control process

● Finite sets of states and actions

● At each time step the process starts with some state

● Decision is made among the actions available in the state

● The process randomly moves into a new state

 2 / 12

/

Formal definition of MDP

● Markov decision process is a 4-tuple
● is a set of states called the state space
● is a set of actions called the action space (alternatively)
● is the reward received after transitioning from state to
● is the probability of the fact that taking the action in state

at time step will lead to state at time step

● Stochastic environment
● There is a nonzero probability,

that action a will lead
to desired state

 3 / 12

/

Policy definition

● Given some state, the policy returns an action to
perform in this state

● Optimal policy is the policy which maximizes the
long-term reward

● Our goal is to find the optimal policy

 4 / 12

/

Policy Iteration

● Policy Iteration is an iterative algorithm based on dynamic
programming

● It requires to store two arrays:
● Array of values V which contains real values
● Policy array π which contains actions

● At the end of the algorithm, π contains the solution and V contains
the discounted sum of the rewards to be earned

● We are talking about policies instead of actions due to stochastic
behavior of the environment

● Three steps of the Policy Iteration algorithm:
● Initialize random policy and actions for every state
● Policy Evaluation
● Policy Improvement

 5 / 12

/

Policy evaluation

● Get an action for every state in the policy and evaluate the
value function using Bellman’s equation:

V(s) = max[a A] {R(s, a) + γ * Σ[p(s' | s, a) * V(s')]}∈

● p(s' | s, a) - transition probability from s to s' by action a

● R(s, a) - reward from the current state

● V(s) (resp. V(s')) - values of state s (resp. s')

● γ is the discount factor in range [0, 1)

 6 / 12

/

Policy improvement

● Get the best action from value function for every state:

π'(s) = argmax[a A] ∈ {Σ[p(s' | s, a) * V(s')}

● π'(s) is the new policy (optimal action) for state s

● If the optimal action is better than the present
policy action, then replace the current action by the
best action

 7 / 12

/

Policy iteration summary

• Iterate through the policy iteration and policy
improvement steps

• If the policy did not change throughout an
iteration, then we can consider that the
algorithm has converged

 8 / 12

/

Your state space

● 2D maze with walls and desired state

● Goal is to find optimal policy that will lead to desired state

● Given an agent (vehicle) with actions
● Go right
● Go left
● Go Up
● Go Down

● Each action has 80% success rate
● At 80% vehicle will go to desired direction
● At 10% vehicle will move to +90o direction
● At 10% vehicle will move to -90o direction

● Only accessible states are other fields of maze, walls are
inaccessible

 9 / 12

/

Inputs and outputs

● Input is .txt file where
● In first line there are 2 integers w and h representing width and height
● On the rest h lines there are exactly w integers of values {0,1,2},

where
● 0 represents accesible state (field)
● 1 represents unaccesible state (wall)
● 2 represents desired state

● Output is .txt file with h lines of w integers where
● Each value representing optimal policy at given state

● 5 is policy for unaccessible states (walls) or final states
● 0 is „Go Up“
● 1 is „Go Right
● 2 is „Go Down“
● 3 is „Go Left“

 10 / 12

/

Input Example

 11 / 12

/

Output Example

 12 / 12

	HW4 assignment
	Markov Decision Process (MDP)
	Formal definition of MDP
	Policy definition
	Policy Iteration
	Step 2
	Step 3
	Policy iteration algorithm
	Your state space
	Inputs and outputs
	Input Example
	Output Example

