Nash equilibria for normal-form games
 Lecture 2

Tomáš Kroupa

Normal-form games

1. Player set $N=\{1, \ldots, n\}$
2. Finite strategy set S_{i} for each $i \in N, \mathbf{S}:=S_{1} \times \cdots \times S_{n}$
3. Utility function $u_{i}: \mathbf{S} \rightarrow \mathbb{R}$ for each $i \in N$

- Player $i \in N$ can use a mixed strategy $p_{i} \in \Delta_{i}$
- Mixed strategy profile $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in \Delta$ yields the expected utility $U_{i}(\mathbf{p})$ of player i
- If player i uses pure strategy $s_{i} \in S_{i}$ and the rest plays \mathbf{p}_{-i}, the expected utility of i is $U_{i}\left(s_{i}, \mathbf{p}_{-i}\right):=U_{i}\left(\delta_{s_{i}}, \mathbf{p}_{-i}\right)$

Nash equilibria

The following are equivalent for a $\operatorname{NE} \mathbf{p}^{*}=\left(p_{1}^{*}, \ldots, p_{n}^{*}\right) \in \Delta$.

1. $U_{i}\left(p_{i}, \mathbf{p}_{-i}^{*}\right) \leq U_{i}\left(\mathbf{p}^{*}\right)$, for each $i \in N$ and every $p_{i} \in \Delta_{i}$.
2. $U_{i}\left(s_{i}, \mathbf{p}_{-i}^{*}\right) \leq U_{i}\left(\mathbf{p}^{*}\right)$, for each $i \in N$ and every $s_{i} \in S_{i}$.

- The second condition says that a candidate for NE can be tested using only (finitely) many pure strategies
- We can use it to frame a NE computation as an optimization problem

Computing NE: Opt. problem (1)

- Vector variable $p_{i} \in \Delta_{i}$ for each $i \in N$
- Auxiliary variables $e_{i} \in \mathbb{R}$ representing the equilibrium utility of player $i \in N$

The objective is to minimize $\sum_{i \in N}\left(e_{i}-U_{i}\left(p_{1}, \ldots, p_{n}\right)\right)$ subject to the constraints

1. $e_{i} \geq U_{i}\left(s_{i}, \mathbf{p}_{-i}\right)$ for all $i \in N$ and each $s_{i} \in S_{i}$
2. $p_{i} \in \Delta_{i}$ for each $i \in N$

Computing NE: Opt. problem (2)

The following are equivalent for $\mathbf{p}^{*}=\left(p_{1}^{*}, \ldots, p_{n}^{*}\right)$.

1. \mathbf{p}^{*} is a NE with $e_{i}^{*}=U_{i}\left(\mathbf{p}^{*}\right)$
2. \mathbf{p}^{*} is the minimizer of the opt. problem with optimal value 0

But

- this optimization problem is nonconvex
- it has typically many local minima

Supports of mixed strategies

The support of a mixed strategy $p_{i} \in \Delta_{i}$ is the set

$$
S\left(p_{i}\right):=\left\{s_{i} \in S_{i} \mid p_{i}\left(s_{i}\right)>0\right\}
$$

The indifference principle
For every NE \mathbf{p}^{*}, each player $i \in N$, and every $s_{i}, t_{i} \in S\left(p_{i}^{*}\right)$,

$$
U_{i}\left(s_{i}, \mathbf{p}_{-i}^{*}\right)=U_{i}\left(t_{i}, \mathbf{p}_{-i}^{*}\right)=U_{i}\left(\mathbf{p}^{*}\right)
$$

Supports of equilibrium strategies

The following are equivalent for $\mathbf{p}^{*}=\left(p_{1}^{*}, \ldots, p_{n}^{*}\right) \in \Delta$.

