Dense Matrix Algorithms

Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

To accompany the text "Introduction to Parallel Computing", Addison Wesley, 2003.

Topic Overview

- Matrix-Vector Multiplication
- Matrix-Matrix Multiplication
- Solving a System of Linear Equations

Matix Algorithms: Introduction

- Due to their regular structure, parallel computations involving matrices and vectors readily lend themselves to data-decomposition.
- Typical algorithms rely on input, output, or intermediate data decomposition.
- Most algorithms use one- and two-dimensional block, cyclic, and block-cyclic partitionings.

Matrix-Vector Multiplication

- We aim to multiply a dense $n \times n$ matrix \mathbf{A} with an $n \times 1$ vector x to yield the $n \times 1$ result vector \mathbf{y}.
- The serial algorithm requires \boldsymbol{n}^{2} multiplications and additions.

$$
W=n^{2} .
$$

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

- The $n \times n$ matrix is partitioned among n processors, with each processor storing complete row of the matrix.
- The $n \times 1$ vector x is distributed such that each process owns one of its elements.

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

(a) Initial partitioning of the matrix and the starting vector x

Processes

(b) Distribution of the full vector among all the processes by all-to-all broadcast

Multiplication of an $n \times n$ matrix with an $n \times 1$ vector using rowwise block 1-D partitioning. For the one-row-per-process case, $p=n$.

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

Multiplication of an $n \times n$ matrix with an $n \times 1$ vector using rowwise block 1-D partitioning. For the one-row-per-process case, $p=n$.

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

- Since each process starts with only one element of x, an all-to-all broadcast is required to distribute all the elements to all the processes.
- Process P_{i} now computes $y[i]=\sum_{j=0}^{n-1}(A[i, j] \times x[j])$.
- The all-to-all broadcast and the computation of $y[i]$ both take time $\boldsymbol{\Theta}(\boldsymbol{n})$. Therefore, the parallel time is $\Theta(n)$.

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

- Consider now the case when $\boldsymbol{p}<\boldsymbol{n}$ and we use block 1D partitioning.
- Each process initially stores n / p complete rows of the matrix and a portion of the vector of size n / p.
- The all-to-all broadcast takes place among p processes and involves messages of size n / p.
- This is followed by n / p local dot products.
- Thus, the parallel run time of this procedure is

$$
T_{P}=\frac{n^{2}}{p}+t_{s} \log p+t_{w} n
$$

This is cost-optimal.

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

Scalability Analysis:

- We know that $T_{0}=p T_{P}-W$, therefore, we have,

$$
T_{o}=t_{s} p \log p+t_{w} n p .
$$

- For isoefficiency, we have $W=K T_{0}$, where $K=E /(1-E)$ for desired efficiency E.
- From this, we have $W=O\left(p^{2}\right)$ (from the t_{w} term).
- There is also a bound on isoefficiency because of concurrency. In this case, $p<n$, therefore, $W=n^{2}=$ $\Omega\left(p^{2}\right)$.
- Overall isoefficiency is $W=O\left(p^{2}\right)$.

Matrix-Vector Multiplication: 2-D Partitioning

- The $n \times n$ matrix is partitioned among n^{2} processors such that each processor owns a single element.
- The $n \times 1$ vector \boldsymbol{x} is distributed only in the last column of n processors.

Matrix-Vector Multiplication: 2-D Partitioning

- We must first align the vector with the matrix appropriately.
- The first communication step for the 2-D partitioning aligns the vector x along the principal diagonal of the matrix.
- The second step copies the vector elements from each diagonal process to all the processes in the corresponding column using n simultaneous broadcasts among all processors in the column.
- Finally, the result vector is computed by performing an all-to-one reduction along the columns.

Matrix-Vector Multiplication: 2-D Partitioning

(a) Initial data distribution and communication steps to align the vector along the diagonal

(b) One-to-all broadcast of portions of the vector along process columns

Matrix-vector multiplication with block 2-D partitioning. For the one-element-per-process case, $p=n^{2}$ if the matrix size is $n \times n$.

