

# Auctions

<u>Michal Jakob</u> <u>Artificial Intelligence Center</u>, Dept. of Computer Science and Engineering, FEE, Czech Technical University

CGT Autumn 2023- Lecture 8

# Introduction to Auctions

OPEN INFORMATICS / COMPUTATIONAL GAME THEORY: AUCTIONS

# Auctions: Traditional

Auctions used in Babylon as early as 500 B.C.

**Stage 0: No automation** 



## **Tuna Fish Auction**



**OPEN INFORMATICS / COMPUTATIONAL GAME THEORY: AUCTIONS** 

# **Property Auction**



OPEN INFORMATICS / COMPUTATIONAL GAME THEORY: AUCTIONS

## Auctions: Partial Automation

 Shop by category ~
 Q. Search for anything
 All Categories

Back to search results | Listed in category: Cell Phones & Accessories > Cell Phones & Smartphones > See more Samsung Galaxy S22 Ultra SM-S908U - 512GB - Gr...





### 512GB Samsung S22 Ultra SM-S908U1 (Factory Unlocked) Green

 $\star \star \star \star \star$  Be the first to <u>write a review</u>.

Condition: Used

Grown massively with the Web/Internet

 $\rightarrow$  Frictionless commerce: feasible to auction things that weren't previously profitable

#### Stage 1: Computers manage auctions / run auction protocols



| m | ore |          |  |
|---|-----|----------|--|
|   |     | 54       |  |
|   |     | Watchers |  |



#### Note: This listing is restricted to pre-approved bidders or buyers only.

Email the seller to be placed on the pre-approved bidder/buyer list.

| the last       | Current bid: | US \$7,600.00                                                                            | Seller information                                                                                                                              |
|----------------|--------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Time left:   | Place Bid ><br><b>3 days 23 hours</b><br>7-day listing<br>Ends Nov-22-04<br>17:22:07 PST | dltdesigns2002 (47 ☆)<br>Feedback Score: 47<br>Positive Feedback: 96.1%<br>Member since Jul-03-02 in United<br>States<br>Read feedback comments |
| Larger Picture | Start time:  | Nov-15-<br>04 17:22:07 PST                                                               | Add to Favorite Sellers<br>Ask seller a guestion                                                                                                |
|                | History:     | <u>4 bids</u> (US<br>\$3,000.00 starting<br>bid)                                         | View seller's other items<br>Safe Buying Tips                                                                                                   |
|                | High bidder: | User ID kept                                                                             | Financing available NEWL                                                                                                                        |
|                |              | private                                                                                  | No payments until April and no                                                                                                                  |

PEN INFORMATICS / COMPUTATIONAL GAME THEORY: AUCTIONS

interest if naid by April

### Silent Auction



OPEN INFORMATICS / COMPUTATIONAL GAME THEORY: AUCTIONS

## Auctions: (Almost) Full automation



Stage 2: Computers also automate the decision making of bidders

#### Concerns:

the most relevant adds are shown (→ user's are reasonably happy)
 auctioner's profit is maximized (over long time)

Pizza - Téstoviny - Saláty - Rozvoz Italských jídel

Praha 2, 3, 8\* -

Ad · https://www.pizzaexpresspraha.cz/ •

Pizza express Praha - Skvělá do posledního kousku Máte chuť na skvělou **pizzu** od okraje k okraji? Děláme jí podle tradiční Italské receptury.

## What is an Auction?

An **auction** is a protocol that allows **agents** (=bidders) to indicate their **interests** in one or more **resources** (=items or goods) and that uses these indications of interest to determine both an **allocation** of the resources and a set of **payments** by the agents. [Shoham & Leyton-Brown 2009]

Auctions use employ cardinal preferences to express interest.

Auctions are mechanisms with money.

Auctions can be viewed as (Baysian) games of a specific structure.

Market-based price setting: for objects of unknown value, the value is dynamically assessed by the market!

Flexible: any object type can be allocated

#### Can be **automated**

- use of simple rules reduces complexity of negotiations
- well-suited for computer implementation

Revenue-maximising and efficient allocations are achievable

### **Auctions Rules**

Auctions are structured negotiations governed by auction rules  $(\rightarrow rules of the game)$ 

#### **Bidding** rules

How **offers (bids)** are made:

- by whom
- when
- what their content is

#### **Clearing** rules

Who gets which goods (allocation) and what money changes hands (payment).

