Dense Matrix Algorithms

Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

To accompany the text "Introduction to Parallel Computing", Addison Wesley, 2003.

Topic Overview

- Matrix-Vector Multiplication
- Matrix-Matrix Multiplication
- Solving a System of Linear Equations

Matix Algorithms: Introduction

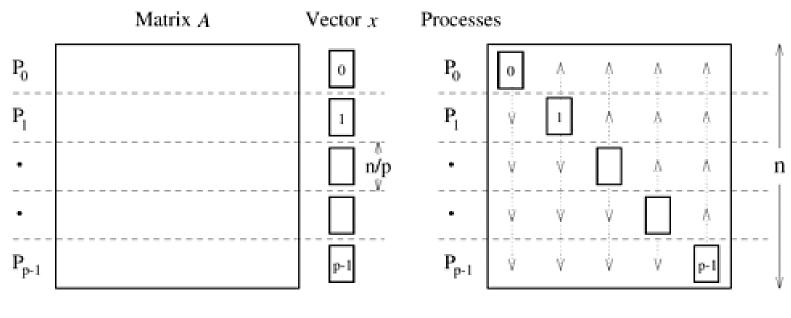
- Due to their regular structure, parallel computations involving matrices and vectors readily lend themselves to data-decomposition.
- Typical algorithms rely on **input**, **output**, or **intermediate** data decomposition.
- Most algorithms use one- and two-dimensional block, cyclic, and block-cyclic partitionings.

Matrix-Vector Multiplication

- We aim to multiply a dense *n* x *n* matrix **A** with an *n* x 1 vector x to yield the *n* x 1 result vector y.
- The serial algorithm requires *n*² multiplications and additions.

$$W = n^2$$
.

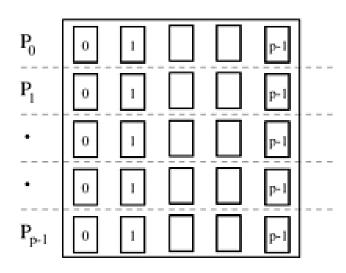
- The *n* x *n* matrix is partitioned among *n* processors, with each processor storing complete row of the matrix.
- The *n* x 1 vector x is distributed such that each process owns one of its elements.



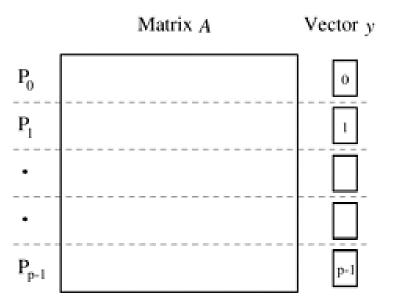
(a) Initial partitioning of the matrix and the starting vector x (b) Distribution of the full vector among all the processes by all-to-all broadcast

6

Multiplication of an $n \ge n$ matrix with an $n \ge 1$ vector using rowwise block 1-D partitioning. For the one-row-per-process case, p = n.



(c) Entire vector distributed to each process after the broadcast



(d) Final distribution of the matrix and the result vector y

7

Multiplication of an $n \ge n$ matrix with an $n \ge 1$ vector using rowwise block 1-D partitioning. For the one-row-per-process case, p = n.

- Since each process starts with only one element of x, an **all-to-all broadcast** is required to distribute all the elements to all the processes.
- Process P_i now computes $y[i] = \sum_{j=0}^{n-1} (A[i,j] \times x[j])$.
- The all-to-all broadcast and the computation of y[i] both take time $\Theta(n)$. Therefore, the parallel time is $\Theta(n)$.

- Consider now the case when p < n and we use block 1D partitioning.
- Each **process initially stores** *n/p* **complete rows** of the matrix and a portion of the **vector of size** *n/p*.
- The **all-to-all broadcast** takes place among p processes and involves messages of size *n*/*p*.
- This is followed by *n/p* local dot products.
- Thus, the parallel run time of this procedure is

$$T_P = \frac{n^2}{p} + t_s \log p + t_w n.$$

This is **cost-optimal**.

