

DUALITY AND APPLICATIONS OF ARRANGEMENTS

PETR FELKEL

FEL CTU PRAGUE

felkel@fel.cvut.cz

https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Mount], and [Goswami]

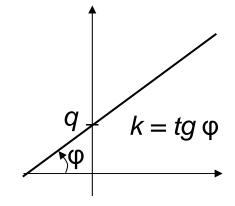
Version from 19.12.2019

Talk overview

- Duality
 - 1. Points and lines
 - 2. Line segments
 - 3. Polar duality (different points and lines)
 - 4. Convex hull using duality
- Applications of duality and arrangements

1. Duality of lines and points in the plane

- Points and lines both have 2 parameters:
 - Points coords x and y
 - Lines slope k and y-intercept qy = kx + q



- We can simply map points and lines 1:1
- Many mappings exist it depends on the context

Why to use duality?

Some reasons why to use duality:

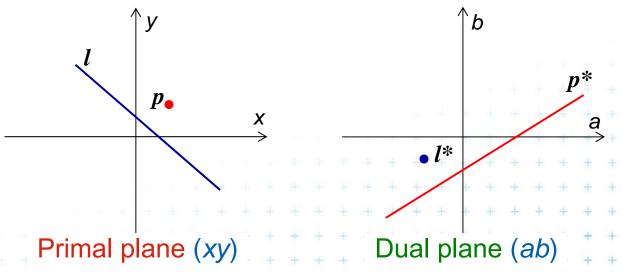
- Transforming a problem to dual plane may give a new view on the problem
- Looking from a different angle may give the insight needed to solve it
- Solution in dual space may be even simpler

Definition of duality transformation D

Let *D* be the duality transform:

variables

- Point $p = [p_x, p_y]$ is transformed to line $D_p = p^* := (b = p_x a - p_y)$
- Line l: (y = ax b) is transformed to point $D_l = l^* := [a, b]$



Example and more about duality D

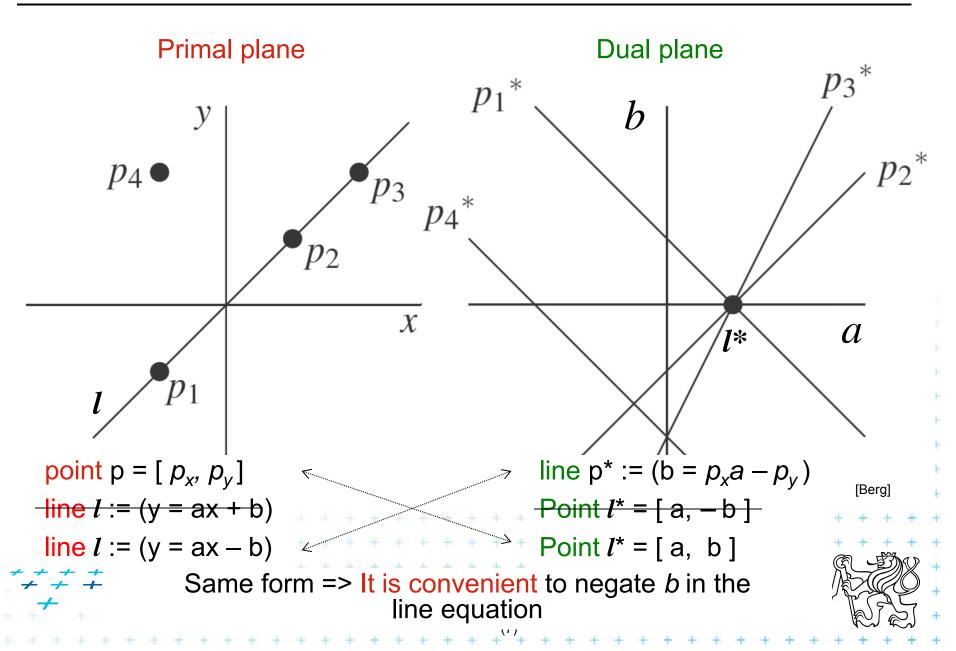
Example: line y = 5x - 3 can be represented as point y*=[5, 3]

See the [applet]