#### Information rules

What information about the state of the negotiation is *revealed* to whom and when.

# Lots of Applications

Industrial procurement

**Transport and logistics** 

Energy markets

Cloud and grid computing

Internet auctions

(Electromagnetic spectrum allocation)

... and counting!

# Types of Auctions



attributes (A= $a_1, a_2, a_3$ )

# Single-Item Auctions

OPEN INFORMATICS / COMPUTATIONAL GAME THEORY: AUCTIONS

### **Basic Auction Mechanisms**

English

Japanese

Dutch

**First-Price** 

Second-Price

(All pay auction)

# **English Auction**

- Auctioneer starts the bidding (at some reservation price)
- 2. Bidders then shout out ascending prices (with minimum increments)
- 3. Once bidders stop shouting, the *high bidder* gets the good at that price



### Japanese Auctions

Same as an English auction except that the auctioneer calls out the prices

- 1. All bidders start out standing
- 2. When the price reaches a level that a bidder is not willing to pay, that bidder **sits down;** once a bidder sits down, they **can't get back up.**
- 3. The **last** person **standing** gets the good



## **Dutch Auction**

- 1. The auctioneer starts a clock at some high value; it descends
- At some point, a bidder shouts "mine!" and gets the good at the price shown on the clock

Good when items need to be sold **quickly** (similar to Japanese)

**No information** is revealed during auction



# First-, Second-Price Sealed Bid Auctions



# 2<sup>nd</sup> price Sealed bids accepted!

### First-price sealed bid auction

- bidders write down bids on pieces of paper
- auctioneer awards the good to the bidder with the highest bid
- that bidder pays the amount of his bid

#### Second-price sealed bid auction (Vickerey auction)

- bidders write down bids on pieces of paper
- auctioneer awards the good to the bidder with the highest bid
- that bidder pays the amount bid by the second-highest bidder

## Intuitive Comparison

|                    | $\mathbf{English}$                      | $\mathbf{Dutch}$                  | Japanese                  | $1^{	ext{st}}	ext{-Price}$ | $2^{	ext{nd}}	ext{-Price}$ |
|--------------------|-----------------------------------------|-----------------------------------|---------------------------|----------------------------|----------------------------|
| Duration           | #bidders, increment                     | starting<br>price, clock<br>speed | #bidders, increment       | fixed                      | fixed                      |
| Info<br>Revealed   | 2 <sup>nd</sup> -highest<br>val: bounds | winner's<br>bid                   | all val's but<br>winner's | none                       | none                       |
| Jump bids          | on others<br>yes                        | n/a                               | no                        | n/a                        | n/a                        |
| Price<br>Discovery | yes                                     | no                                | yes                       | no                         | no                         |

# Analysing Auctions

OPEN INFORMATICS / COMPUTATIONAL GAME THEORY: AUCTIONS



# Are there fundamental similarities / differences between mechanisms described?

## **Two Problems**

# Analysis of auction mechanisms

- determine the properties of a given auction mechanism
- methodology: treat auctions as (extended-form) *Bayesian games* and analyse players' (i.e. bidders') strategies

# **Design** of auction mechanisms

- design the auction mechanism (i.e. the game for the bidders) with the desirable properties
- methodology: apply mechanism design techniques





# **Individual rationality**: the agent never bids higher than its valuation.

<sup>1</sup> not true for the all pay auction

**Risk neutrality:** the payoff is a *linear function* of the difference between the item's valuation and the price paid

**Risk seeking (**also **risk loving)**: the payoff is a *convex* function of the difference (aggressively seeking high gains is prioritized)

**Risk aversion**: the payoff is a *concave* function of the difference (conservatively ensuring at least some gains is prioritized)

## **Risk Attitudes**



# Valuation Models

Independent private value (IPV)

An agent A's valuation of the good is **independent from other agent's** valuation of the good (e.g. a taxi ride to the airport). Valuations of the good are **related between agents** (typically the more other agents are prepared to pay, the more the agent A prepared to pay – e.g. purchase of items for later resale).

