
Solving Imperfect Information EFGs

Ondřej Kubíček

Artificial Intelligence Center
Faculty of Electrical Engineering
Czech Technical University in Prague October 24, 2023



Problems with solving
imperfect information games

X1

y1 y2

I1

i1

1 −1 −1 2

H T

h t h t

• First player in I1 chooses between H and T based on the
strategy that the player 2 plays.

• Second player in i1 chooses between h and t based on
the probability if it is in y1 or y2, that directly corresponds
to the strategy of player 1.

• Backward induction will not work because of this
interconnected dependency.

• Generally even in perfect recall imperfect information
games, the policy depends on both policy in previous and
subsequent parts of the game tree

FEE CTU Solving Imperfect Information EFGs 2/23



Example

• Induced normal-form game can include the same leaf multiple times.
• Playing some actions may invalidate different actions in future.

X1

y1 y2

Y1 Y2 Z1 Z2

I1

i1 i2

I2 I3

3 −2 1 3 2 1 0 3

A B

g h i j

C D C D E F E F

gi gj hi hj
ACE 3 3 1 1
ACF 3 3 1 1
ADE -2 -2 3 3
ADF -2 -2 3 3
BCE 2 0 2 0
BCF 1 3 1 3
BDE 2 0 2 0
BDF 1 3 1 3

FEE CTU Solving Imperfect Information EFGs 3/23



Sequences

• Ordered list of all the actions that may be played in a single playthrough of the
game is called Sequence.

• We denote all possible sequences of player i as Σi.

X1

y1 y2

Y1 Y2 Z1 Z2

I1

i1 i2

I2 I3

3 −2 1 3 2 1 0 3

A B

g h i j

C D C D E F E F

Σ1 Σ2

∅ ∅
A g
B h
AC i
AD j
BE
BF

FEE CTU Solving Imperfect Information EFGs 4/23



Realization plans

• Realization plan ri(σi) is a probability that σi will be played, assuming that the
other player plays only actions that allow σi to be executed

• Let us assume that σi leads to the infoset Ii. Behavioral strategy π(Ii,a) of
playing action a in this infoset is computed as

π(Ii,a) =

{
r(σia)
r(σi)

if r(σi) > 0

0 otherwise

• σia represents a extensions of sequence σi with action a.

FEE CTU Solving Imperfect Information EFGs 5/23



Example

X1

y1 y2

Y1 Y2 Z1 Z2

I1

i1 i2

I2 I3

3 −2 1 3 2 1 0 3

A B

g h i j

C D C D E F E F

Σ1 Σ2

∅ ∅
A g
B h
AC i
AD j
BE
BF

• r1(∅) = 1

• r1(A) + r1(B) = r1(∅)
• r1(AC) + r1(AD) = r1(A)
• r1(BE) + r1(BF) = r1(B)

• r2(∅) = 1

• r2(g) + r2(h) = r2(∅)
• r2(i) + r2(j) = r2(∅)

FEE CTU Solving Imperfect Information EFGs 6/23



Propagating chance node

X1 x1

y1 y2 Y1

I1 i1

i2 I2

15 −10 5 20 17 27 0 10

0.2 0.8

A B e f

g h g h 0.7 0.3 C D

• Chance nodes have fixed
probabilities in the game

• These probabilities can be
propagated from the chance node to
the terminal utilities

• Chance nodes that do not reveal any
information until the end of the game
can be prunned away completely

FEE CTU Solving Imperfect Information EFGs 7/23



Example

X1 x1

y1 y2 Y1

I1 i1

i2 I2

15 −10 5 20 17 27 0 10

0.2 0.8

A B e f

g h g h 0.7 0.3 C D

X1 x1

y1 y2 Y1

I1 i1

i2 I2

3 −2 1 4

16

0 8

1.0 1.0

A B e f

g h g h C D

FEE CTU Solving Imperfect Information EFGs 8/23



Complete removal of chance node

X1 X2

y1 y2 y3 y4

I1

i2

7 8 −3 4 −7 4 −1 0

0.5 0.5

A B A B

c d c d c d c d

X1

Y1 Y2

I1

i1

0 6 −2 2

A B

c d c d

FEE CTU Solving Imperfect Information EFGs 9/23



Extended utility function

• Extended utility function for sequences is g : Σ1 × Σ2 → R

g(σ1, σ2) =
∑
z∈Z′

C(z)u(z)