Duality D

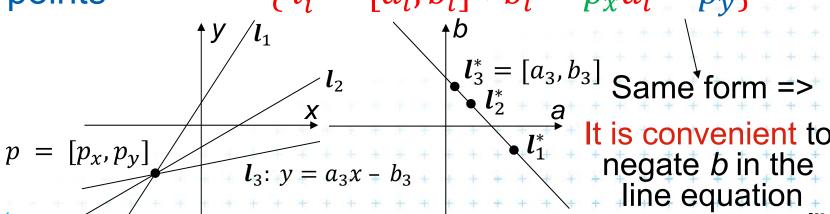
- is its own inverse $DD_p = p$, $DD_l = l$
- cannot represent vertical lines
 =>Take vertical lines as special cases, use lexicographic order, or rotate the problem space slightly.
- Primal plane
 plane with coordinates x, y
- Dual plane* plane with coordinates a, b

Duality of lines and points in the plane



Why is b negated in the line equation?

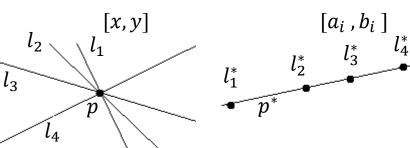
- In primal plane, consider
 - point $p = [p_x, p_y]$ and
 - set of non-vertical lines $l_i: y = a_i x b_i$ passing through p satisfy the equation $p_y = a_i p_x b_i$ (each line with different constants a_i, b_i)
- In dual plane, these lines transform to collinear points $\{l_i^* = [a_i, b_i] : b_i = p_x a_i p_v\}$



If b not negated in the line equation...

Lines l_i have equation $l_i : y = a_i x - b_i$ OR $y = a_i x + b_i$

passing through point $p = [p_x, p_y]$:



With minus

- equation l_i : $p_y = a_i p_x - b_i$ dual points $\{l_i^* = [a_i, b_i] : b_i = p_x a_i - p_y\}$... same form

different

With plus

- equation \mathbf{l}_i : $p_y = a_i p_x + b_i$ dual $\{\mathbf{l}_i^* = [a_i, b_i] : b_i = -p_x a_i + p_y\}$.

Properties of points and lines duality

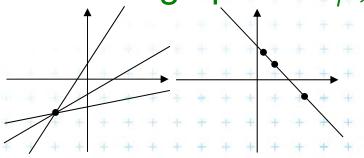
Incidence is preserved

Point p is incident to the line l in primal plane
 iff

point I^* is incident to the line p^* in the dual plane.

Lines I₁, I₂ intersects at point p
 iff

line p^* passes through points I_1^* , I_2^* .

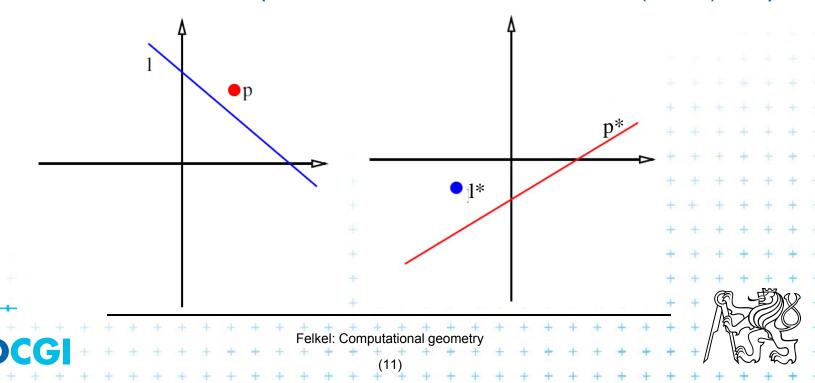


Properties of points and lines duality

But order is reversed

Point p lies above (below) line l in the primal plane
 iff

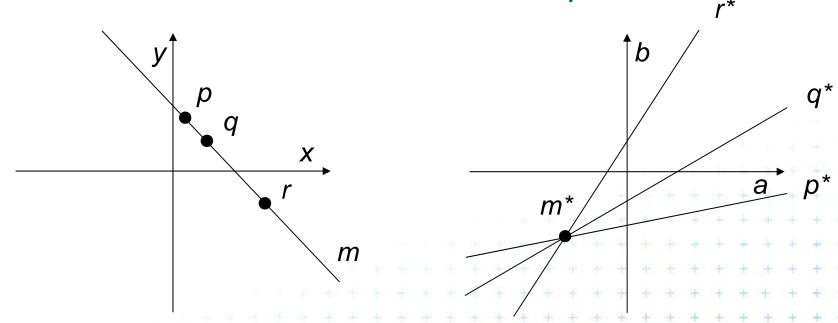
line p^* passes below (above) point I^* in the dual plane Or said order is preserved: ... iff Point I^* lies above (below) line p^*



