Sorting Algorithms

Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

To accompany the text `Introduction to Parallel Computing', Addison Wesley, 2003.

Topic Overview

- Issues in Sorting on Parallel Computers
- Sorting Networks
- Bubble Sort and its Variants
- Quicksort
- Bucket and Sample Sort
- Other Sorting Algorithms

Sorting: Overview

- One of the most commonly used and well-studied kernels.
- Sorting can be comparison-based or noncomparisonbased.
- The fundamental operation of comparison-based sorting is compare-exchange.
- The lower bound on any comparison-based sort of n numbers is $\Theta(n \log n)$.
- We focus here on comparison-based sorting algorithms.

Sorting: Basics

What is a parallel sorted sequence? Where are the input and output lists stored?

- We assume that the input and output lists are distributed.
- The sorted list is partitioned with the property that each partitioned list is sorted and each element in processor P_i 's list is less than that in P_i 's list if i < j.

Sorting: Parallel Compare Exchange Operation

A parallel compare-exchange operation. Processes P_i and P_j send their elements to each other. Process P_i keeps $\min \{a_i, a_j\}$, and P_j keeps $\max \{a_i, a_j\}$.

Sorting: Basics

What is the parallel counterpart to a sequential comparator?

- If each processor has one element, the **compare** exchange operation stores the smaller element at the processor with smaller id. This can be done in $t_s + t_w$ time.
- If we have more than one element per processor, we call this operation a compare split. Assume each of two processors have n/p elements.
- After the compare-split operation, the smaller n/p elements are at processor P_i and the larger n/p elements at P_j , where i < j.
- The time for a compare-split operation is $(t_s + t_w n/p)$, assuming that the **two partial lists were initially sorted**₆

Sorting: Parallel Compare Split Operation

A **compare-split** operation. Each process **sends** its block of size n/p to the other process. Each process **merges** the received block with its own block and **retains only the appropriate half** of the merged block. In this example, process P_i retains the smaller elements and process P_i retains the larger elements.

Sorting Networks

- Networks of comparators designed specifically for sorting.
- A comparator is a device with two inputs x and y and two outputs x' and y'. For an *increasing comparator*, $x' = \min\{x,y\}$ and $y' = \max\{x,y\}$; and vice-versa.
- We denote an increasing comparator by ⊕ and a decreasing comparator by ⊖.
- The speed of the network is proportional to its depth.

Sorting Networks: Comparators

A schematic representation of comparators: (a) an increasing comparator, and (b) a decreasing comparator.

Sorting Networks

A typical sorting network. Every sorting network is made up of a **series of columns**, and each column contains a number of comparators connected in parallel.

- A bitonic sorting network sorts n elements in $\Theta(\log^2 n)$ time.
- A bitonic sequence has two tones increasing and decreasing, or vice versa. Any cyclic rotation of such sequence is also considered bitonic.
- $\langle 1,2,4,7,6,0 \rangle$ is a bitonic sequence, because it first increases and then decreases. $\langle 8,9,2,1,0,4 \rangle$ is another bitonic sequence, because it is a cyclic shift of $\langle 0,4,8,9,2,1 \rangle$.
- The kernel of the network is the rearrangement of a bitonic sequence into a sorted sequence.

- Let $s = \langle a_0, a_1, \dots, a_{n-1} \rangle$ be a bitonic sequence such that $a_0 \le a_1 \le \dots \le a_{n/2-1}$ and $a_{n/2} \ge a_{n/2+1} \ge \dots \ge a_{n-1}$.
- Consider the following subsequences of s:

$$s_{1} = \langle \min \{a_{0}, a_{n/2}\}, \min \{a_{1}, a_{n/2+1}\}, ..., \min \{a_{n/2-1}, a_{n-1}\} \rangle$$

$$s_{2} = \langle \max \{a_{0}, a_{n/2}\}, \max \{a_{1}, a_{n/2+1}\}, ..., \max \{a_{n/2-1}, a_{n-1}\} \rangle$$
(1)

- Note that s₁ and s₂ are both bitonic and each element of s₁ is less than every element in s₂.
- We can apply the procedure recursively on s₁ and s₂ to get the sorted sequence.

