PETR FELKEL
FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start
Based on [Berg], [Mount]

Version from 3.12.2020

Talk overview

- Arrangements of lines
- Incremental construction
- Topological plane sweep

Arrangements

- The next most important structure in CG after CH, VD, and DT
- Possible in any dimension arrangement of (d-1)-dimensional hyperplanes
- We concentrate on arrangement of lines in plane
- Typical application: problems of point sets in dual plane (collinear points, point on circles, ...)

Some more applications (see CGAL)

- Finding the minimum-area triangle defined by a set of points,
- computation of the sorted angular sequences of points,
- finding the ham-sandwich cut,
- planning the motion of a polygon translating among polygons in the plane,
- computing the offset polygon,
- constructing the farthest-point Voronoi diagram,
- coordinating the motion of two discs moving among obstacles in the plane,
- performing Boolean operations on curved polygons.

Line arrangement

- A finite set L of lines subdivides the plane into a cell complex, called arrangement $A(L)$
- In plane, arrangement defines a planar graph
- Vertices - intersections of (2 or more) lines
- Edges - intersection free segments (or rays or lines)
- Faces - convex regions containing no line

Line arrangement

- Simple arrangement assumption
= no three lines intersect in a single point
- Can be solved by careful implementation or symbolic perturbation

Line arrangement

- Formal problem: graph must have bounded edges
- Topological fix: add vertex in infinity
- Geometrical fix: BBOX, often enough as abstract with corners $\{-\infty,-\infty\},\{\infty, \infty\}$

bounding box
(7/60)

Combinatorial complexity of line arrangement

- $O\left(n^{2}\right)$
- Given n lines in general position, max numbers are
- Vertices $\binom{n}{2}=\frac{n(n-1)}{2} \rightarrow$ each line intersect $n-1$ others
- Edges $n^{2} \quad \rightarrow n-1$ intersections create n edges on each of n lines
- Faces $\frac{n(n+1)}{2}+1=\binom{n}{2}+n+1 \quad \mathrm{f}_{0}=1 \quad$ (celá rovina)

Construction of line arrangement

(0. Plane sweep method)

- $O\left(n^{2} \log n\right)$ time and $O(n)$ storage plus $O\left(n^{2}\right)$ storage for the arrangement

$$
\begin{aligned}
& n^{2} \log n^{2} \\
= & 2 n^{2} \log n
\end{aligned}
$$

$$
\left(n^{2} \text { vertices, edges, faces. } \log n^{2}-\text { heap } \& \text { BVS access }\right)
$$

A. Incremental method

- $O\left(n^{2}\right)$ time and $O\left(n^{2}\right)$ storage
- Optimal method
B. Topological plane sweep
- $O\left(n^{2}\right)$ time and $O(n)$ storage only
- Does not store the result arrangement
- Useful for applications that may throw out the

DCGI

A. Incremental construction of arrangement

- $O\left(n^{2}\right)$ time, $O\left(n^{2}\right)$ space
~size of arrangement => it is an optimal algorithm
- Not randomized - depends on n only, not on order
- Add line l_{i} one by one ($i=1 \ldots n$)
- Find the leftmost intersection with the BBOX among $2(i-1)+4$ edges already on the BBOX $\ldots O(i)$
- Trace the line through the arrangement $A\left(L_{i-1}\right)$ and split the intersected faces $\quad \ldots O(i)$ - why? See later
- Update the subdivision (cell split)
- Altogether $O(n i)=O\left(n^{2}\right)$

A. Tracing the line through the arrangement

- Walk around edges of current face (face walking)
- Determine if the line l_{i} intersects current edge e
- When intersection found, jump to the face on the other side of edge e

The zone of l_{i}
$\mathrm{n}=8$ lines, 7 faces in the zone, 16 edges tested of max 48

Walking the lower part [Beel of the zone

A. Incremental construction of arrangement

Arrangement(L)

Input: \quad Set of lines L in general position (no 3 intersect in 1 common point) Output: Line arrangement $A(L)$ (resp. part of the arrangement stored in BBOX $B(L)$ containing all the vertices of $A(L))$