Properties of points and lines duality

Collinearity

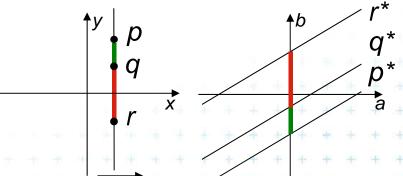
 Points are collinear in the primal plane iff their dual lines intersect in a common point



This does not hold for points on vertical line

Handling of vertical lines

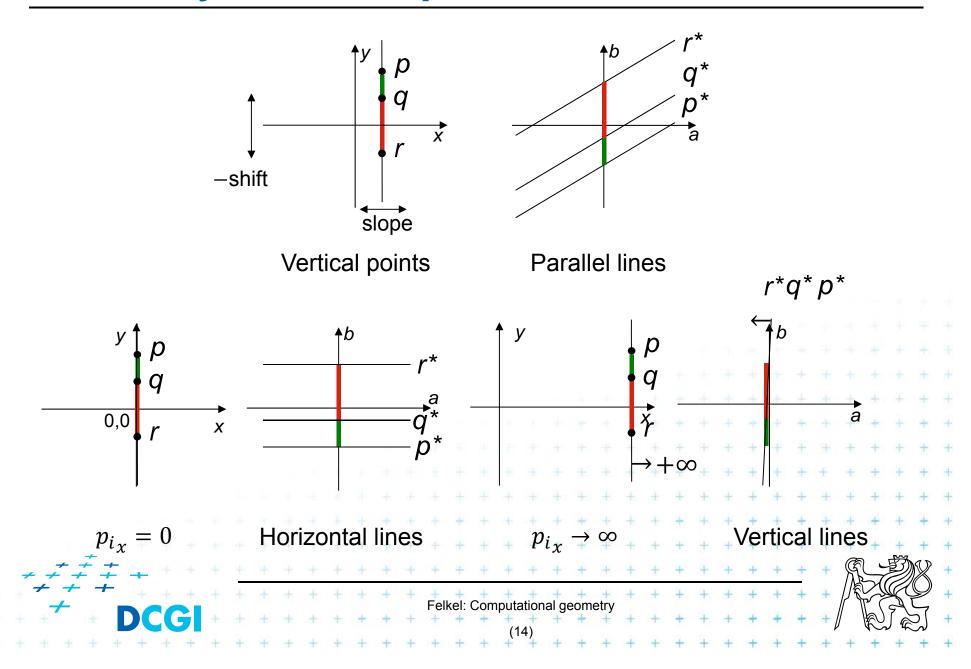
- Dual transform is undefined for vertical lines
 - Points with the same x coordinate dualize to lines with the same slope (parallel lines) and therefore
 - These dual lines do not intersect (as should for collinear points)
 - Vertical line through these points does not dualize to an intersection point (would be in infinity, as $(-\infty, -p_y)$ or $(+\infty, -p_y)$)
 - For detection of vertically collinear points use other method O(n) vertical lines -> $O(n^2)$ brute force 3|| lines s.