Original																
sequence	3	5	8	9	10	12	14	20	95	90	60	40	35	23	18	0
1st Split	3	5	8	9	10	12	14	0	95	90	60	40	35	23	18	20
2nd Split	3	5	8	0	10	12	14	9	35	23	18	20	95	90	60	40
3rd Split	3	0	8	5	10	9	14	12	18	20	35	23	60	40	95	90
4th Split	0	3	5	8	9	10	12	14	18	20	23	35	40	60	90	95

Merging a 16-element bitonic sequence through a series of $\log 16$ bitonic splits.

- We can easily build a sorting network to implement this bitonic merge algorithm.
- Such a network is called a bitonic merging network.
- The network contains $\log n$ columns. Each column contains n/2 comparators and performs one step of the bitonic merge.
- We denote a bitonic merging network with n inputs by ⊕BM[n].
- Replacing the ⊕ comparators by ⊖ comparators results in a decreasing output sequence; such a network is denoted by ⊖BM[n].

A bitonic merging network for n=16. The input wires are numbered 0,1,...,n-1, and the binary representation of these numbers is shown. Each column of comparators is drawn separately; the entire figure represents a $\oplus BM[16]$ bitonic merging network. The network takes a bitonic sequence and outputs it in sorted order.

How do we **sort an unsorted sequence** using a bitonic merge?

- We must first build a single bitonic sequence from the given sequence.
- A sequence of length 2 is a bitonic sequence.
- A bitonic sequence of length 4 can be built by sorting the first two elements using ⊕BM[2] and next two using ⊕BM[2].
- This process can be repeated to generate larger bitonic sequences.

The comparator network that **transforms an input sequence** of 16 unordered numbers **into a bitonic sequence**.

A schematic representation of a network that converts an input sequence into a bitonic sequence. In this example, $\oplus BM[k]$ and $\Theta BM[k]$ denote bitonic merging networks of input size k that use \oplus and Θ comparators, respectively. **The last merging network (\oplus BM[16]) sorts the input**. In this example, n = 16.

- The depth of the network is $d(n) = d(n/2) + \log n$, i.e. $d(n) = \Theta(\log^2 n)$.
- Each stage of the network contains n/2 comparators. A **serial implementation** of the network would have complexity $\Theta(n \log^2 n)$.

- Consider the case of one item per processor. The question becomes one of how the wires in the bitonic network should be mapped to the hypercube interconnect.
- Note from our earlier examples that the compare-exchange operation is performed between two wires only if their labels differ in exactly one bit!
- This implies a direct mapping of wires to processors. All communication is nearest neighbor!

Communication during the last stage of bitonic sort.

Each wire is mapped to a hypercube process; each connection represents a compare-exchange between processes.

Communication characteristics of bitonic sort on a hypercube.

During each stage of the algorithm, **processes communicate along the dimensions shown**.

```
1. procedure BITONIC_SORT(label, d)
2. begin
3. for i := 0 to d-1 do
4. for j := i downto 0 do
5. if (i+1)^{st} bit of label \neq j^{th} bit of label then
6. comp\_exchange\_max(j);
7. else
8. comp\_exchange\_min(j);
9. end BITONIC_SORT
```

Parallel formulation of bitonic sort on a hypercube with $n = 2^d$ processes.

- During each step of the algorithm, every process performs a compare-exchange operation (single nearest neighbor communication of one word).
- Since each step takes $\Theta(1)$ time, the parallel time is

$$T_p = \Theta(\log^2 n) \tag{2}$$

 This algorithm is cost optimal w.r.t. its serial counterpart, but not w.r.t. the best sorting algorithm.

Mapping Bitonic Sort to Meshes

- The connectivity of a mesh is lower than that of a hypercube, so we must expect some overhead in this mapping.
- Consider the row-major shuffled mapping of wires to processors.