Matrix-Vector Multiplication: 2-D Partitioning

(c) All-to-one reduction of partial results

(d) Final distribution of the result vector

Matrix-vector multiplication with block 2-D partitioning. For the one-element-per-process case, $p=n^{2}$ if the matrix size is $n \times n$.

Matrix-Vector Multiplication: 2-D Partitioning

- Three basic communication operations are used in this algorithm: one-to-one communication to align the vector along the main diagonal, one-to-all broadcast of each vector element among the n processes of each column, and all-to-one reduction in each row.
- Each of these operations takes $\Theta(\log n)$ time and the parallel time is $\Theta(\log n)$.
- The cost (process-time product) is $\Theta\left(n^{2} \log n\right)$; hence, the algorithm is not cost-optimal.

Matrix-Vector Multiplication: 2-D Partitioning

- When using fewer than \boldsymbol{n}^{2} processors, each process owns an $(n / \sqrt{p}) \times(n / \sqrt{p})$ block of the matrix.
- The vector is distributed in portions of n / \sqrt{p} elements in the last process-column only.
- In this case, the message sizes for the alignment, broadcast, and reduction are all n / \sqrt{p}.
- The computation is a product of an $(n / \sqrt{p}) \times(n / \sqrt{p})$ submatrix with a vector of length n / \sqrt{p}.

Matrix-Vector Multiplication: 2-D Partitioning

- The first alignment step takes time

$$
t_{s}+t_{w} n / \sqrt{p}
$$

- The broadcast and reductions take time

$$
\left(t_{s}+t_{w} n / \sqrt{p}\right) \log (\sqrt{p})
$$

- Local matrix-vector products take time

$$
t_{c} n^{2} / p
$$

- Total time is

$$
T_{P} \approx \frac{n^{2}}{p}+t_{s} \log p+t_{w} \frac{n}{\sqrt{p}} \log p
$$

Matrix-Vector Multiplication: 2-D Partitioning

- Scalability Analysis:
- $T_{o}=p T_{p}-W=t_{s} p \log p+t_{w} n \sqrt{p} \log p$
- Equating T_{0} with W, term by term, for isoefficiency, we have, $W=K^{2} t_{w}^{2} p \log ^{2} p$ as the dominant term.
- The isoefficiency due to concurrency is $O(p)$.
- The overall isoefficiency is $O\left(p \log ^{2} p\right)$ (due to the network bandwidth).
- For cost optimality, we have, $W=n^{2}=p \log ^{2} p$. For this, we have, $p=O\left(\frac{n^{2}}{\log ^{2} n}\right)$

1-D vs. 2-D Partitioning

	1-D	2-D
Max num. of processors	$p \leq n$	$p \leq n^{2}$
T_{p}	$T_{P}=\frac{n^{2}}{p}+t_{s} \log p+t_{w} n$.	$T_{P} \approx \frac{n^{2}}{p}+t_{s} \log p+t_{w} \frac{n}{\sqrt{p}} \log p$
isoefficiency	$O\left(p^{2}\right)$	$O\left(p \log ^{2} p\right)$
Max num. of processors (cost-optimally)	$p=O(n)$	$p=O\left(\frac{n^{2}}{\log ^{2} n}\right)$

Matrix-Matrix Multiplication

- Consider the problem of multiplying two $n \times n$ dense, square matrices A and B to yield the product matrix $C=A \times B$.
- The serial complexity is $O\left(n^{3}\right)$.
- We do not consider better serial algorithms (Strassen's method), although, these can be used as serial kernels in the parallel algorithms.
- A useful concept in this case is called block operations. In this view, an $n \times n$ matrix A can be regarded as a $q \times q$ array of blocks $A_{i, j}(0 \leq i, j<q)$ such that each block is an $(n / q) \times(n / q)$ submatrix.
- In this view, we perform q^{3} matrix multiplications, each involving $(n / q) \times(n / q)$ matrices.