-> O(n) after O(n log n) sorting by x in primal plane

Vertical distances of such duals are "preserved". For $p_x = q_x$

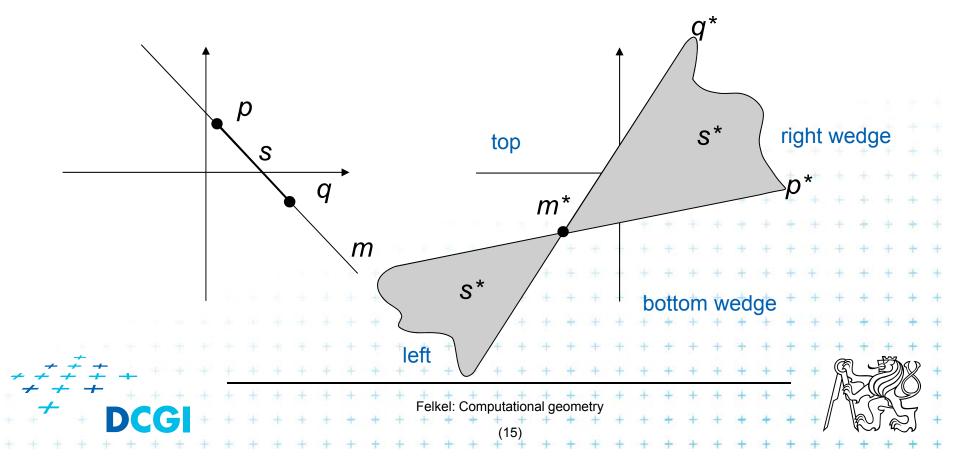
Vertically collinear points



2. Duality of line segments

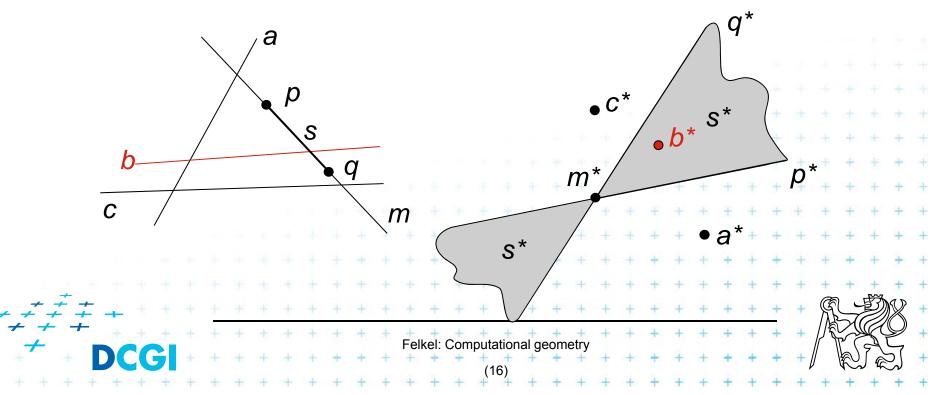
Line segment s

- = set of collinear points dual set of lines passing one point
- union of these lines is a (left-right) double wedge s*



Intersection of line and line segment

- Line b intersects line segment s
 - if point b^* lays in the double wedge s^* , i.e., between the duals p^*,q^* of segment endpoints p,q
 - point p lies above line b and q lies below line b
 - point b* lies above line p^* and b^* lies below line q^*



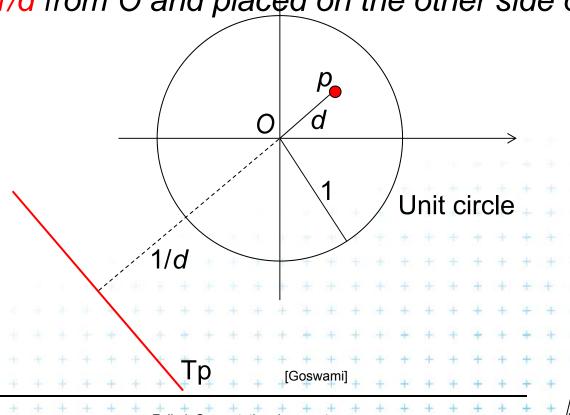
3. Polar duality (Polarity)

- Another example of point-line duality
- In 2D: Point $p = (p_x, p_y)$ in the primal plane corresponds to a line T_p with equation ax + by = 1 in the dual plane and vice versa $p_x a + p_y b = 1$
- In dD: Point p is taken as a radius-vector (starts in origin O). The dot product $(p \cdot \mathbf{x}) = 1$ defines a polar hyperplane $p^* = T_p = \{ \mathbf{x} \in R^d : (p \cdot \mathbf{x}) = 1 \}$
- Used in theory of polytopes

Polar duality (Polarity)

Geometrically in 2D, this means that

- if d is the distance from the origin(O) to the point p, the dual T_p of p is the line perpendicular to Op at distance 1/d from O and placed on the other side of O.



4. Convex hull using duality – definitions

An optimal algorithm

Let P be the given set of n points in the plane.