1. Compute the BBOX $B(L)$ containing all the vertices of $A(L) \quad \ldots O\left(n^{2}\right)$
2. Construct DCEL for the subdivision induced by BBOX $B(L) \quad \ldots O(1)$
3. for $i=1$ to n do $/ /$ insert line $\boldsymbol{l}_{\boldsymbol{i}}$
4. find edge e, where line l_{i} intersects the BBOX of $2(i-1)+4$ edges $\ldots O(i)$
5. $f=$ bounded face incident to the edge e
6. while f is in $B(L) \quad$ (bounded face $f=f$ is in the BBOX) $+\ldots O(i)$
7. split f and set f to be the next intersected face across the intersected edge
8. update the DCEL (split the cell)

The Zone of edge l_{i}

The zone of l_{i} for $i=9$

Zone $Z_{A}\left(l_{i}\right)=$ set of i faces of $A(L)$ intersected by l_{i}
l_{i} crosses max $i-1$ lines $\Rightarrow i$ faces

$$
l_{9}: i-1=8 \text { lines, } 7 \text { of max } 9 \text { faces in the zone }
$$

Edges in the cells of the zone

Total number of edges in all zone faces
Naïve upper bound $\left.\begin{array}{l}\text { edge } l_{i} \text { passes max } i \text { faces } \ldots O(i) \\ \text { each face bounded by at most } i \text { lines }\end{array}\right] O\left(i^{2}\right)$????
Tight upper bound $6 i=O(i)$
$n=8$ lines, 16 edges tested of max 48

Tracing the line through the arrangement

- Number of traversed edges determines the insertion complexity
- Naïve estimation would be $O\left(i^{2}\right)$ traversed edges (i faces, i lines per face, i^{2} edges)
- According to the Zone theorem, it is $O(i)$ edges only!
Zone theorem
= given an arrangement $A(L)$ of n lines in the plane and given any line l in the plane, the total number of edges in all the cells of the zone $Z_{A}(L)$ is at

Key idea of a proof

- Find a way to add up edges so that each line will induce a constant number of edges
- Split $6 n$ edges of the zone into
- $3 n$ left bounding edges
- $3 n$ right bounding edges
- $6 n$ bounding edges total

$n=1$, one left bounding edge, $1 \leq 3=3 n$

True for $n-1$ lines
\Rightarrow holds for n lines
$l_{1}=$ rightmost line intersecting l ℓ Without l_{1}
$3(n-1)$ left bounding edges Insert l_{1}
+1 left bounding edge l_{1}
+2 split e_{a} and e_{b}
$3(n-1)+3=3 n \Rightarrow$ hold
or less if right bounding

Cell split in O(1)

- 1 new vertex
- 2 new face records, 1 face record (f) destroyed
- 3×2 new half-edges, 2 half-edges destroyed
- update pointers ... O(1)

Complexity of incremental algorithm

- n insertions
- $O(i)=O(n)$ time for one line insertion
instead of $O\left(i^{2}\right)$
(Zone theorem)
=> Complexity: $O\left(n^{2}\right)+n O(i)=O\left(n^{2}\right)$
bbox edges walked

B. Topological plane sweep algorithm

- Complete arrangement needs $O\left(n^{2}\right)$ storage
- Often we need just to process each arrangement element just once - and we can throw it out then
- Classical Sweep line algorithm (for arrangement of lines)
- needs $O(n)$ storage
- needs $\log n$ for heap manipulation in $O\left(n^{2}\right)$ event points
=> $O\left(n^{2} \log n\right)$ algorithm
- Topological sweep line - TSL
- no $O(\log n)$ factor in time complexity in $O\left(n^{2}\right)$ event points
- array of n neighbors and a stack of ready vertices $O(1)$
- $+=0\left(n^{2}\right)$ algorithm

Illustration from Edelsbrunner \& Guibas

Topological line and cut

Topological line (curve) (an intuitive notion)

Cut in an arrangement A

- is an ordered sequence of edges $c_{1}, c_{2}, \ldots, c_{n}$ in A (one taken from each line), such that for $1 \leq i \leq n-1$, c_{i} and c_{i+1} are incident to the same face of A and c_{i} is above and c_{i+1} below the face
- Edges ${ }_{\text {inthe utare }}$ not necessarily connected (as c_{2}^{+}and c_{3}^{+})

Topological plane sweep algorithm

- Starts at the leftmost cut
- Consist of left-unbounded edges of A (ending at $-\infty$)
- Computed in $O(n \log n)$ time - order of slopes
- The sweep line is
- pushed from the leftmost cut to the rightmost cut
- Advances in elementary steps
- Elementary step
= Processing of any ready vertex
 (intersection of consecutive edges at their right-point)
- Swaps the order of lines along the sweep line
- Is always possible (e.g., the point with smallest x)
\ldots Searching of smallest x would need $O(\log n)$ time ...