Matrix-Matrix Multiplication

- Consider two $\boldsymbol{n} \mathbf{X} \boldsymbol{n}$ matrices \boldsymbol{A} and \boldsymbol{B} partitioned into \boldsymbol{p} blocks $A_{i, j}$ and $B_{i, j}(0 \leq i, j<\sqrt{p})$ of size $(n / \sqrt{p}) \times(n / \sqrt{p})$ each.
- Process $P_{i, j}$ initially stores $A_{i, j}$ and $B_{i, j}$ and computes block $C_{i, j}$ of the result matrix.
- Computing submatrix $C_{i, j}$ requires all submatrices $A_{i, k}$ and $\boldsymbol{B}_{k, j}$ for $0 \leq k<\sqrt{p}$.
- All-to-all broadcast blocks of \boldsymbol{A} along rows and \boldsymbol{B} along columns.
- Perform local submatrix multiplication.

Matrix-Matrix Multiplication

Matrix-Matrix Multiplication

- The two broadcasts take time

$$
2\left(t_{s} \log (\sqrt{p})+t_{w}\left(n^{2} / p\right)(\sqrt{p}-1)\right)
$$

- The computation requires \sqrt{p} multiplications of $(n / \sqrt{p}) \times(n / \sqrt{p}) \quad$ sized submatrices.
- The parallel run time is approximately

$$
T_{P}=\frac{n^{3}}{p}+t_{s} \log p+2 t_{w} \frac{n^{2}}{\sqrt{p}} .
$$

- The algorithm is cost optimal and the isoefficiency is $\boldsymbol{O}\left(\boldsymbol{p}^{1.5}\right)$ due to bandwidth term t_{w} and concurrency.
- Major drawback of the algorithm is that it is not memory optimal.

Matrix-Matrix Multiplication: Cannon's Algorithm

- In this algorithm, we schedule the computations of the \sqrt{p} processes of the i th row such that, at any given time, each process is using a different block $A_{i, k}$.
- These blocks can be systematically rotated among the processes after every submatrix multiplication so that every process gets a fresh $A_{i, k}$ after each rotation.

Matrix-Matrix Multiplication: Cannon's Algorithm

$A_{0,0}$	$A_{0,1}$	$A_{0,2}$
$A_{1,0}$	$A_{1,1}$	$A_{1,2}$
$A_{2,0}$	$\vec{A}_{2,1}$	$A_{2,2}$

$B_{0,0}$	$B_{0,1}$	$B_{0,2}$
$B_{1,0}$	$B_{1,1}$	$B_{1,2}$
$B_{2,0}$	$B_{2,1}$	$B_{2,2}^{\downarrow}$

$A_{0, \delta}$ S	$A_{0, T}$	$A_{0,2}$
$A_{1,0}$	$A_{l, I} \stackrel{ }{ }$	$A_{1,2}$
$A_{2,0} \leftarrow$	$A_{2,1}{ }_{1}$	${ }^{\text {2,2 }}$

	\uparrow	
$B_{0,0}$	$B_{0,1}$	$B_{0,2}$
$B_{1,0}$	$B_{1,1}$	$B_{1,2}$
$B_{2,0}$	$B_{2,1}$	$B_{2,2}$

$\leftarrow A_{0, \delta} \overleftarrow{\delta}$	$A_{0,1}$	$A_{0,2}$
$\leftarrow A_{1,0} \leftarrow$	$A_{1,1} \stackrel{1}{1}$	$A_{1,2}$
$\longleftarrow A_{2,0} \leftarrow$	$A_{2,1} \leftarrow$	$A_{2,2}$

$C_{0,0}$	$C_{0,1}$	$C_{0,2}$
$C_{1,0}$	$C_{1,1}$	$C_{1,2}$
$C_{2,0}$	$C_{2,1}$	$C_{2,2}$

Communication steps in Cannon's algorithm on 9 processes.

Matrix-Matrix Multiplication: Cannon's Algorithm

- Align the blocks of A and B in such a way that each process multiplies its local submatrices. This is done by shifting all submatrices $A_{i, j}$ to the left (with wraparound) by i steps and all submatrices $\boldsymbol{B}_{i, j}$ up (with wraparound) by j steps.
- Perform local block multiplication.
- Each block of A moves one step left and each block of \boldsymbol{B} moves one step up (again with wraparound).
- Perform next block multiplication, add to partial result, repeat until all \sqrt{p} blocks have been multiplied.