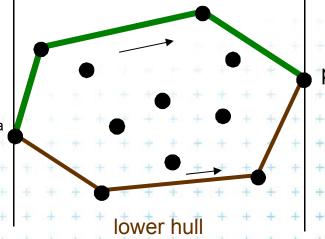
• Let $p_a \in P$ be the point with smallest x-coordinate

Let p_d ∈ P be the point with largest x-coordinate

Both p_a and $p_d \in CH(P)$

Upper hull = CW polygonal chain $p_a,..., p_d$ along the hull

Lower hull = CCW polygonal chain $p_a,..., p_d$ along the hull

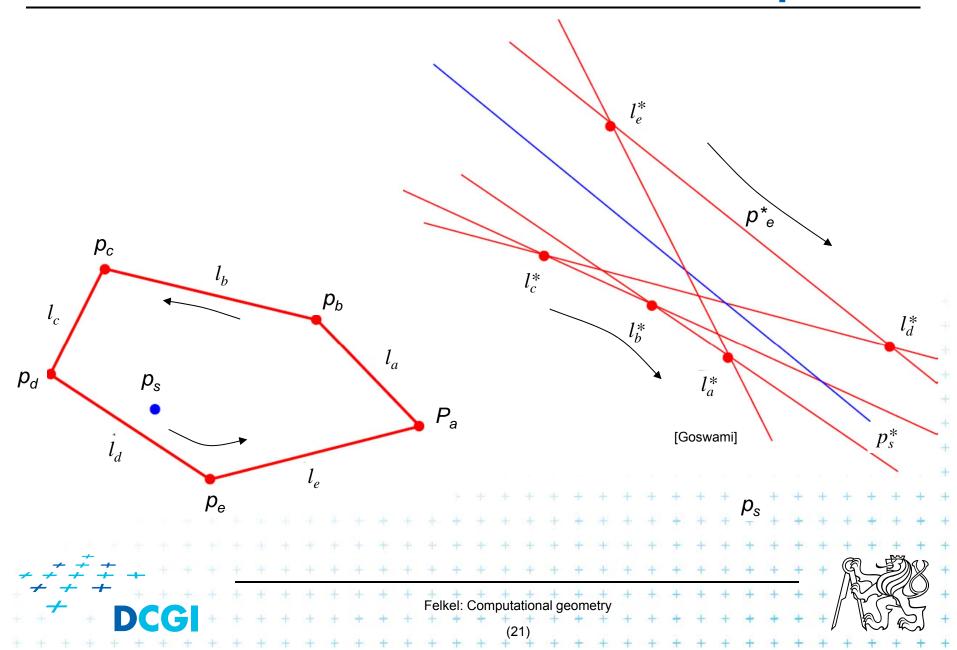


upper hull

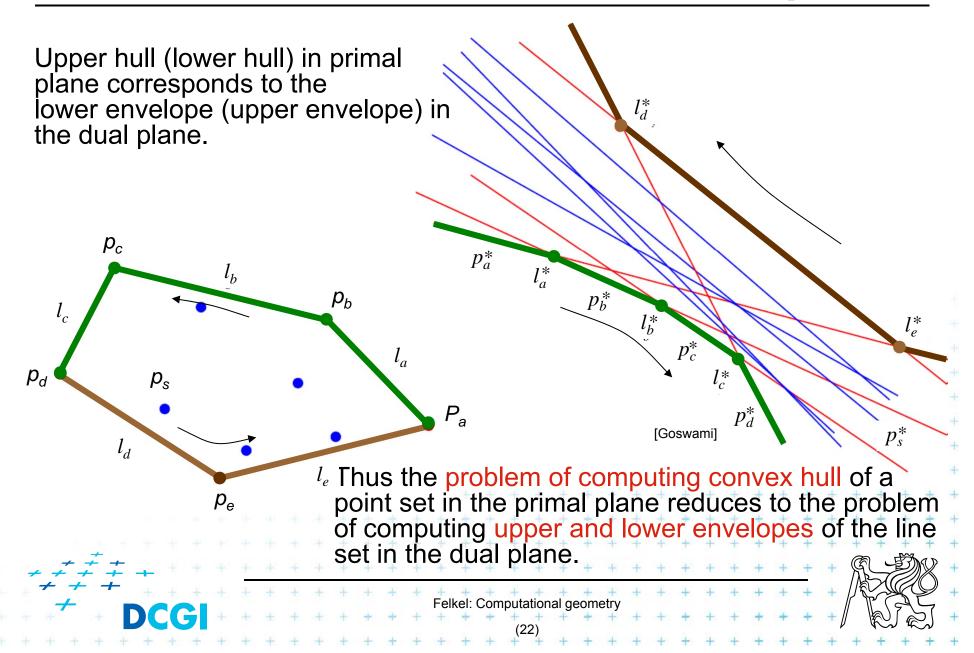
Definitions

- Let L be a set of lines in the plane
- The upper envelope is a polygonal chain E_u such that no line *l* ∈ *L* is above E_u.
- The lower envelope is a polygonal chain E_L such that no line I ∈ L is below E_L.