**Correlated value** 

### **Bayesian Game**

#### **Definition (Bayesian Game)**

A Bayesian game is a tuple  $\langle N, A, \Theta, p, u \rangle$  where

- *N* is the set of **players**
- $\Theta = \Theta_1 \times \Theta_2 \times \cdots \times \Theta_n$ ,  $\Theta_i$  is the **type space** of player *i*
- $A = A_1 \times A_2 \times \cdots \times A_n$  where  $A_i$  is the **set of actions** for player i
- $p: \Theta \mapsto [0,1]$  is a common prior over types
- $u = (u_1, ..., u_n)$ , where  $u_i: A \times \Theta \mapsto \mathbb{R}$  is the **utility function** of player *i*

We assume that all of the above is **common knowledge** among the players, but the type of an agent **is private** (i.e. only known by that agent).

# Relation to (sealed bid) Auctions

Sealed bid auction under IPV is a Bayesian game in which

- Player i's actions correspond to its bids  $\hat{v}_i$
- player types  $\Theta_i$  correspond to players' **private valuations**  $v_i$  over the auctioned item(s)
- the payoff of player i corresponds to: i's valuation of the item v<sub>i</sub> price paid (if winner); zero otherwise.

Similar analogies for more complicated auction mechanisms.



# Are there fundamental similarities / differences between mechanisms described?

Bidding in Second-Price Sealed Bid Auction

### Bidding in Second Price Sealed Bid Auction

# How should agents bid in the second-price sealed bid auctions?

### Bidding in Second Price Sealed Bid Auction

#### Theorem

**Truth-telling** is a **dominant strategy** in a second-price sealed bid auction (assuming independent private values – IPV).

**Proof:** Assume that the other bidders bid in some arbitrary way. We must show that i's best response is always to bid truthfully. We'll break the proof into two cases:

- Bidding honestly, i would win the auction
- Bidding honestly, i would lose the auction

# Second-Price Sealed Bid Proof

#### Bidding honestly, *i* is the winner



If *i* bids higher, he will still win and still pay the same amount

If *i* bids lower, he will either still win and still pay the same amount. . .

... or lose and get the payoff of zero.

➔ There is a disadvantage bidding lower and no advantage bidding higher

# Second-Price Sealed Bid Proof

#### Bidding honestly, *i* is not the winner



If *i* bids lower, he will still lose and still pay nothing

If *i* bids higher, he will either still lose and still pay nothing...

... or win and pay more than his valuation ( $\Rightarrow$  negative payoff).

→ There is a disadvantage bidding higher and no advantage bidding lower

### Second-Price Sealed Bid Proof (alternative)

 $u(b_i, B_{-i}) \dots i$ 's bidder payoff when bidding  $b_i$  and when the highest of the other bidders (except i) is  $B_{-i}$ .



# Second-Price Sealed Bid

Advantages:

- Truthful bidding is dominant strategy
- No incentive for counter-speculation
- Computational efficiency

#### Disadvantages:

- Lying auctioneer
- Bidder collusion self-enforcing
- Reveals true valuations
- Not revenue maximizing

Bidding in First-Price Sealed Bid Auctions

# Dutch and First-price Sealed Bid

**Strategically equivalent**: an agent bids without knowing about the other agents' bids (i.e. difference are technical implementation)

 a bidder must decide on the amount he's willing to pay, conditional on having placed the highest bid

Differences

- First-price auctions can be held asynchronously
- Dutch auctions are fast, and require minimal communication
  - only one bit needs to be transferred from the bidders to the auctioneer

# Bidding in Dutch / First Price Sealed Bid

How should bidders bid in these auctions?

Note: bidding true valuation results in zero surplus

There's a **trade-off** between **probability of winning** vs. **amount paid** upon winning (and thus the winner's surplus)

#### → Bidders don't have a **dominant strategy** anymore.

Individually optimal strategy depends on the assumptions about others' valuations.

We have a Bayesian game  $\rightarrow$  **Bayes-Nash equilibrium**.