Scalability Analysis:

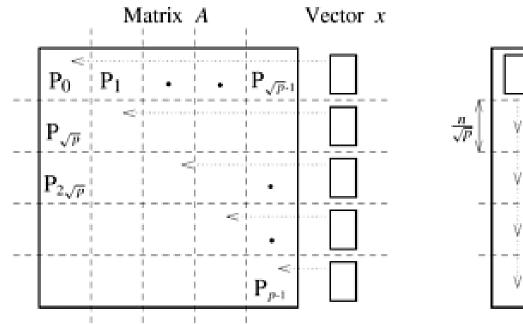
• We know that $T_0 = pT_P - W$, therefore, we have,

 $T_o = t_s p \log p + t_w n p.$

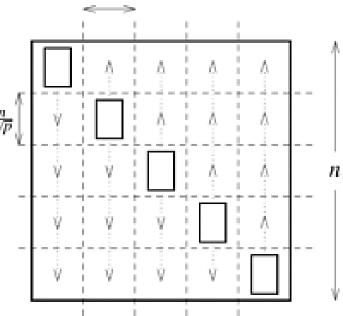
- For isoefficiency, we have $W = KT_0$, where K = E/(1 E) for desired efficiency *E*.
- From this, we have $W = O(p^2)$ (from the t_w term).
- There is also a bound on isoefficiency because of concurrency. In this case, *p* < *n*, therefore, *W* = *n*² = Ω(*p*²).
- Overall isoefficiency is $W = O(p^2)$.

- The *n* x *n* matrix is partitioned among *n*² **processors** such that each processor owns a single element.
- The *n* x 1 vector x is distributed only in the last column of *n* processors.

- We must first align the vector with the matrix appropriately.
- The first communication step for the 2-D partitioning aligns the vector x along the principal diagonal of the matrix.
- The second step copies the vector elements from each diagonal process to all the processes in the corresponding column using *n* simultaneous broadcasts among all processors in the column.
- Finally, the result vector is computed by performing an all-to-one reduction along the columns.



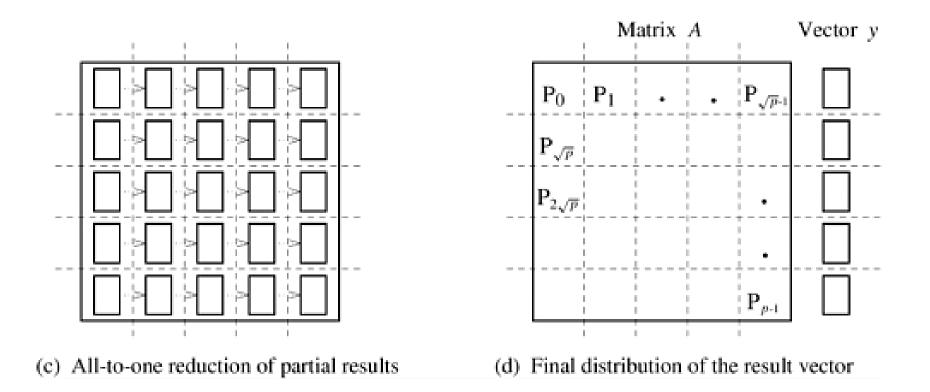
(a) Initial data distribution and communication steps to align the vector along the diagonal



 $R_{I}\sqrt{P}$

(b) One-to-all broadcast of portions of the vector along process columns

Matrix-vector multiplication with block 2-D partitioning. For the one-element-per-process case, $p = n^2$ if the matrix size is $n \ge n$.



Matrix-vector multiplication with block 2-D partitioning. For the one-element-per-process case, $p = n^2$ if the matrix size is $n \ge n$.

14

- Three basic communication operations are used in this algorithm: one-to-one communication to align the vector along the main diagonal, one-to-all broadcast of each vector element among the *n* processes of each column, and all-to-one reduction in each row.
- Each of these operations takes $\Theta(\log n)$ time and the parallel time is $\Theta(\log n)$.
- The cost (process-time product) is Θ(n² log n); hence, the algorithm is not cost-optimal.

- When using fewer than n^2 processors, each process owns an $(n/\sqrt{p}) \times (n/\sqrt{p})$ block of the matrix.
- The vector is distributed in portions of n/\sqrt{p} elements in the last process-column only.
- In this case, the message sizes for the alignment, broadcast, and reduction are all n/\sqrt{p} .
- The computation is a product of an $(n/\sqrt{p}) \times (n/\sqrt{p})$ submatrix with a vector of length n/\sqrt{p} .