Connection between Hull and Envelope



Connection between Hull and Envelope



Upper envelope algorithm

```
UpperEnvelope(L)
        Set of lines L sorted by increasing order of slopes (-90° to 90°)
        Polygonal chain O representing the upper hull
                          // the only complete line in O
    O = I 1
   for i = 2 to n
       L = last entry in O // O contains half-lines, or line segments,
                         // except of complete line L1 at the beginning
       while( the line segment L does not intersect the new line L_i)
4.
5.
          remove L from O and replace L with its predecessor // L2, L5
       insert the line segment L_i at the tail of the list O (trim L_i)
6.
           L2
```

DCGI

Convex hull via upper and lower envelope

Upper envelope complexity

- After sorting n lines by their slopes in O(n logn) time,
 the upper envelope can be obtained in O(n) time
- Proof: It may check more than one line segment when inserting a new line, but those ones checked are all removed except the last one.
 (O(n) insertions, max O(n) removals
 => O(n) all steps. Average step O(1) amortized time)

Convex hull complexity

Given a set P of n points in the plane, CH(P) can be computed in O(n log n) time using O(n) space.

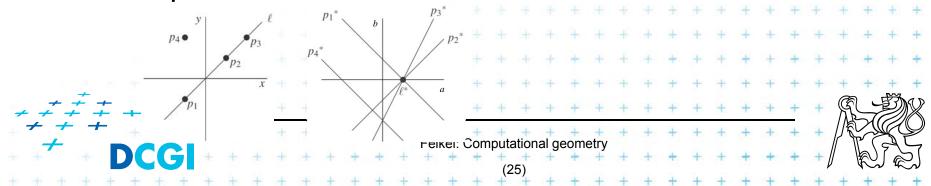
Applications of line arrangement

Examples of applications – solved in $O(n^2)$ and $O(n^2)$ space by constructing a line arrangement or O(n) space through topological plain sweep.

a) General position test:

Given a set of *n* points in the plane, determine whether any three are collinear.

- Construct an arrangement in dual plane
- Report intersections of more than 2 lines



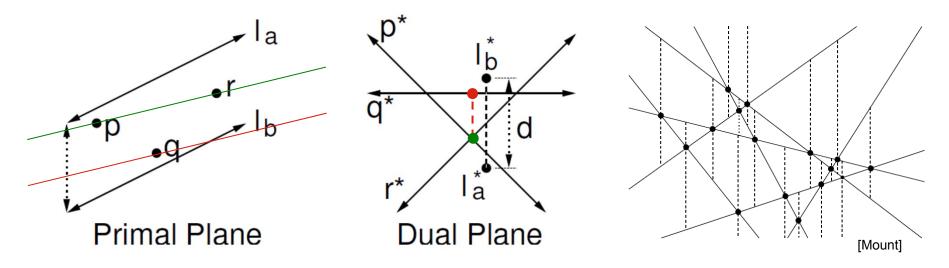
b) Minimum k-corridor

- Given a set of n points, and an integer k ∈ [1 : n], determine the narrowest pair of parallel lines that enclose at least k points of the set.
- The distance between the lines can be defined
 - either as the vertical distance between the lines
 - or as the perpendicular distance between the lines,
- Simplifications
 - Assume k = 3 and no 3 points are collinear
 - => narrowest corridor contains exactly 3 points
 - has width > 0

vertical

No 2 points have the same x coordinate (avoid I duals)