• C(z) is a probability that leaf z was reached due to chance nodes along the way.
• Z ′ ⊆ Z are all the terminal histories that could be reached by sequences σ1, σ2

FEE CTU Solving Imperfect Information EFGs 10/23



Example

g(∅, ∅) = 0
g(AC, i) = 0

g(BF, j) = 3
g(AD, ∅) = 0

g(∅, g) = 0
g(A, g) = 0

X1

y1 y2

Y1 Y2 Z1 Z2

I1

i1 i2

I2 I3

3 −2 1 3 2 1 0 3

A B

g h i j

C D C D E F E F

Σ1 Σ2

∅ ∅
A g
B h
AC i
AD j
BE
BF

FEE CTU Solving Imperfect Information EFGs 11/23



Sequence-form Linear Program (SQF)

max
r1,v

v(Iroot) (1)

s.t. r1(∅) = 1 (2)

r1(σ1) ≥ 0 ∀σ1 ∈ Σ1 (3)∑
a∈A1(I1)

r(σ1a) = r1(σ1) ∀I1 ∈ I1, σ1 = ς1(I1) (4)

∑
I′2∈I2:σ2a=ς2(I′2)

v(I′2) +
∑

σ1∈Σ1

g(σ1, σ2a)r1(σ1) ≥ v(I2) ∀I2 ∈ I2, σ2 = ς2(I2), ∀a ∈ A(I2) (5)

• Variables are realization plans r1 for all the sequences of player 1 and expected
values v for each opponents infoset, if it plays a best response.

• ςi returns for a given infoset Ii a sequence σi that leads to this infoset.
FEE CTU Solving Imperfect Information EFGs 12/23



Example

x0

X1

y1 y2

Y1 Y2 Z1 Z2

iroot

I1

i1 i2

I2 I3

3 −2 1 3 2 1 0 3

aroot

A B

g h i j

C D C D E F E F

max
r1,v

(v(iroot))

r1(∅) = 1

r1(A) + r1(B) = r1(∅)
r1(AC) + r1(AD) = r1(A)

r1(BE) + r1(BF) = r1(B)

v(i1) + v(i2) ≥ v(iroot)

3r1(AC)− 2r1(AD) ≥ v(i1)

1r1(AC) + 3r1(AD) ≥ v(i1)

2r1(BE) + 1r1(BF) ≥ v(i2)

0r1(BE) + 3r1(BF) ≥ v(i2)

FEE CTU Solving Imperfect Information EFGs 13/23



Example

X1

y1 y2

Y1 Y2 Z1 Z2

I1

i1 i2

I2 I3

3 −2 1 3 2 1 0 3

A B

g h i j

C D C D E F E F

min
r2,v

(v(I1))

r2(∅) = 1

r2(g) + r2(h) = r2(∅)
r2(i) + r2(j) = r2(∅)
v(I2) ≤ v(I1)

v(I3) ≤ v(I1)

3r2(g) + 1r2(h) ≤ v(I2)

− 2r2(g) + 3r2(h) ≤ v(I2)

2r2(i) + 0r2(j) ≤ v(I3)

1r2(i) + 3r2(j) ≤ v(I3)

FEE CTU Solving Imperfect Information EFGs 14/23



Sequence-form properties

• The fastest exact algorithm
• Easy to implement
• Poor scaling due to memory requirements of the linear program
• Hard to fine-tune for specific domains to increase performance
• Cannot be used to solve the game only partially

FEE CTU Solving Imperfect Information EFGs 15/23



Double Oracle Algorithm

• Large linear programs are often solved in a way that some constraints are
removed from the LP and this smaller LP is solved.

• If this solution does not violate any removed constraint, than it is a solution the
problem.

• Otherwise some of the violated constraints are added to the LP and it is solved
again.

• These are called lazy constraints.
• Game Theory often uses similar idea with the name of double oracle.
• The goal of double oracle algorithm is to remove some strategies from the game

and solve this smaller game.
• Then it is checked whether this solution is a Nash equilibrium in the original

game.