• The first alignment step takes time

 $t_s + t_w n / \sqrt{p}$

The broadcast and reductions take time

 $(t_s + t_w n / \sqrt{p}) \log(\sqrt{p})$

Local matrix-vector products take time

$$t_c n^2/p$$

• Total time is

$$T_P ~pprox ~~ rac{n^2}{p} + t_s \log p + t_w rac{n}{\sqrt{p}} \log p$$

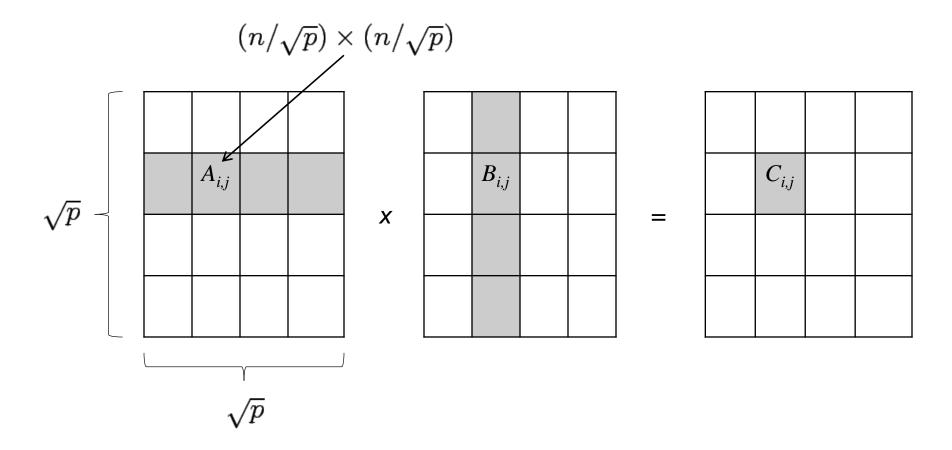
- Scalability Analysis:
- $T_o = pT_p W = t_s p \log p + t_w n \sqrt{p} \log p$
- Equating T_0 with W, term by term, for isoefficiency, we have, $W = K^2 t_w^2 p \log^2 p$ as the dominant term.
- The isoefficiency due to concurrency is O(p).
- The overall isoefficiency is $O(p \log^2 p)$ (due to the network bandwidth).
- For cost optimality, we have, $W = n^2 = p \log^2 p$. For this, we have, $p = O\left(\frac{n^2}{\log^2 n}\right)$

1-D vs. 2-D Partitioning

	1-D	2-D
Max num. of processors	$p \leq n$	$p \le n^2$
	$T_P = rac{n^2}{p} + t_s \log p + t_w n.$	$T_P pprox rac{n^2}{p} + t_s \log p + t_w rac{n}{\sqrt{p}} \log p$
isoefficiency	$O(p^2)$	$O(p\log^2 p)$
Max num. of processors (cost-optimally)	p = O(n)	$p = O\left(rac{n^2}{\log^2 n} ight)$

- Consider the problem of multiplying two n x n dense, square matrices A and B to yield the product matrix C = A x B.
- The serial complexity is $O(n^3)$.
- We do not consider better serial algorithms (Strassen's method), although, these can be used as serial kernels in the parallel algorithms.
- A useful concept in this case is called *block* operations. In this view, an *n* x *n* matrix *A* can be regarded as a *q* x *q* array of blocks A_{i,j} (0 ≤ *i*, *j* < *q*) such that each block is an (*n*/*q*) x (*n*/*q*) submatrix.
- In this view, we perform q³ matrix multiplications, each involving (n/q) x (n/q) matrices.

- Consider two *n* X *n* matrices *A* and *B* partitioned into *p* blocks $A_{i,j}$ and $B_{i,j}$ ($0 \le i, j < \sqrt{p}$) of size $(n/\sqrt{p}) \times (n/\sqrt{p})$ each.
- Process $P_{i,j}$ initially stores $A_{i,j}$ and $B_{i,j}$ and computes block $C_{i,j}$ of the result matrix.
- Computing submatrix $C_{i,j}$ requires all submatrices $A_{i,k}$ and $B_{k,j}$ for $0 \le k < \sqrt{p}$.
- All-to-all broadcast blocks of A along rows and B along columns.
- Perform local submatrix multiplication.