Matrix-Matrix Multiplication: Cannon's Algorithm

- In the alignment step, since the maximum distance over which a block shifts is $\sqrt{p}-1$, the two shift operations require a total of $2\left(t_{s}+t_{w} n^{2} / p\right)$ time.
- Each of the \sqrt{p} single-step shifts in the compute-andshift phase of the algorithm takes $t_{s}+t_{w} n^{2} / p$ time.
- The computation time for multiplying \sqrt{p} matrices of size $(n / \sqrt{p}) \times(n / \sqrt{p})$ is n^{3} / p.
- The parallel time is approximately:

$$
T_{P}=\frac{n^{3}}{p}+2 \sqrt{p} t_{s}+2 t_{w} \frac{n^{2}}{\sqrt{p}} .
$$

- The cost-efficiency and isoefficiency of the algorithm are identical to the first algorithm, except, this is memory optimal.

Matrix-Matrix Multiplication: DNS Algorithm

- Uses a 3-D partitioning.
- Visualize the matrix multiplication algorithm as a cube. Matrices A and B come in two orthogonal faces and result C comes out the other orthogonal face.
- Each internal node in the cube represents a single add-multiply operation (and thus the complexity).
- DNS algorithm partitions this cube using a 3-D block scheme.

Matrix-Matrix Multiplication: DNS Algorithm

(a) Initial distribution of A and B

(b) After moving $A\left[i, j /\right.$ from $\mathrm{P}_{i, j, 0}$ to $\mathrm{P}_{i, j, j}$

The communication steps in the DNS algorithm while multiplying 4×4 matrices A and B on 64 processes.

Matrix-Matrix Multiplication: DNS Algorithm

The communication steps in the DNS algorithm while multiplying 4×4 matrices A and B on 64 processes.

Matrix-Matrix Multiplication: DNS Algorithm

- Assume an $\boldsymbol{n} \times \boldsymbol{n} \mathbf{X} \boldsymbol{n}$ mesh of processors.
- Move the columns of A and rows of B and perform broadcast.
- Each processor computes a single add-multiply.
- This is followed by an accumulation along the C dimension.
- Since each add-multiply takes constant time and accumulation and broadcast takes $\log n$ time, the total runtime is $\log n$.
- This is not cost optimal. It can be made cost optimal by using $n / \log n$ processors along the direction of accumulation.

Matrix-Matrix Multiplication: DNS Algorithm

Using fewer than n^{3} processors.

- Assume that the number of processes p is equal to q^{3} for some $q<n$.
- The two matrices are partitioned into blocks of size $(n / q) \times(n / q)$.
- Each matrix can thus be regarded as a $\boldsymbol{q} \mathbf{x} \boldsymbol{q}$ twodimensional square array of blocks.
- The algorithm follows from the previous one, except, in this case, we operate on blocks rather than on individual elements.

Matrix-Matrix Multiplication: DNS Algorithm

Using fewer than n^{3} processors.

- The first one-to-one communication step is performed for both A and B, and takes $t_{s}+t_{w}(n / q)^{2}$ time for each matrix.
- The two one-to-all broadcasts take $2\left(t_{s} \log q+t_{w}(n / q)^{2} \log q\right)$ time for each matrix.
- The reduction takes time $t_{s} \log q+t_{w}(n / q)^{2} \log q$.
- Multiplication of $(n / q) \times(n / q)$ submatrices takes $(n / q)^{3}$ time.
- The parallel time is approximated by:

$$
T_{P}=\frac{n^{3}}{p}+t_{s} \log p+t_{w} \frac{n^{2}}{p^{2 / 3}} \log p .
$$

- The isoefficiency function is $\Theta\left(p(\log p)^{3}\right)$.