Mapping Bitonic Sort to Meshes

Different ways of mapping the input wires of the bitonic sorting network to a mesh of processes: (a) **row-major** mapping, (b) **row-major snakelike** mapping, and (c) **row-major shuffled** mapping.

Mapping Bitonic Sort to Meshes

The last stage of the bitonic sort algorithm for n = 16 on a mesh, using the row-major shuffled mapping. During each step, process pairs compare-exchange their elements. Arrows indicate the pairs of processes that perform compare-exchange operations.

Block of Elements Per Processor

- Each process is assigned a block of n/p elements.
- The first step is a local sort of the local block.
- Each subsequent compare-exchange operation is replaced by a compare-split operation.
- We can effectively view the **bitonic network as having** $(1 + \log p)(\log p)/2$ steps.

Block of Elements Per Processor: Hypercube

- Initially the processes **sort their** n/p **elements** (using merge sort) in time $\Theta((n/p)\log(n/p))$ and then perform $\Theta(\log^2 p)$ compare-split steps.
- The parallel run time of this formulation is

$$T_P = \Theta\left(\frac{n}{p}\log\frac{n}{p}\right) + \Theta\left(\frac{n}{p}\log^2 p\right) + \Theta\left(\frac{n}{p}\log^2 p\right).$$

- Comparing to an optimal sort, the algorithm can efficiently use up to $p = \Theta(2^{\sqrt{\log n}})$ processes.
- The **isoefficiency function** due to both communication and extra work is $\Theta(p^{\log p} \log^2 p)$.

Bubble Sort and its Variants

The sequential bubble sort algorithm **compares and exchanges adjacent elements** in the sequence to be sorted:

```
1. procedure BUBBLE_SORT(n)
2. begin
3. for i := n - 1 downto 1 do
4. for j := 1 to i do
5. compare-exchange(a_j, a_{j+1});
6. end BUBBLE_SORT
```

Sequential bubble sort algorithm.

Bubble Sort and its Variants

- The **complexity** of bubble sort is $\Theta(n^2)$.
- Bubble sort is difficult to parallelize since the algorithm has no concurrency.
- A simple variant, though, uncovers the concurrency.

Odd-Even Transposition

```
procedure ODD-EVEN(n)
2.
         begin
3.
              for i := 1 to n do
4.
              begin
5.
                   if i is odd then
                        for j := 0 to n/2 - 1 do
6.
                             compare-exchange(a_{2j+1}, a_{2j+2});
7.
8.
                   if i is even then
9.
                        for j := 1 to n/2 - 1 do
10.
                             compare-exchange(a_{2j}, a_{2j+1});
11.
              end for
12.
         end ODD-EVEN
```

Sequential odd-even transposition sort algorithm.

Odd-Even Transposition

Sorting n=8 elements, using the odd-even transposition sort algorithm. During each phase, n=8 elements are compared.

Odd-Even Transposition

- After n phases of odd-even exchanges, the sequence is sorted.
- Each phase of the algorithm (either odd or even) requires $\Theta(n)$ comparisons.
- Serial complexity is $\Theta(n^2)$.

Parallel Odd-Even Transposition

- Consider the one item per processor case.
- There are *n* iterations, in each iteration, each processor does one compare-exchange.
- The **parallel run time** of this formulation is $\Theta(n)$.
- This is cost optimal with respect to the base serial algorithm but not the optimal one.

Parallel Odd-Even Transposition

```
1.
         procedure ODD-EVEN_PAR(n)
2.
         begin
3.
             id := process's label
4.
             for i := 1 to n do
5.
             begin
                  if i is odd then
6.
                      if id is odd then
8.
                           compare-exchange_min(id + 1);
9.
                       else
10.
                           compare-exchange_max(id - 1);
11.
                  if i is even then
12.
                      if id is even then
13.
                           compare-exchange_min(id + 1);
14.
                       else
15.
                           compare-exchange_max(id - 1);
16.
             end for
17.
         end ODD-EVEN_PAR
```

Parallel formulation of odd-even transposition.