• The two broadcasts take time

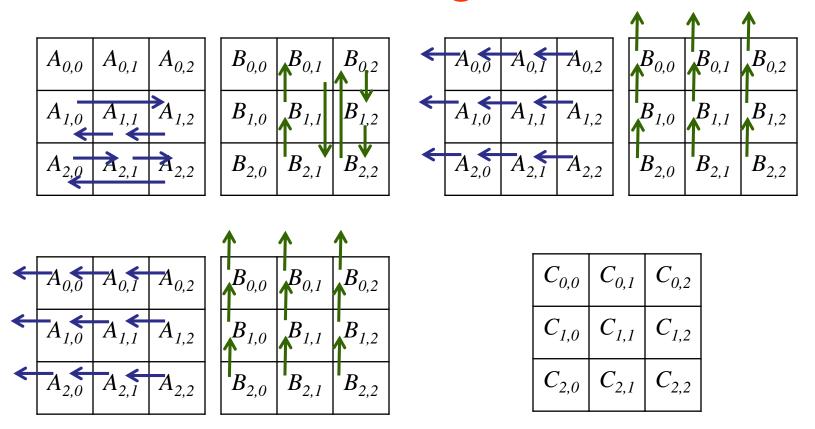
 $2(t_s \log(\sqrt{p}) + t_w(n^2/p)(\sqrt{p} - 1))$

- The computation requires \sqrt{p} multiplications of $(n/\sqrt{p}) \times (n/\sqrt{p})$ sized submatrices.
- The parallel run time is approximately

$$T_P = \frac{n^3}{p} + t_s \log p + 2t_w \frac{n^2}{\sqrt{p}}.$$

- The algorithm is cost optimal and the isoefficiency is $O(p^{1.5})$ due to bandwidth term t_w and concurrency.
- Major drawback of the algorithm is that it is not memory optimal.

- In this algorithm, we schedule the computations of the \sqrt{p} processes of the *i*th row such that, at any given time, each process is using a different block $A_{i,k}$.
- These blocks can be systematically rotated among the processes after every submatrix multiplication so that every process gets a fresh A_{i,k} after each rotation.



Communication steps in Cannon's algorithm on 9 processes.

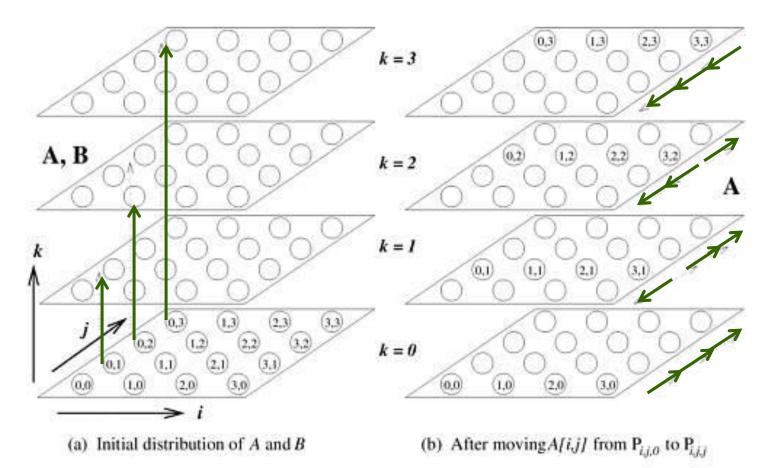
- Align the blocks of A and B in such a way that each process multiplies its local submatrices. This is done by shifting all submatrices A_{i,j} to the left (with wraparound) by i steps and all submatrices B_{i,j} up (with wraparound) by j steps.
- Perform local block multiplication.
- Each block of A moves one step left and each block of B moves one step up (again with wraparound).
- Perform next block multiplication, add to partial result, repeat until all \sqrt{p} blocks have been multiplied.