Cannon's vs. DNS Algorithm

	Cannon's	DNS
Max num. of processors	$p \leq n^{2}$	$p \leq n^{3}$
T_{p}	$T_{P}=\frac{n^{3}}{p}+2 \sqrt{p} t_{s}+2 t_{w} \frac{n^{2}}{\sqrt{p}} .$	$T_{P}=\frac{n^{3}}{p}+t_{s} \log p+t_{w} \frac{n^{2}}{p^{2 / 3}} \log p$.
W	$O\left(p^{1.5}\right)$	$\Theta\left(p(\log p)^{3}\right)$
Max num. of processors (cost-optimally)	$p=O\left(n^{2}\right)$	$p=O\left(n^{3} / \log ^{3} n\right)$

Solving a System of Linear Equations

- Consider the problem of solving linear equations of the kind:

$$
\begin{array}{ccccccc}
a_{0,0} x_{0} & +a_{0,1} x_{1} & + & \cdots & +a_{0, n-1} x_{n-1} & = & b_{0} \\
a_{1,0} x_{0} & + & a_{1,1} x_{1} & + & \cdots & +a_{1, n-1} x_{n-1} & = \\
\vdots \\
\vdots & & \vdots & & & b_{1} \\
a_{n-1,0} x_{0} & + & a_{n-1,1} x_{1} & + & \cdots+ & +a_{n-1, n-1} x_{n-1} & = \\
\vdots
\end{array}
$$

- This is written as $\boldsymbol{A x}=\boldsymbol{b}$, where A is an $n \times n$ matrix with $A[i, j]=a_{i j}, b$ is an $n \times l$ vector $\left[b_{0}, b_{1}, \ldots, b_{n-1}\right]^{\mathrm{T}}$, and x is the solution.

Solving a System of Linear Equations

Two steps in solution are: reduction to triangular form, and back-substitution. The triangular form is as:

$$
\begin{array}{rlrl}
x_{0}+u_{0,1} x_{1}+u_{0,2} x_{2}+\cdots & +u_{0, n-1} x_{n-1} & =y_{0} \\
x_{1}+u_{1,2} x_{2}+\cdots & +u_{1, n-1} x_{n-1} & =y_{1} \\
& & & \\
& & x_{n-1} & =y_{n-1}
\end{array}
$$

We write this as: $U x=y$.
A commonly used method for transforming a given matrix into an upper-triangular matrix is Gaussian Elimination.

Gaussian Elimination

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
```
procedure GAUSSIAN_ELIMINATION \((A, b, y)\)
begin
    for \(k:=0\) to \(n-1\) do \(\quad\) * Outer loop */
    begin
        for \(j:=k+1\) to \(n-1\) do
            \(A[k, j]:=A[k, j] / A[k, k] ; \quad{ }^{*}\) Division step */
            \(y[k]:=b[k] / A[k, k] ;\)
            \(A[k, k]:=1\);
            for \(i:=k+1\) to \(n-1\) do
            begin
            for \(j:=k+1\) to \(n-1\) do
                \(A[i, j]:=A[i, j]-A[i, k] \times A[k, j] ; /^{*}\) Elimination step */
            \(b[i]:=b[i]-A[i, k] \times y[k] ;\)
            \(A[i, k]:=0 ;\)
            endfor; /* Line 9*/
        endfor; /* Line 3*/
    end GAUSSIAN_ELIMINATION
```

Serial Gaussian Elimination

Gaussian Elimination

- The computation has three nested loops - in the k th iteration of the outer loop, the algorithm performs $(n-k)^{2}$ computations. Summing from $k=1$..n, we have roughly $\left(n^{3} / 3\right)$ multiplications-subtractions.

A typical computation in Gaussian elimination.

Parallel Gaussian Elimination

- Assume $p=n$ with each row assigned to a processor.
- The first step of the algorithm normalizes the row. This is a serial operation and takes time $(n-k)$ in the $k^{\text {th }}$ iteration.
- In the second step, the normalized row is broadcast to all the processors. This takes time $\left(t_{s}+t_{w}(n-k-1)\right) \log n$.
- Each processor can independently eliminate this row from its own. This requires ($n-k-1$) multiplications and subtractions.
- The total parallel time can be computed by summing from $k=1 \ldots n-1$ as

$$
T_{P}=\frac{3}{2} n(n-1)+t_{s} n \log n+\frac{1}{2} t_{w} n(n-1) \log n .
$$

- The formulation is not cost optimal because of the t_{w} term.

