ukhwNRE

15.
16.
17.
18.
19.
20.
21.
22.

23.
24.
25.
26.
27.

28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

39.
40.
41.
42.
43.
44.
45.
46.

“The Elements of MATLAB Style”
- by Richard K. Johnson (Cambridge, 2011)

GENERAL PRINCIPLES

Avoid Causing Confusion

Avoid Throw-Away Code

Help the Reader

Maintain the Style of the Original

Document Style Deviations

FORMATTING

Layout

Keep Content Within the First 80 Columns

Split Long Code Lines at Graceful Points

Indent Statement Groups 3-4 Spaces

Indent Consistently with the MATLAB Editor

Do Not Use Hard Tabs

Put Only One Executable Statement in a Line of Code
Define Each Variable on a Separate Line

Use Argument Alignment if it Enhances Readability
Avoid Heavily Nested Code

White Space

Include White Space

Surround =, &, |, &&, and | | by Spaces

Use White Space Around Operators When in Enhances Readability
Follow Commas with a Space When it Enhances Readability
Insert Spaces for Multiple Commands in One Line

Do Not Put Spaces Just Inside Parentheses

Do Not Follow Function Names With a Space

Do Not Space Out Semicolon at the End of Lines
Code Blocks

Break Code of Any Appreciable Length into Block

Separate Logical Groups of Statements Within a Block by One Blank Line

Separate Major Code Blocks by More Than One Blank Line
Separate Subfunctions by More Than One Blank Line

Use Editor Cells

NAMING

General

Use Meaningful Names

Use Familiar Names

Use Consistent Names

Avoid Excessively Long Names

Avoid Cryptic Abbreviations

Tweak Familiar Acronyms as Words

Avoid Names that Differ Only by Capitalization

Avoid Names that Differ Only by One Letter

Avoid Names with Hard-to-Read Character Sequences
Make Names Pronounceable When You Can

Write Names in English

Variables and Parameters

Avoid Ambiguous or Vague Names

Name According to Meaning, Not Type

Use Lowercase for Simple Variable Names

Use lowerCamelCase for Compound Variable Names

Use Meaningful Names for Variables with a Large Scope
Limit Use of Very Short Names to Variables with a Small Scope
Be Consistent With i and j

Use the Prefix n for Variables Representing the Number of Entities

47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.

59.
60.
61.
62.
63.

64.
65.
66.
67.

68.
69.
70.
71.
72.
73.
74.
75.
76.
77.

78.
79.
80.
81.
82.
83.
84.

85.
86.
87.

88.
89.
90.
91.
92.
93.
94.
95.

96.
97.

Follow a Consistent Convention on Pluralization
Use the Prefix this for the Current Variable

Use the Suffix No or Prefix i for Variables Representing a Single Entity Number

Prefix Iterator Variables with i, j, k, etc.

Embed is, has, etc. in Boolean Variable Names

Avoid Negated Boolean Variable Names

Use the Expected Logical Names and Values

Avoid Using a Keyword or Special Value Name for a Variable Name
Avoid Hungarian Notation

Avoid Variable Names that Shadow Functions

Avoid Reusing a Variable for Different Contents

Consider a Unit Suffix for Names of Dimensioned Quantities
Constants

Use All Uppercase for Constant Names with Local Scope

Use Function Names for Constants Defined by Functions

Use Meaningful Names for Constants

Define Related Constants Based on the Relation

Consider Using a Category Prefix

Structures and Cell Arrays

Use UpperCamelCase for Structure Names

Do Not Include the Name of the Structure in a Fieldname

Use Fieldnames that Follow the Naming Convention for Variables
Name Cell Arrays Following the Style for Variables

Functions

Give Functions Meaningful Names

Name Functions for What They Do

Follow a Case Convention for Function Names

Reserve the Prefixes get/set for Accessing an Object Property
Use Expected Verbs in Expected Ways

Use the Prefix i s for Boolean Functions

Use Complement Prefixes in Compound Names for Complement Operations
Be Selective in the Use of Numbers at the Ends of Names

Use Numbers Inside Function Names Only for Common Conventions
Avoid Unintentional Shadowing

Classes

Use Nouns When Naming Classes

Use UpperCamelCase for MATLAB Class and Object Names

Use UpperCamelCase for Exception Names

Name Properties Like Structure Fields

Name Methods Line Functions

Name Accessor Methods after their Properties

Use a Single Lowercase Word as the Root Name of a Package
Data Files and Directories

Use Directory and Filenames that are Easy to Work with

Use Sortable Numbering in Data Filenames

Use ISO Data Format

DOCUMENTATION

General

Provide Well-Written Code

Document Each Module Before or During Its Implementation
Document the Interface for Those Who Will Use It

Document the Design and Implementation for Those Who Will Maintain It
Consider Documenting Some Changes Header Comments
Generate HTML Reference Pages

Integrate the Reference Pages with the Help Browser

Consider Providing PDF Documentation

Comments

Make Comments Useful

Be Sure that Comments Agree with the Code

98.
99.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.