- In the alignment step, since the maximum distance over which a block shifts is $\sqrt{p} 1$, the **two shift operations** require a total of $2(t_s + t_w n^2/p)$ time.
- Each of the \sqrt{p} single-step shifts in the **compute-andshift phase** of the algorithm takes $t_s + t_w n^2/p$ time.
- The computation time for **multiplying** \sqrt{p} **matrices** of size $(n/\sqrt{p}) \times (n/\sqrt{p})$ is n^3/p .
- The parallel time is approximately:

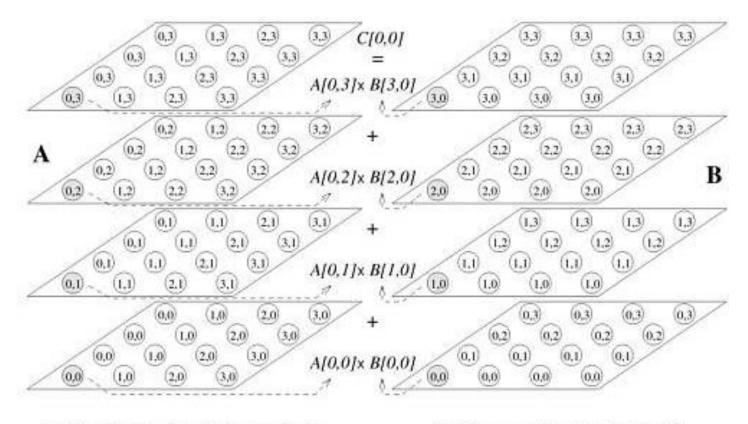
$$T_P = rac{n^3}{p} + 2\sqrt{p}t_s + 2t_wrac{n^2}{\sqrt{p}}.$$

 The cost-efficiency and isoefficiency of the algorithm are identical to the first algorithm, except, this is memory optimal.

- Uses a 3-D partitioning.
- Visualize the matrix **multiplication algorithm as a cube**. Matrices *A* and *B* come in two orthogonal faces and result *C* comes out the other orthogonal face.
- Each internal **node in the cube represents a single add-multiply operation** (and thus the complexity).
- DNS algorithm partitions this cube using a 3-D block scheme.



The communication steps in the DNS algorithm while multiplying 4 x 4 matrices *A* and *B* on 64 processes.



(c) After broadcasting A[i,j] along j axis

The communication steps in the DNS algorithm while multiplying 4 x 4 matrices *A* and *B* on 64 processes.

⁽d) Corresponding distribution of B

- Assume an *n* X *n* X *n* mesh of processors.
- Move the columns of *A* and rows of *B* and perform broadcast.
- Each processor computes a single add-multiply.
- This is followed by an **accumulation along the** *C* **dimension**.
- Since each add-multiply takes constant time and accumulation and broadcast takes log n time, the total runtime is log n.
- This is not cost optimal. It can be made cost optimal by using n / log n processors along the direction of accumulation.

Using fewer than *n*³ processors.

- Assume that the number of processes p is equal to q³ for some q < n.
- The two matrices are partitioned into blocks of size (n/q) x(n/q).
- Each matrix can thus be regarded as a q x q twodimensional square array of blocks.
- The algorithm follows from the previous one, except, in this case, we operate on blocks rather than on individual elements.

Using fewer than n^3 processors.

- The first one-to-one **communication** step is performed for both *A* and *B*, and takes $t_s + t_w(n/q)^2$ time for each matrix.
- The two **one-to-all broadcasts** take $2(t_s \log q + t_w (n/q)^2 \log q)$ time for each matrix.
- The reduction takes time $t_s \log q + t_w (n/q)^2 \log q$.
- Multiplication of $(n/q) \times (n/q)$ submatrices takes $(n/q)^3$ time.
- The parallel time is approximated by:

$$T_P = rac{n^3}{p} + t_s \log p + t_w rac{n^2}{p^{2/3}} \log p.$$

• The isoefficiency function is $\Theta(p(\log p)^3)$.

Cannon's vs. DNS Algorithm

	Cannon's	DNS
Max num. of processors	$p \le n^2$	$p \le n^3$
	$T_P=rac{n^3}{p}+2\sqrt{p}t_s+2t_wrac{n^2}{\sqrt{p}}.$	$T_P = rac{n^3}{p} + t_s \log p + t_w rac{n^2}{p^{2/3}} \log p.$
W	$O(p^{1.5})$	$\Theta(p(\log p)^3)$
Max num. of processors (cost-optimally)	$p = O(n^2)$	$p = O(n^3/log^3n)$

Solving a System of Linear Equations

Consider the problem of solving linear equations of the kind:

• This is written as Ax = b, where A is an $n \ge n$ matrix with $A[i, j] = a_{i,j}$, b is an $n \ge 1$ vector [b_0, b_1, \dots, b_{n-1}]^T, and x is the solution.