# Equilibrium Strategy

Assume a **first-price auction** with **two risk-neutral bidders** whose valuations are drawn independently and **uniformly** at random from the interval [0, 1] - what is the equilibrium strategy?

$$\rightarrow \left(\frac{1}{2}v_1, \frac{1}{2}v_2\right)$$
 is the Bayes-Nash equilibrium strategy profile

## Interim expected utility

Given a Bayesian game  $(N, A, \Theta, p, u)$  with *finite* sets of players, actions, and types, player *i*'s **interim** expected utility with respect to type  $\theta_i$  and a mixed strategy profile s is

$$EU_{i}(s|\theta_{i}) = \sum_{\theta_{-i}\in\Theta_{-i}} p(\theta_{-i}|\theta_{i}) \sum_{a\in A} \left( \prod_{j\in N} s_{j}(a_{j}|\theta_{j}) \right) u_{i}(a,\theta_{i},\theta_{-i})$$

### Proof

Assume that bidder 2 bids  $\frac{1}{2}v_2$ , and that bidder 1 bids  $s_1$ . The following outcomes are possible\*

- 1. Bidder 1 wins when  $\frac{1}{2}v_2 < s_1$ , gaining payoff  $u = v_1 s_1$ .
- 2. Bidder 1 loses when  $\frac{1}{2}v_2 > s_1$  and then gets payoff u = 0.

$$EU_{1}(s|v_{1}) = \int_{0}^{1} u(s)dv_{2} =$$
  
=  $\int_{0}^{2s_{1}} (v_{1} - s_{1})dv_{2} + \int_{2s_{1}}^{1} (0)dv_{2} =$   
=  $(v_{1} - s_{1})v_{2}|_{0}^{2s_{1}} = 2v_{1}s_{1} - 2s_{1}^{2}$ 

\* we can ignore the case where the agents have the same valuation, because this occurs with probability zero).

### **Proof Continued**

We can determine bidder 1's best response to bidder 2' strategy by taking the derivative and setting it to zero:

$$\frac{\partial}{\partial s_1} (2v_1 s_1 - 2s_1^2) = 0$$
$$2v_1 - 4s_1 = 0$$
$$s_1 = \frac{1}{2}v_1$$

Thus, when player 2 is bidding half her valuation, player 1's best reply is to **bid half his valuation** (and analogously for player 2, given the symmetry of the game).

# Equilibrium in Dutch / First Price Sealed Bid Auctions

#### Theorem

In a first-price sealed bid auction with *n* risk-neutral agents whose valuations  $v_1, v_2, ..., v_n$  are independently drawn from a uniform distribution on the same bounded interval of the real numbers, the unique symmetric equilibrium is given by the strategy profile  $\left(\frac{n-1}{n}v_1,...,\frac{n-1}{n}v_n\right)$ .

The more players, **the harder to win** and the lower the expected surplus.

⇒ Dutch / FPSB auctions **not incentive compatible,** i.e., there are incentives to **counter-speculate**.

### Equilibrium in Dutch / First Price Sealed Bid Auctions

For non-uniform valuation distributions: Each bidder should bid **the expectation of the second-highest valuation**, conditioned on the assumption that his own valuation is the highest.

# Equilibrium in more general cases?

Note we only **verified** the equilibrium.

What about more general assumptions?

 $\rightarrow$  We need to guess the equilibrium and it gets more complicated as we relax the assumptions about the distributions of valuations (non-uniformity, no symmetry etc.).

Even determining a Nash equilibrium exists gets difficult.

This because auctions are **non-continuous games**: even a small variation in the bid amount can lead to not-winning and thus large changes in the payoff.

Bidding in English and Japanese Auctions

# English and Japanese Auctions Analysis

A much more complicated strategy space

- extensive-form game
- bidders are able to condition their bids on information revealed by others
- in the case of English auctions, the ability to place jump bids

Intuitively, though, the **revealed information** does not make any **difference** in the **independent-private value** (IPV) setting.

# English and Japanese Auctions Analysis

#### Theorem

Under the IPV model, it is a **dominant strategy** for bidders to bid **up to** (and not beyond) their valuations in both Japanese and English auctions.

In correlated-value auctions, it can be worthwhile to counterspeculate.

# Seller's Revenue

OPEN INFORMATICS / COMPUTATIONAL GAME THEORY: AUCTIONS

Which auction should the seller choose?