b) Minimum k-corridor

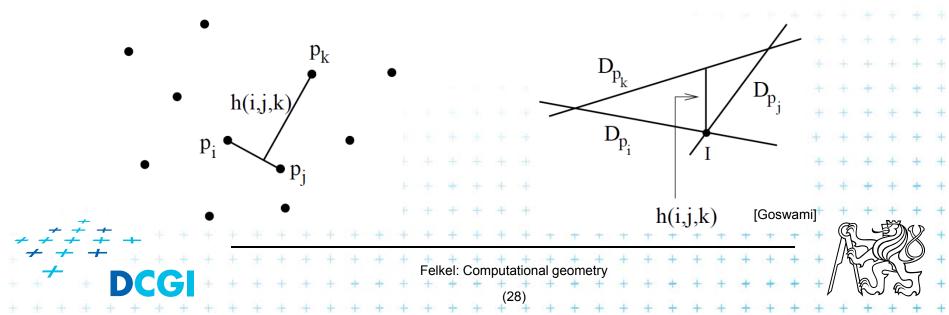


- Vertical distance of I_a,I_b = (-) distance of I_a*,I_b*
- Nearest lines one passes 2 vertices, e.g., p & r
- In dual plane are represented as intersection p*x r*
- Find nearest 3-stabber similarly as trapezoidal map
- $O(n^2)$ time and O(n) space topological line sweep

c) Minimum area triangle

[Goswami]

- Given a set of n points in the plane, determine the minimum area triangle whose vertices are selected from these points
- Construct "trapezoids" as in the nearest corridor
- Minimize perpendicular distances (converted from vertical) multiplied by the distance from p_i to p_i



d) Sorting all angular sequences – naïve

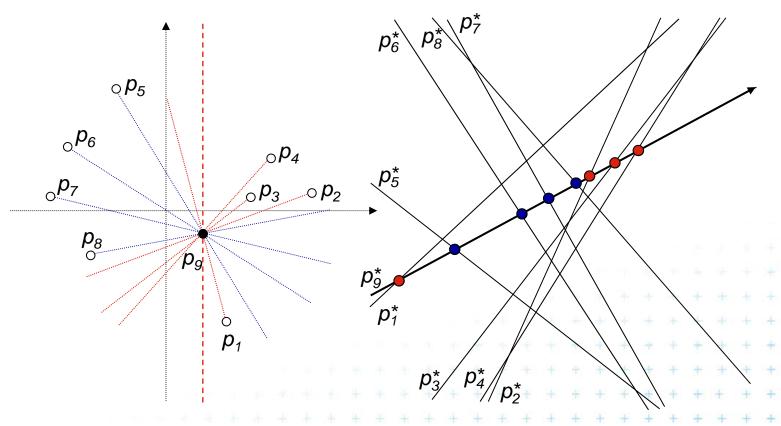
- Natural application of duality and arrangements
- Important for visibility graph computation
- Set of *n* points in the plane
- For each point perform an CCW angular sweep
- Naïve: for each point compute angles to remaining n – 1 points and sort them
- = => $O(n \log n)$ time per point
- $O(n^2 \log n)$ time overall
- Arrangements can get rid of O(log n) factor

d) Sorting all angular sequences – optimal

• For point p_i

- Dual of point p_i is line p_i^*
- Line p_i^* intersects other dual lines in order of slope (angles from -90° to 90°) (180°)
- We need order of angles around p_i
 (angles from -90° to 270°)
- Split points in primal plane by vertical line through p_i
- First, report intersections of points right of p_i
- Second, report the intersections of points left of p_i
- Once the arrangement is constructed:
 O(n) time for point, O(n²) time for all n points