Solving a System of Linear Equations

Two steps in solution are: **reduction to triangular form**, and **back-substitution**. The triangular form is as:

We write this as: Ux = y.

A commonly used method for transforming a given matrix into an upper-triangular matrix is **Gaussian Elimination**.

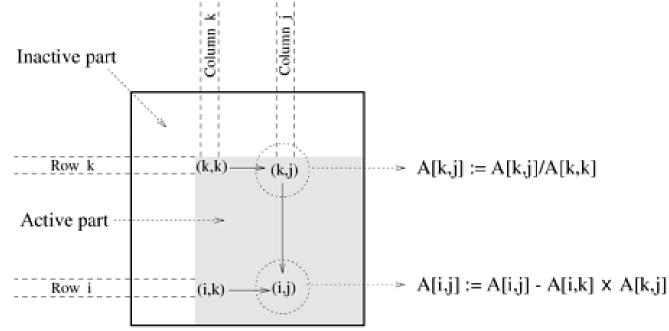
Gaussian Elimination

```
1.
         procedure GAUSSIAN_ELIMINATION (A, b, y)
2.
         begin
3.
            for k := 0 to n - 1 do /* Outer loop */
4.
            begin
5.
               for i := k + 1 to n - 1 do
                  A[k, j] := A[k, j]/A[k, k]; /* Division step */
6.
7.
               y[k] := b[k]/A[k,k];
8.
               A[k, k] := 1:
9.
               for i := k + 1 to n - 1 do
10.
               begin
11.
                  for i := k + 1 to n - 1 do
12.
                     A[i, j] := A[i, j] - A[i, k] \times A[k, j]; /* Elimination step */
                  b[i] := b[i] - A[i,k] \times y[k];
13.
14.
                  A[i,k] := 0;
15.
               endfor: /* Line 9 */
                     /* Line 3 */
16.
            endfor:
17.
         end GAUSSIAN_ELIMINATION
```

Serial Gaussian Elimination

Gaussian Elimination

The computation has three nested loops - in the *k*th iteration of the outer loop, the algorithm performs (*n-k*)² computations. Summing from *k* = 1..*n*, we have roughly (*n*³/3) multiplications-subtractions.



A typical computation in Gaussian elimination.

Parallel Gaussian Elimination

- Assume *p* = *n* with each row assigned to a processor.
- The first step of the algorithm **normalizes the row**. This is a serial operation and takes time (n-k) in the k^{th} iteration.
- In the second step, the **normalized row is broadcast** to all the processors. This takes time $(t_s + t_w(n k 1)) \log n$.
- Each processor can **independently eliminate this row** from its own. This **requires** (*n-k-1*) **multiplications** and subtractions.
- The **total parallel time** can be computed by summing from $k = 1 \dots n-1$ as $T_P = \frac{3}{2}n(n-1) + t_s n \log n + \frac{1}{2}t_w n(n-1)\log n.$
- The formulation is not cost optimal because of the t_w term.

Parallel Gaussian Elimination

P_0	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
P2	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P3	0	0	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)
P_4	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
Ps	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
P ₆	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P ₇	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

- (a) Computation:
 - (i) A[k,j] := A[k,j]/A[k,k] for k < j < j

(ii) A[k,k] := 1

2)	\mathbf{P}_0	1	(0,1)	(0,2)	$(0,3) \ (0,4) \ (0,5) \ (0,6) \ (0,7)$
Z)	P	0	1	(1,2)	(1,3) (1,4) (1,5) (1,6) (1,7)
	P ₂	0	0	1	(2,3) (2,4) (2,5) (2,6) (2,7)
	P3	0	0	0	1 (3,4) (3,5) (3,6) (3,7)
	P ₄	0	0	0	$(4,3)^{\forall}(4,4)^{\forall}(4,5)^{\forall}(4,6)^{\forall}(4,7)$
	P ₅	0	0	0	(5,3)∛(5,4)∛(5,5)∛(5,6)∛(5,7)
	P ₆	0	0	0	$(6,3)^{\forall}(6,4)^{\forall}(6,5)^{\forall}(6,6)^{\forall}(6,7)$
	P ₇	0	0	0	$(7,3)^{\dot{\forall}}(7,4)^{\dot{\forall}}(7,5)^{\dot{\forall}}(7,6)^{\dot{\forall}}(7,7)$