FEE CTU Solving Imperfect Information EFGs 16/23



Double Oracle Algorithm

• The main loop of the double oracle algorithm is
1. Create a restricted game, that does not contain all the strategies
2. Solve this restricted game
3. Compute a best response by each player in the original game
4. If best responses are the same as the solution of the restricted game, then we

have found the Nash equilibrium, otherwise we add these best responses to the
restricted game

• In the worst case scenario the double oracle algorithm has to add all the
strategies from the original game.

• However, in most cases, the restricted game is much smaller than the original
game.

• This algorithm can be applied to both Normal-form and Extensive-form games.

FEE CTU Solving Imperfect Information EFGs 17/23



Double Oracle Algorithm with sequences

• Using sequences instead of pure strategies is more complicated.
• With limited amount of sequences, some reachable parts of the game tree may

not have any sequence to be played.
• To avoid this, in each information set, there is some default action that should

be played.
• Default action does not have to be defined explicitly.
• Instead of keeping the full tree, the nods with default action can be replaced by

terminal node.
• The value of this terminal node corresponds to the value if opponent picks best

response against the default action.

FEE CTU Solving Imperfect Information EFGs 18/23



Example

Let us start with restricted game that contains only sequences AC and gi. Trivially
solving this restricted game chooses only the available sequences, with the
resulting value of the game being -1.

X1

y1 y2

Z1 Z2 Z3 Z4

w1 w2

w3 w4

w5 w6 w7 w8

I1

i1

I2 I3

i2

i3

i4

−1 2 1 3 −2 1 2 0 1 2 0 4 1 −2 1 −2

A B

g h g h

C D
C D

E F E F

i j i j
k l k l

i j i j m n m n

FEE CTU Solving Imperfect Information EFGs 19/23



Example

Best response of player 1 is a sequence BE. Best response of player 2 is a sequence
hk.

X1

y1 y2

Z1 Z2 Z3 Z4

w1 w2

w3 w4

w5 w6 w7 w8

I1

i1

I2 I3

i2

i3

i4

−1 2 1 3 −2 1 2 0 1 2 0 4 1 −2 1 −2

A B

g h g h

C D
C D

E F E F

i j i j
k l k l

i j i j m n m n

FEE CTU Solving Imperfect Information EFGs 20/23



Example

Sequence BhE does not have any action defined, so the restricted game has to
transform it into leaf and assign utility to it. Best response of the player is playing n,
so the value assigned is -2. This restricted game may again be solved.

X1

y1 y2

Z1 Z2 Z3 Z4

w1 w2

w3 w4

w5 w6 w8

I1

i1

I2 I3

i2

i3

i4

−1 2 1 3 −2 1 2 0 1 2 0 4

−2

1 −2

A B

g h g h

C D
C D

E F E F

i j i j
k l k l

i j i j m n

FEE CTU Solving Imperfect Information EFGs 21/23



Double Oracle properties

• Can solve larger games than SQF.
• Without any additional information the algorithm identifies, which strategies are

not important for good solution.
• Computing best response is faster than solving the Linear program and can be

improved with some heuristics for specific problems.
• Harder to implement, due to the need to construct the valid restricted game.
• Still requires SQF to solve the restricted game, which is the primary limitation of

the method.
• In games where all sequences have to be considered, it is slower than the SQF.

FEE CTU Solving Imperfect Information EFGs 22/23



Summary

• Mixed strategies are not well suited for solving the imperfect information EFGs.
• Sequences can be used only in perfect recall games, but avoid necessity to

define each action for each information set.
• Probability from chance nodes can be propagated up to the leaf utilities.
• If chance node does not reveal any information until the end of the game, it can

be removed from the game completely.
• Sequence-form linear program for solving EFGs expands the ideas from linear

program for normal-form games to the extensive-form setting.
• It uses the realization plans instead of mixed strategies and expected values for

each opponent’s infoset.
• Double oracle algorithm iteratively finds sequences that are important in a

game to compute Nash equilibrium.

FEE CTU Solving Imperfect Information EFGs 23/23


	Problems with solving imperfect information EFGs
	Linear programming to solve EFGs