Parallel Gaussian Elimination

1)

P_{0}	1	(0,1)	(0,2)	$(0,3)$	(0,4)	(0,5)	$(0,6)$	(0,7)
P_{1}	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
P_{2}	0	0	1	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$	$(2,7)$
P_{3}	0	0	0	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$	$(3,7)$
P_{4}	0	0	0	(4,3)	$(4,4)$	$(4,5)$	$(4,6)$	$(4,7)$
P_{5}	0	0	0	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$	$(5,7)$
P_{6}	0	0	0	$(6,3)$	$(6,4)$	(6,5)	(6,6)	(6,7)
P_{7}	0	0	0	(7,3)	$(7,4)$	(7,5)	$(7,6)$	(7,7)

3)

P_{0}	1	(0,1)	$(0,2)$	(0,3)	$(0,4)$	(0,5)	$(0,6)$	(0,7)
P_{1}	0	1	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$	(1,7)
P_{2}	0	0	1	(2,3)	(2,4)	(2,5)	$(2,6)$	(2,7)
P_{3}	0	0	0		(3,4)	(3,5)	$(3,6)$	(3,7)
P_{4}	0	0	0	(4,3)	(4,4)	(4,5)	$(4,6)$	(4,7)
P_{5}	0	0	0	(5,3)	(5,4)	(5,5)	$(5,6)$	(5,7)
P_{6}	0	0	0	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$	$(6,7)$
P_{7}	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	$(7,7)$

(a) Computation:
(i) $\mathrm{A}[\mathrm{k} . \mathrm{j}]:=\mathrm{A}[\mathrm{k}, \mathrm{j}] / \mathrm{A}[\mathrm{k}, \mathrm{k}]$ for $\mathrm{k}<\mathrm{j}<$
(ii) $\mathrm{A}[\mathrm{k}, \mathrm{k}]:=1$
2)

P_{0}	1	(0,1)	$(0,2)$	$(0,3)(0,4)$	(0,5)	$(0,6)$	(0,7)
P_{1}	0	1	(1,2)	$(1,3)(1,4)$	(1,5)	$(1,6)$	(1,7)
P_{2}	0	0	1	$(2,3)(2,4)$	$(2,5)$	$(2,6)$	$(2,7)$
P_{3}	0	0		$1: \begin{gathered} -(3,4) \\ \hdashline \end{gathered}$	$-\overline{(3,5)}$	$(\overline{3}, 6)$	- (3,7)
P_{4}	0	0	0	$(4,3)(4,4)$	(4,5)	(4,6)	(4,7)
P_{5}	0	0	0	$(5,3){ }^{(}(5,4){ }^{\text {¢ }}$	$\checkmark(5,5)$	Y(5,6)	Y(5,7)
P_{6}	0	0	0	$(6,3))_{(6,4)}{ }^{\text {P }}$	(6,5)	Y(6,6)	(6,7)
P_{7}	0	0	0	$(7,3){ }^{(7,4,4)}$	(7,5)	\checkmark	(7,7)

(b) Communication:

One-to-all broadcast of row A[k,*]
(c) Computation:
(i) $A[i, j]:=A[i, j]-A[i, k] \times A[k, j]$
for $\mathrm{k}<\mathrm{i}<\mathrm{n}$ and $\mathrm{k}<\mathrm{j}<\mathrm{n}$
(ii) $\mathrm{A}[\mathrm{i}, \mathrm{k}]:=0$ for $\mathrm{k}<\mathrm{i}<\mathrm{n}$

Parallel Gaussian Elimination: Pipelined Execution

- In the previous formulation, the $(k+1)^{\text {st }}$ iteration starts only after all the computation and communication for the $\mathbf{k}^{\text {th }}$ iteration is complete.
- In the pipelined version, there are three steps normalization of a row, communication, and elimination. These steps are performed in an asynchronous fashion.
- A processor \boldsymbol{P}_{k} waits to receive and eliminate all rows prior to k.
- Once it has done this, it forwards its own row to processor \boldsymbol{P}_{k+1}.