115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.

128.
129.

130.
131.

132.
133.
134.

135.
136.
137.
138.
139.

140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.

Revise Comments to be Correct When the Code is Changed

Put Restrictions in the Code, Not the Comments

Clean up Commented Out Code before Release

Make Comments Easy to Read

Write Comments for the Publish Feature

Minimize Use of End-Line Comments

Consider End-of-Loop Comments

Consider Documenting Important Variables Near the Start of the File
Consider Documenting Constant Assignments Where They are Defined
Use Voice and Person Appropriately

Use Present Tense to Describe Code

Use Complete Sentences in Descriptive Blocks

You Can Use Incomplete Sentences in One-Liners

Use Short Words

Eliminate Cute Comments

Minimize the Use of ASCII Art

Write All Comments in English

Header Comments

Format the Header Comments for Easy Publishing as Documentation
Put the Header Comments in the Right Place

Use Title Markup for the Function Name

Document the Function Interface in the Syntax Section

Use the Actual Function Name Case in Comments

Describe the Function Arguments in the Description Section
Describe Any Function Side Effects

Describe Any Custom Exception that May be Generated

Include Examples in the Header Comments

Include See also in the Header Comments

Avoid Clutter in the Reference Page

Format Header Comments of classdef Files for the Help Browser
Clarify Subclass Methods

Block Comments

Indent Block Comments to Match Code

Place a Blank Line or Cell Break before a Block Comment
Minimize y within constraints on x

Do Not Use Comment Blocks for Block Comments

Use Comment Block Syntax to Temporarily Bypass a Block of Code
Interspersed or Inline Comments

Indent Comments with the Code Block

Do Not Follow a Single-Line Comment with a Blank Line

Resolve TODO/FIXME Comments

PROGRAMMING

General

Avoid Cryptic Code

Avoid Off-By-One Mistakes

Attend to NaN Results

Consider Using isfinite

Use Programming Patterns or Idioms

Variables and Constants

Do Not Reuse Variable Names Unless Required by Memory Limitation
Beware of Mistyping Variable Names

Minimize the Use of Literal Numbers in Statements

Write Floating Point Values with a Digit Before the Decimal Point
Avoid Showing Excessive Decimal Places

Avoid Mixing Units within a Program

Use Caution with Floating Point Comparison

Limit Boolean Variable Values to True or False

Do Not Assume Array Size

Use Appropriate Numerical Class Conversions

Minimize the Use of Global Variables

151.
152.
153.

154.
155.
156.
157.
158.
159.
160.

161.
162.
163.
164.
165.

166.
167.
168.

169.
170.
171.
172.
173.
174.

175.
176.

177.
178.
179.
180.
181.
182.
183.
184.

185.
186.
187.
188.
1809.
190.
191.
192.
193.
194.
195.
196.
197.
198.

199.
200.

Minimize the Use of Global Constants

Define Local Constants Only Once

Do Not Declare Unrelated Variables in a Single Line
Character Strings

Consider Using strcmpi

Use lower or upper When You Cannot Use strcmpi
Use isempty

Use fullfile

Compute with Numbers for Speed

Consider Using Character Arrays for Speed

Consider Using unique

Structures

Use Structures for Associated Data

Use Structures for Metadata

Organize a Structure Based on How It Will be Accessed
Put Structure Field in a Helpful Order

Be Careful with Fieldnames

Cell Arrays

Consider Using Cell Arrays for String

Look Out for Cells within Cells

Consider Using Cell Arrays for Ragged Arrays
Expressions

Write Short Expressions

Put Numbers Before the Multiplication Operator

Make the Denominator Clear

Use Parentheses

Use a Clear Form for Relational Expressions

Use && or | | by Default for Scalar Operands
Statements

Write Short Statements

Avoid Use of eval When Possible

Loops

Initialize Loop Variables Immediately Before the Loop
Initialize Using nan or false Rather Than zeros

Do Not Change the Loop Index Variable Inside a Loop
Minimize the Use of break in Loops

Minimize the Use of continue in Loops

Avoid Unnecessary Computation within Loops

Be Careful of Infinite while Loops

Be Careful of Count Errors in while Loops
Conditionals

Avoid Complicated Conditional Expressions

In General, Include an else Statement with if

Put the Normal Branch in the i f Part

Avoid Unnecessary i f Constructs

Use a Practical Order for el sei f Conditions

Avoid Unnecessary elsei f Blocks

Avoid Unnecessary Levels of Nesting in Control Structures
Try to Simplify Nested 1 £ Constructs

Avoid the Conditional Expression if 0

Include otherwise with switch Statements
Consider Using a Cell Array to Simplify a switch Construct
Use if When the Condition is Most Clearly Written as an Expression
Use switch When the Condition is Most Clearly Written as a Value
When Either if or switch Can Work, Use the More Readable One
Logical Functions

Use 1logical to Cast Variables

Use true or false Functions and Values

201.