Expected Seller's Revenue (First Price Sealed Bid Auction)

$$E\left(\max\left\{\frac{V_1}{2}, \frac{V_2}{2}\right\}\right) = \frac{1}{2}E(\max\{V_1, V_2\}) = ?$$

Let  $Z = \max\{V_1, V_2\}$ 

$$F_Z(z) = P(Z \le z) = P(\max\{V_1, V_2\} \le z) = P(V_1 \le z) \cdot P(V_2 \le z) = z^2$$

$$\Rightarrow f_Z(z) = \begin{cases} 2z & \text{if } 0 \le z \le 1\\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{2}E(Z) = \frac{1}{2} \int_0^1 z f_z(z) dz = \int_0^1 z^2 dz = \frac{1}{3} z^3 \Big|_0^1 = \frac{1}{3}$$

### Expected Seller's Revenue

 $E(\min\{V_1, V_2\}) = ?$ 

Note:

$$\min\{V_1, V_2\} + \max\{V_1, V_2\} = V_1 + V_2$$

Hence:

$$E(\min\{V_1, V_2\}) + E(\max\{V_1, V_2\}) = E(V_1) + E(V_2) = \frac{1}{2} + \frac{1}{2} = 1$$

We already calculated (previous slide): E (max{ $V_1, V_2$ }) = E(Z) =  $\frac{2}{3}$ 

Hence:

$$\operatorname{E}\left(\min\{V_1, V_2\}\right) = \frac{1}{3}$$

### Seller's Revenue

#### **Corrolary (Expected Seller's Revenue)**

In the symmetric case with two risk-neutral bidders and IPV, the **expected seller's revenue** from the first-price and second-price sealed bid auction is **the same**.

Somewhat surprising and far from self-evident.

### Revenue Equivalence

In fact, holds in more general.

#### **Theorem (Revenue Equivalence)**

Assume that each of *n* risk-neutral agents has an independent private valuation for a single good at auction, drawn from a common cumulative distribution F(v) that is strictly increasing and atomless on  $[v, \overline{v}]$ . Then any auction mechanism in which

the good will be allocated to the agent with the highest valuation; and

2. any agent with valuation  $\underline{v}$  has an expected utility of zero yields the **same expected revenue**, and hence results in any bidder with valuation v making the **same expected payment**.

### Revenue Equivalence

Informally: As long as two mechanism **allocate in the same way** and they **do not charge anything** to the agent with the lowest valuation, the **rest of payment functions** is the same.

You cannot get **extra money** from bidder without changing the allocation function or the payment to the lowest-valued bidder.

In fact, the revenue equivalence holds beyond IPV and single good.

Assuming bidders are risk neutral and have independent private valuations, **all the auctions** we have spoken about so far—English, Japanese, Dutch, and all sealed bid auction protocols—are **revenue equivalent**.

# Applying Revenue Equivallence

Expected value of the  $k^{th}$ -largest of n IID draws\* from  $[0, v_{max}]$ :

$$\frac{n+1-k}{n+1}v_{max}$$

Expected seller's revenue in the second-price auction (with IID valuations):

$$\frac{n-1}{n+1}v_{max}$$

\* termed k-th order statistics

# Applying Revenue Equivallence

Both second-price and first-price auction **satisfies** the conditions of the revenue equivalence theorem.

Thus, a bidder in the **first-price auction** must **bid his expected payment** conditional on being the **winner of a second price auction**.

If  $v_i$  is the high value, there are n - 1 other values drawn from the uniform distribution on  $[0, v_i]$ . The expected value of the second-highest bid is therefore the first-order statistics of n - 1draws from  $[0, v_i]$ , which is

$$\frac{n-1}{n}v_{max}$$

We still need to verify the above is an equilibrium (the revenue equivalence theorem does not state that every revenueequivalent strategy profile is an equilibrium)

## **Auctions Summary**

# Auctions are mechanisms for allocating scarce resource among self-interested agent

Mechanism-design and game-theoretic perspective

Many auction mechanisms: English, Dutch, Japanese, First-price sealed bid, Second-price sealed bid

**Desirable** properties: truthfulness, efficiency, optimality, ...

Rapidly expanding list of **applications** worth billions of dollars

Reading:

[Shoham] – Chapter 11