1. \mathbf{p}^{*} is a Nash equilibrium.
2. $S\left(p_{i}^{*}\right) \subseteq \mathbf{B R}_{i}\left(\mathbf{p}_{-i}^{*}\right)$, for each $i \in N$, where the bestresponse map here is
$\mathbf{B R}_{i}\left(\mathbf{p}_{-i}^{*}\right)=\left\{s_{i} \in S_{i} \mid U_{i}\left(s_{i}, \mathbf{p}_{-i}^{*}\right)=\max _{s_{i}^{\prime} \in S_{i}} U_{i}\left(s_{i}^{\prime}, \mathbf{p}_{-i}^{*}\right)\right\}$

Computing NE: Testing supports (1)

- Assumption: two players, $n=2$
- Take $\Sigma_{1} \subseteq S_{1}, \Sigma_{2} \subseteq S_{2}$ and consider the linear feasibility problem

$$
\begin{aligned}
U_{i}\left(s_{i}, p_{-i}\right) & =e_{i}, \quad i=1,2, \forall s_{i} \in \Sigma_{i}, \\
U_{i}\left(s_{i}, p_{-i}\right) & \leq e_{i}, \quad i=1,2, \forall s_{i} \notin \Sigma_{i}, \\
p_{i} & \in \Delta_{i}, \\
p_{i}\left(s_{i}\right) & =0, \quad i=1,2, \forall s_{i} \notin \Sigma_{i} .
\end{aligned}
$$

Computing NE: Testing supports (2)

- If there is a NE with supports Σ_{1} and Σ_{2}, then it is a solution to the linear feasibility problem
- Any solution to the linear feasibility problem is a NE $\left(p_{1}^{*}, p_{2}^{*}\right)$ such that $S\left(p_{1}^{*}\right) \subseteq \Sigma_{1}$ and $S\left(p_{2}^{*}\right) \subseteq \Sigma_{2}$ (caveat)

This leads to the simple enumerating algorithm to find one NE.

Computing NE: Support enumeration

This method will find at least one NE for a two-player game:

1. Generate subsets $\Sigma_{1} \subseteq S_{1}$ and $\Sigma_{2} \subseteq S_{2}$
2. Solve the linear feasibility problem for Σ_{1} and Σ_{2}
i. If solvable, then end.
ii. If unsolvable, try 1.

The performance is increased with heuristics to search the space of supports (for example, preference of small supports).

Two-player zero-sum games (TPZS)

This class of games is computationally tractable:

1. Player set $N=\{1,2\}$
2. Finite strategy sets S_{1} and S_{2}
3. Utility functions: $u_{1}: S_{1} \times S_{2} \rightarrow \mathbb{R}$ and $u_{2}=-u_{1}$

- $u_{1}+u_{2}=0$
- We write $u:=u_{1}$
- Player 1 is maximizing (row player) and player 2 is minimizing (column player)

Solving TPZS games

- Nash equilibrium applies to TPZS games
- We will refine the equilibrium concept using the zero-sum assumption
- We use the well-known decision rule minimax to recover the worst-case minimum gain/maximum loss and show that this principle is equivalent to NE

Maximin strategy and lower value

1. If player 1 uses a mixed strategy p_{1}, then player 2 can achieve the loss

$$
\min _{p_{2} \in \Delta_{2}} U\left(p_{1}, p_{2}\right)
$$

2. Player 1 then employs the mixed strategy p_{1}^{*} achieving the worst-case minimum gain

$$
\underline{v}:=\min _{p_{2} \in \Delta_{2}} U\left(p_{1}^{*}, p_{2}\right)=\max _{p_{1} \in \Delta_{1}} \min _{p_{2} \in \Delta_{2}} U\left(p_{1}, p_{2}\right)
$$

Minimax strategy and upper value

1. If player 2 uses a mixed strategy p_{2}, then player 1 can achieve the utility

$$
\max _{p_{1} \in \Delta_{1}} U\left(p_{1}, p_{2}\right)
$$

2. Player 2 then employs the mixed strategy p_{2}^{*} achieving the worst-case maximum loss

$$
\bar{v}:=\max _{p_{1} \in \Delta_{1}} U\left(p_{1}, p_{2}^{*}\right)=\min _{p_{2} \in \Delta_{2}} \max _{p_{1} \in \Delta_{1}} U\left(p_{1}, p_{2}\right)
$$

Value of the TPZS game

It is easy to see that $\underline{v} \leq \bar{v}$. The converse is non-trivial:
Minimax theorem of von Neumann (1928)
$\underline{v}=\bar{v}$, for every TPZS game.