d) Angular sequence around p₉

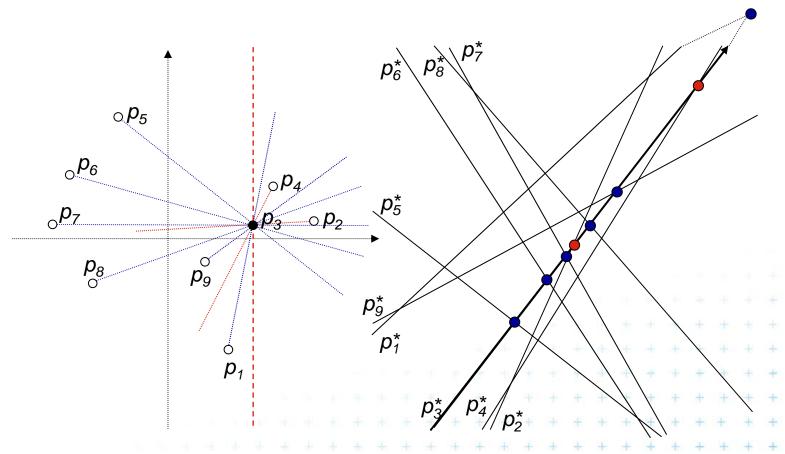


In primal plane

In dual plane

Point order around p_9 : p_1 , p_2 , p_3 , p_4 , p_5 , p_6 , p_7 , p_8

d) Angular sequences around p₃

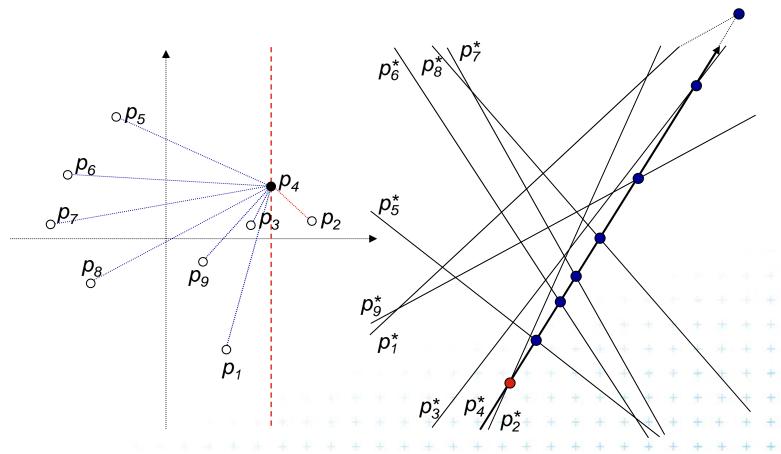


In primal plane

In dual plane

Point order around p_3 : p_2 , p_4 , p_5 , p_6 , p_7 , p_8 , p_3 , p_4

d) Angular sequences around p₄



In primal plane

In dual-plane

Point order around p_4 : p_2 , p_5 , p_6 , p_7 , p_8 , p_9 , p_3 , p_4

e) More applications of line arrangement

Visibility graph

Given a set of *n* non-intersecting line segments, compute the *visibility graph*, whose vertices are the endpoints of the segments, and whose edges are pairs of visible endpoints (use angular sequences).

Maximum stabbing line

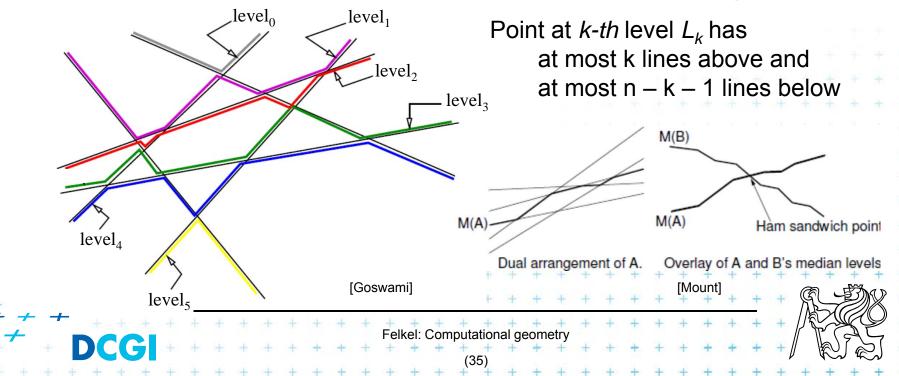
Given a set of *n* line segments in the plane, compute the line that stabs (intersects) the maximum number of these line segments.

More applications of line arrangement

Ham-Sandwich cut

Given two sets of points, *n* red and *m* blue points compute a single line that simultaneously bisects both sets

Principle – intersect middle levels of arrangements



References

- [Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapters 8., http://www.cs.uu.nl/geobook/
- [Mount] Mount, D.: Computational Geometry Lecture Notes for Fall 2016, University of Maryland, Lectures 7, 14, 15, 27 and 28. http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf
- [applet] Allen K. L. Miu: Duality Demo http://nms.lcs.mit.edu/~aklmiu/6.838/dual/
- [Goswami] Partha P. Goswami: Duality Transformation and its Application to Computational Geometry, University of Calcutta, India http://www.tcs.tifr.res.in/~igga/lectureslides/partha-lec-iisc-jul09.pdf