Parallel Odd-Even Transposition

- Consider a block of n/p elements per processor.
- The first step is a local sort.
- In each subsequent step, the compare exchange operation is replaced by the compare split operation.
- The parallel run time of the formulation is

$$T_P = \Theta\left(\frac{n}{p}\log\frac{n}{p}\right) + \Theta(n) + \Theta(n).$$

Parallel Odd-Even Transposition

- The parallel formulation is **cost-optimal for** $p = O(\log n)$.
- The **isoefficiency function** of this parallel formulation is $\Theta(p2^p)$.

Shellsort

- Let *n* be the number of elements to be sorted and *p* be the number of processes.
- During the first phase, processes that are far away from each other in the array compare-split their elements.
- During the second phase, the algorithm switches to an odd-even transposition sort.
- Odd-even transposition is performed as long as the blocks of data are changing.

Parallel Shellsort

- Initially, each process sorts its block of n/p elements internally.
- Each process is now paired with its corresponding process in the reverse order of the array. That is, process P_i , where i < p/2, is paired with process P_{p-i-1} .
- A compare-split operation is performed.
- The processes are split into two groups of size p/2 each and the process repeated in each group.

Parallel Shellsort

An example of the first phase of parallel shellsort on an eight-process array.

Parallel Shellsort

- Each process performs $d = \log p$ compare-split operations.
- With O(p) bisection width, each **communication can be performed in time** $\Theta(n/p)$ for a total time of $\Theta(n\log p)/p$.
- In the second phase, l odd and even phases are performed, each requiring time $\Theta(n/p)$.
- The parallel run time of the algorithm is:

$$T_P = \Theta\left(\frac{n}{p}\log\frac{n}{p}\right) + \Theta\left(\frac{n}{p}\log p\right) + \Theta\left(\frac{n}{p}\log p\right). \tag{3}$$

- Quicksort is one of the most common sorting algorithms for sequential computers because of its simplicity, low overhead, and optimal average complexity.
- Quicksort selects one of the entries in the sequence to be the pivot and divides the sequence into two - one with all elements less than the pivot and other greater.
- The process is recursively applied to each of the sublists.

```
1.
         procedure QUICKSORT (A, q, r)
2.
         begin
3.
              if q < r then
4.
              begin
5.
                   x := A[q];
6.
                   s := q;
7.
                   for i := q + 1 to r do
8.
                        if A[i] \leq x then
9.
                        begin
10.
                             s := s + 1;
11.
                             swap(A[s], A[i]);
12.
                        end if
13.
                   swap(A[q], A[s]);
                   QUICKSORT (A, q, s);
14.
                   QUICKSORT (A, s + 1, r);
15.
16.
              end if
17.
         end QUICKSORT
```

The sequential quicksort algorithm.

Pivot

Final position

Example of the quicksort algorithm sorting a sequence of size n = 8.

- The performance of quicksort depends critically on the quality of the pivot.
- In the best case, the pivot divides the list in such a way that the larger of the two lists does not have more than αn elements (for some constant α).
- In this case, the **complexity of quicksort** is $O(n \log n)$.

Parallelizing Quicksort

- Lets start with recursive decomposition the list is partitioned serially and each of the subproblems is handled by a different processor.
- The time for this algorithm is **lower-bounded by** $\Omega(n)$!
- Can we **parallelize the partitioning step** in particular, if we can use n processors to partition a list of length n around a pivot in O(1) time, we have a winner.
- This is difficult to do on real machines, though.

Parallelizing Quicksort: PRAM Formulation

- We assume a CRCW (concurrent read, concurrent write) PRAM with concurrent writes resulting in an arbitrary write succeeding.
- The formulation works by creating pools of processors. Every processor is assigned to the same pool initially and has one element.
- Each processor attempts to write its element to a common location (for the pool).
- Each processor tries to read back the location. If the value read back is greater than the processor's value, it assigns itself to the `left' pool, else, it assigns itself to the `right' pool.
- Each pool performs this operation recursively.
- Note that the algorithm generates a tree of pivots. The depth of the tree is the expected parallel runtime. The average value is O(log n).