Parallel Gaussian Elimination: Pipelined Execution

(0.0)	(0,1)	(0,2)	(0,3)	(0,4)
(1.0)	(1.1)	(1,2)	(1,3)	(1,4)
(2,0)	(2,1)	$(2,2)$	$(2,3)$	(2,4)
(3,0)	(3,1)	(3.2)	3,3)	4)
(4.0)	(4,1)	$(4,2)$	(4,3)	(4,4)

(a) Iteration $\mathrm{k}=0$ starts

1	$(0,1)$	(0,2)	$(0,3)$	$(0,4)$
0	$(1,1)$	(1,2)	$(1,3)$	(1,4)
(2,0)	(2,1)	(2,2)	(2,3)	(2,4)
(3,0)	$(3,1)$	$(3,2)$	$(3,3)$	(3,4)
	$(4,1)$	$V^{(4,2)}$	(4,3)	$y^{(4,4)}$

(e) Iteration $\mathrm{k}=1$ starts

1	(0.1)	(0.2)	(0.3)	(0.4)
$(1,0)$	(1.1)	(1.2)	(1.3)	$(1,4)$
(2.0)	(2.1)	(2.2)	(2.3)	$(2,4)$
$(3,0)$	(3.1)	(3.2)	$(3,3)$	$(3,4)$
$(4,0)$	(4.1)	$(4,2)$	$(4,3)$	$(4,4)$

(b)

1	$(0,1)$	(0.2)	$(0,3)$	$(0,4)$
0	1	$(1,2)$	$(1,3)$	$(1,4)$
0	(2.1)	$(2,2)$	$(2,3)$	$(2,4)$
$(3,0)$	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$
$(4,0)$	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$

(f)

1	$(0,1)$	$(0,2)$	$(0,3)$
	$(0,4)$		
$(1,0)$	$(1,1)$	$(1,2)$	$(1,3)$
$(1,4)$			
$(2,0)$	$(2,1)$	$(2,2)$	$(2,3)$
$(2,4)$			
$(3,0)$	$(3,1)$	$(3,2)$	$(3,3)$
$(3,4)$			
$(4,0)$	$(4,1)$	$(4,2)$	$(4,3)$

(c)

1	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$
0	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$
0	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$
0	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$
$(4,0)$	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$

(g) Iteration $\mathrm{k}=0$ ends

1	$(0,1)$	$(0,2)$	$(0,3)$
	(0.4)		
$(1,0)$	$(1,1)$	$(1,2)$	$(1,3)$
$(1,4)$			
$(2,0)$	$(2,1)$	$(2,2)$	$(2,3)$
$(2,4)$			
$(3,0)$	$(3,1)$	$(3,2)$	$(3,3)$
$(3,4)$			
$(4,0)$	$(4,1)$	$(4,2)$	$(4,3)$

(d)

1	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$
0	1	$(1,2)$	$(1,3)$	$(1,4)$
0	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$
0	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$
0	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$

(h)

Pipelined Gaussian elimination on a 5×5 matrix partitioned withone row per process.

Parallel Gaussian Elimination: Pipelined Execution

- The total number of steps in the entire pipelined procedure is $\Theta(n)$.
- In any step, either $O(n)$ elements are communicated between directly-connected processes, or a division step is performed on $O(n)$ elements of a row, or an elimination step is performed on $\boldsymbol{O}(\boldsymbol{n})$ elements of a row.
- The parallel time is therefore $O\left(n^{2}\right)$.
- This is cost optimal.

Parallel Gaussian Elimination: Pipelined Execution

The communication in the Gaussian elimination iteration corresponding to $k=3$ for an 8×8 matrix distributed among four processes using block 1-D partitioning.

Parallel Gaussian Elimination: Block 1D with $p<n$

- The above algorithm can be easily adapted to the case when $p<n$.
- In the k th iteration, a processor with all rows belonging to the active part of the matrix performs $(n-k-1) n / p$ multiplications and subtractions.
- In the pipelined version, for $n>p$, computation dominates communication.
- The parallel time is given by: $2(n / p) \Sigma_{k=0}^{n-1}(n-k-1)$ or approximately, n^{3} / p.
- While the algorithm is cost optimal, the cost of the parallel algorithm is higher than the sequential run time by a factor of $3 / 2$.