(b) Communication:

One-to-all broadcast of row A[k,*]

1)

\mathbf{P}_0	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
P2	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P_3	0	0	0	1	(3,4)	(3,5)	(3,6)	(3,7)
P_4	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P_5	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
P ₆	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P ₇	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

- (c) Computation:
 - (i) A[i,j] := A[i,j] − A[i,k]× A[k,j] for k < i < n and k < j < n</p>
 - (ii) A[i,k] := 0 for k < i < n

Gaussian elimination steps during the iteration corresponding k = 3 ⁴⁰

- In the previous formulation, the (k+1)st iteration starts only after all the computation and communication for the kth iteration is complete.
- In the pipelined version, there are three steps normalization of a row, communication, and elimination. These steps are performed in an asynchronous fashion.
- A processor P_k waits to receive and eliminate all rows prior to k.
- Once it has done this, it forwards its own row to processor P_{k+1} .

(4,0),(4,1),(4,2),(4,3),(4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	0 (4,1) (4,2) (4,3) (4,4)
(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)	0 (3,1) (3,2) (3,3) (3,4)	0 (3,1) (3,2) (3,3) (3,4)
(2,0) (2,1) (2,2) (2,3) (2,4)	0 (2,1) (2,2) (2,3) (2,4)	0 (2,1) (2,2) (2,3) (2,4)	0 (2,1) (2,2) (2,3) (2,4)
0 (1,1) (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 (1.1) (1.2) (1.3) (1.4)	0 1 (1,2) (1,3) (1,4)
1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)
a) Iteration $k = 0$ starts	(b)	(c)	(d)
(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)
(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)
(2,0) (2,1) (2,2) (2,3) (2,4)	(2,0) (2,1) (2,2) (2,3) (2,4)	$(2,0)_{V}(2,1)_{V}(2,2)_{V}(2,3)_{V}(2,4)$	(2,0) (2,1) (2,2) (2,3) (2,4)
(1.0) (1.1) (1.2) (1.3) (1.4)	$\textbf{(1,0)}_{ij}\textbf{(1,1)}_{ij}\textbf{(1,2)}_{ij}\textbf{(1,3)}_{ij}\textbf{(1,4)}$	(1,0) (1,1) (1,2) (1,3) (1,4)	(1,0) (1,1) (1,2) (1,3) (1,4)
(0,0) $(0,1)$ $(0,2)$ $(0,3)$ $(0,4)$	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)

Pipelined Gaussian elimination on a 5 x 5 matrix partitioned withone row per process.

- The **total number of steps** in the entire pipelined procedure is $\Theta(n)$.
- In any step, either O(n) elements are communicated between directly-connected processes, or a division step is performed on O(n) elements of a row, or an elimination step is performed on O(n) elements of a row.
- The parallel time is therefore $O(n^2)$.
- This is **cost optimal**.

P	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P ₀	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P ₁	0	0	0	1 1	(3,4)	(3,5)	(3,6)	(3,7)
P	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P ₂	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
D	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P ₃	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

The communication in the Gaussian elimination iteration corresponding to k = 3 for an 8 x 8 matrix distributed among four processes using block 1-D partitioning.

Parallel Gaussian Elimination: Block 1D with p < n

- The above algorithm can be easily adapted to the case when *p* < *n*.
- In the *k*th iteration, a processor with all rows belonging to the active part of the matrix performs (*n* - *k* -1) *n* / *p* multiplications and subtractions.
- In the pipelined version, for *n* > *p*, computation dominates communication.
- The parallel time is given by: $2(n/p)\Sigma_{k=0}^{n-1}(n-k-1)$ or approximately, n^{3}/p .
- While the algorithm is cost optimal, the cost of the parallel algorithm is higher than the sequential run time by a factor of 3/2.