Parallelizing Quicksort: PRAM Formulation

A binary tree generated by the execution of the quicksort algorithm. Each level of the tree represents a different array-partitioning iteration. If **pivot selection is optimal**, **then the height of the tree** is $\Theta(\log n)$, which is also the **number of iterations**.

Parallelizing Quicksort: PRAM Formulation

(0)	1001 – 4

		1	2	5	4)	0	/	8		1	- 2	3	4)	0	/	8	
	leftchild	2			1	8				leftchild	2	3		1	8				
(d)	rightchild	6			5					rightchild	6			5		7			(e)

The execution of the PRAM algorithm on the array shown in (a)⁵³

- Consider a list of size n equally divided across p processors.
- A pivot is selected by one of the processors and made known to all processors.
- Each processor partitions its list into two, say L_i and U_i , based on the selected pivot.
- All of the L_i lists are merged and all of the U_i lists are merged separately.
- The set of processors is partitioned into two (in proportion of the size of lists *L* and *U*). The process is recursively applied to each of the lists.

Shared Address Space Formulation

- The only thing we have not described is the global reorganization (merging) of local lists to form L and U.
- The problem is one of determining the right location for each element in the merged list.
- Each processor computes the number of elements locally less than and greater than pivot.
- It computes two sum-scans to determine the starting location for its elements in the merged L and U lists.
- Once it knows the starting locations, it can write its elements safely.

Efficient global rearrangement of the array.

- The parallel time depends on the split and merge time, and the quality of the pivot.
- The latter is an issue independent of parallelism, so we focus on the first aspect, assuming ideal pivot selection.
- The algorithm executes in four steps: (i) determine and broadcast the pivot; (ii) locally rearrange the array assigned to each process; (iii) determine the locations in the globally rearranged array that the local elements will go to; and (iv) perform the global rearrangement.
- The first step takes time $\Theta(\log p)$, the second, $\Theta(n/p)$, the third, $\Theta(\log p)$, and the fourth, $\Theta(n/p)$.
- The overall complexity of splitting an n-element array is $\Theta(n/p) + \Theta(\log p)$.

- The process recurses until there are p lists, at which point, the lists are sorted locally.
- Therefore, the total parallel time is:

$$T_P = \Theta\left(\frac{n}{p}\log\frac{n}{p}\right) + \Theta\left(\frac{n}{p}\log p\right) + \Theta(\log^2 p). \tag{4}$$

• The corresponding **isoefficiency** is $\Theta(p \log^2 p)$ due to **broadcast** and **scan** operations.

- All the sorting algorithms presented so far are based on compare-exchange operations.
- The basic idea behind enumeration sort is to determine the rank of each element.
- The rank of an element a_i is the number of elements smaller than a_i in the sequence to be sorted.
- The rank of a_i can be used to construct the sorted sequence.

- Here we present one such algorithm that is suited to the CRCW PRAM model.
- This formulation sorts n elements by using n^2 processes in time $\Theta(1)$.
- Assume that concurrent writes to the same memory location of the CRCW PRAM result in the sum of all the written values.
- Consider the n² processes as being arranged in a twodimensional grid.

- The algorithm consists of two steps.
- During the first step, each column j of processes computes the number of elements smaller than a_j.
- During the second step, each process $P_{1,j}$ of the first row places a_i in its proper position as determined by its rank.

```
1.
           procedure ENUM SORT (n)
2.
           Begin
3.
           for each process P<sub>1,j</sub> do
4.
                      C[j] := 0;
5.
           for each process P<sub>i</sub>, do
                      if (A[i] < A[j]) or (A[i] = A[j]) and i < j then
7.
                                  C[j] := 1;
8.
                       Else
9.
                                  C[j] := 0;
10.
           for each process P<sub>1,i</sub> do
11.
                      A[C[i]] := A[i];
12.
           end ENUM_SORT
```

Enumeration sort on a CRCW PRAM with additive-write conflict resolution.