- The common value v is called the value of the game
- If players use maximin/minimax strategies $\left(p_{1}^{*}, p_{2}^{*}\right)$, the resulting utility of player 1 is

$$
\underline{v}=U\left(p_{1}^{*}, p_{2}^{*}\right)=\bar{v}
$$

Nash equilibria in TPZS games

The following are equivalent for a mixed strategy profile $\left(p_{1}^{*}, p_{2}^{*}\right) \in \Delta$ in a TPZS.

1. For every $p_{1} \in \Delta_{1}$ and every $p_{2} \in \Delta_{2}$,

$$
U\left(p_{1}, p_{2}^{*}\right) \leq U\left(p_{1}^{*}, p_{2}^{*}\right) \leq U\left(p_{1}^{*}, p_{2}\right) .
$$

2. For every $s_{1} \in S_{1}$ and every $s_{2} \in S_{2}$,

$$
U\left(s_{1}, p_{2}^{*}\right) \leq U\left(p_{1}^{*}, p_{2}^{*}\right) \leq U\left(p_{1}^{*}, s_{2}\right)
$$

3. $\underline{v}=U\left(p_{1}^{*}, p_{2}^{*}\right)=\bar{v}$

Solving TPZS games by LP (1)

- We know that

$$
\max _{p_{1} \in \Delta_{1}} \min _{p_{2} \in \Delta_{2}} U\left(p_{1}, p_{2}\right)=\max _{p_{1} \in \Delta_{1}} \min _{s_{2} \in S_{2}} U\left(p_{1}, s_{2}\right)
$$

since linear function $U\left(p_{1},.\right)$ on the convex polyhedron Δ_{2} achieves minima over the extreme points

- The maximization problem for player 1 then becomes a linear program since we are maximizing a piecewise-linear concave function under linear constraints

Solving TPZS games by LP (Player 1)

- The LP for player 1 has variables $v_{1} \in \mathbb{R}$ and $p_{1} \in \Delta_{1}$
- Maximize v_{1} subject to the constraints

$$
\begin{array}{r}
U\left(p_{1}, s_{2}\right) \geq v_{1}, \quad \forall s_{2} \in S_{2} \\
p_{1} \in \Delta_{1}
\end{array}
$$

- The optimal solution is the maximin strategy p_{1}^{*} and the lover value of the game $v_{1}^{*}=\underline{v}$

Solving TPZS games by LP (Player 2)

- The LP for player 2 has variables $v_{2} \in \mathbb{R}$ and $p_{2} \in \Delta_{2}$
- Minimize v_{2} subject to the constraints

$$
\begin{gathered}
U\left(s_{1}, p_{2}\right) \leq v_{2}, \quad \forall s_{1} \in S_{1} \\
p_{2} \in \Delta_{2}
\end{gathered}
$$

- The optimal solution is the minimax strategy p_{2}^{*} and the upper value of the game $v_{2}^{*}=\bar{v}$

Solving TPZS games: Stocktaking

- The two LPs are in fact dual to each other
- This means that in the optimum $\left(p_{1}^{*}, v_{1}^{*}\right)$ of the first LP and the second LP $\left(p_{2}^{*}, v_{2}^{*}\right)$, respectively, we obtain $v_{1}^{*}=v_{2}^{*}$
- The profile of maximin/minmax strategies $\left(p_{1}^{*}, p_{2}^{*}\right)$ is a NE

Computational experiments

- Two-player games
- Randomly generated (normal distribution) general-sum vs. zero-sum games with different sizes of strategy spaces
- SCIP solver
- The state-of-the-art multilinear formulation vs. standard LP

Computational experiments (1)

T. Votroubek - General-sum games vs. zero-sum games

Computational experiments (2)

T. Votroubek - General-sum games

Computational experiments (3)

T. Votroubek - Zero-sum games (note the artefact at 100)