202.
203.

204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.

234.
235.
236.
237.
238.
239.
240.

241.
242,
243,
244,
245,
246.
247.
248.
249.
250.
251.
252.
253.
254,
255.

In General Use i sequal Rather Than ==
Vectorization

Be Thoughtful with Vectorization

Use repmat

Functions

Modularize

Write Code as Functions When Possible

Write Simple Functions

Design for Loose Coupling

Use Subfunctions Appropriately

Hide Implementation Details

Write for High Cohesion

Use Existing Functions

Eliminate Overlapping Functions

Provide Some Generality in Functions

Write a Function at One Level of Abstraction

Write Convenience Functions

Make Interaction Clear

Name All Input Arguments

Write Boolean Functions to Return true or false
Make Logical Output and Function Name Consistent
Minimize Input Flag Arguments

Write Arguments in Useful Order

Use Lazy Evaluation

Make Input and Output Arrays Consistent

Use a Structure to Replace a Long List of Function Arguments
Consider an Options Structure

Consider varargin and varargout

Use Parameter-Value Pairs for Optional, Unordered Input Arguments
In General, Use Caller Variable Names Consistent with the Function Argument Names
Define Imports Where They are Easy to Find

Use Anonymous Functions Rather Than Inline Functions
Use Function Handles

Avoid Including Hidden Side Effects

Refactor

Input and Output

Write Input Functions

Provide Some Input Validity Checking

Expect NaN Values in Data

Use feof for Reading Files

Make Output Modules

Format Output for Easy Use

Provide for Automation

Classes and Objects

Keep Classes Simple

Avoid Classes with Ambiguous Overlap

Construct Valid Objects

Follow Constructor Conventions

Define Small, Simple Methods

Write Methods That You Can Unit Test

Do Not Write a Method That Can Produce an Invalid Property
Avoid Incomplete Public Methods

Try to Make Properties Private

Do Not Expose Properties with Behavior

Avoid Writing Methods with Many Input Arguments
Validate Method Argument Values

Check for a Property’s Existence Before Using It
Refactor Repeated Code Into Methods

Overload Standard Functions When Possible

256. Avoid Unconventional Usage of Overload Names
257. Do not Overload && or | |
258. Do not Get Carried Away with Inheritance
259. Place Method Functions in Folders Consistently
260. Use Java Syntax for Java Methods
Exceptions, Errors, and Warnings
261. Use Appropriate Error Handling
262. Prepare for Errors
263. Make Error Messages Informative
264. Use Message IDs with Errors and Warnings
265. Use Exceptions
266. Support Error Returns
267. Use Appropriate Assertions
Output Style
268. LearntoUse strintf
269. Learn to Use Tex
Tests
270. Write at Least One Test for Every Function or Method
271. Write Small Tests
272. Write Uncoupled Tests
273. Write Tests with Boolean Outputs
274. Test for Expected Exceptions
275. Write Tests You Can Automate
276. Use Related Names in the Function and the Test Code
277. Identify Test Files by Name
278. Develop Test Patterns

279. Consider Tests for External Software
Data Files

280. Make Use of mat Files

281. Follow Database Conventions

282. Follow the MATLAB Convention for Data Array Orientation
FILES AND ORGANIZATION
Toolboxes

284. Organize General-Purpose m-Files in Toolboxes

285. Put Test Files in a Separate Directory

286. Consider Writing Demo Files

287. Use a Consistent Toolbox Folder Organization

288. Provide for Integration with MATLAB

289. Provide a Reference Page for Every Public Function
290. Integrate the Reference Pages with the Help Browser

291. Do not Make Your Toolbox a Subfolder of the MATLAB Folder
Project Files

292. Organize Your Project-Specific Files by Project Directory

293. Organize Your Data Directory for Ease of Access
DEVELOPMENT
Design

294, Expect Change

295. Include Appropriate Flexibility

296. Use the Right Algorithm

297. Program by Contract

298. Write for Automation

299. Make Associated Data Easy to Use

300. Recompute When Data Changes

301. Leave Code Optimization for Last or Never

302. Consider Coding Standards
Development Practices

303. Develop in Small Steps

304. Develop in the Editor

305. Use Version Control

306. Run Tests Often

307.

308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.

Run all Tests Before Release
MATLAB IDE Tools

Try the MATLAB Editor

Use Smart Indent

Use Find and Replace

Pay Attention to M-Lint

Use Consistent Preference Settings
Use the Debugger Effectively

Use The TODO/FIXME Report

Use the Profiler

Use the Dependency Report
Publish During Development

Find a Desktop Layout That Works for You