Step 0 - the leftmost cut

$c_{i}=$ ordered sequence of edges along the topological sweep line

Step 1 - after processing of c4 x c5

Step 2 - after processing of c3 x c4

How to determine the next right point？

－Elementary step（intersection at edges right－point）
－Is always possible（e．g．，the point with smallest x ）
－But searching the smallest x would need $O(\log n)$ time
－We need O（1）time
－Right endpoint of the edge in the cut results from unt a line of smaller slope intersecting it from above（traced from L to R ）or
${ }^{\text {LHT }}$ line of larger slope intersecting it from below．
－Use Upper and Lower Horizon Trees（UHT，LHT）
－Common segments of UHT and LHT belong to the cut
－Intersect the trees，find pairs of consecutive edges
生手
DCGI

Upper and lower horizon tree

- Upper horizon tree (UHT)
- Insert lines in order of decreasing slope (cw)

- When two edges meet, keep the edge with higher slope and trim the inserted edge (with lower slope)
- To get one tree and not the forest of trees (if not connected) add a vertical line in $+\infty$ (slope $+90^{\circ}$)
- Left endpoints of the edges in the cut do not belong to the tree

- Lower horizon tree (LHT) construction is symmetrical
- UHT and LHT serve for right endpts determination

Upper horizon tree (UHT) - initial tree

Insert lines in order of decreasing slope ("cw") \geq

Lower horizon tree (LHT) - initial tree

Insert lines in order of increasing slope ("ccw")

Insertion order: 6, 1, 2, 3, 4, 5

Overlap UHT and LHT - detect ready vertices

Upper horizon tree (UHT) - init. construction

- Insert lines in order of decreasing slope (cw)
- Each new line starts above all the current lines
- The uppermost face = convex polygonal chain
- Walk left to right along the chain to determine the intersection
- Never walk twice over a segment
- Such segment is no longer part of the upper chain
- $O(n)$ segments in UHT
=> $O(n)$ initial construction

Upper horizon tree (UHT) - update

- After the elementary step
- Two edges swap position along the sweep line
- Lower edge l (lower slope, comes from above)
- Reenter to UHT
- Terminate at nearest edge of UHT
- Start in edge below in the current cut
- Traverse the face in CCW order
- Intersection must exist, as l has lower slope than the other edge from v and both belong to the same face

Data structures for topological sweep alg.

Topological sweep line algorithm uses 5 arrays:

1) Line equation coefficients

- E [1:n]

2) Upper horizon tree

- UHT [1:n]

3) Lower horizon tree

- LHT [1:n]

4) Order of lines cut by the sweep line - $\mathrm{C}[1: n]$
5) Edges along the sweep line

- N [1:n]

6) Stack for ready vertices (events) - S
(n number of lines)

DCGI

1) Line equation coefficients $E[1: n]$

- Array of line equation coefs. E
- Contains coefficients a_{i} and b_{i} of line equations $y=a_{i} x+b_{i}$
$-E$ is indexed by the line index
- Lines are ordered according to their slope (angle from -90° to 90°)

2) and 3) - Horizon trees UHT and LHT

Their intersection is used for searching of legal steps (right points)

- the shorter edge wins

4) Order of lines cut by sweep line - C [1:n]

- The topological sweep line cuts each line once
- Order of the cuts (along the topological sweep line) is stored in array C as a sequence of line indices
- Array C "points" to the array E of line equations
- For the initial leftmost cut, the order is the same as in E
- Index ci addresses i-th line from top along the sweep line

CUT Lines C Indexes of supporting lines

C1	1
C2	2
c3	3
c4	4
c5	5

5) Edges along the sweep line - N [1:n]

- Edges intersected by the topological sweep line are stored here (edges along the sweep line)
- Instead of endpoints themselves, we store the indices of lines whose intersections delimit the edge
- Order of these edges is CUT edges N the same as in C (both use the index ci)
- Index ci stores the index of i-th edge from top along the sweep line

Pairs of line indices
delimiting the edge

	c1	$-\infty$
c2	$-\infty$	2
	$-\infty$	1
	$-\infty$	5
	$-\infty$	$-\infty$
	5	$-\infty$

The first edge along the sweep line:

- lies on line C[c1]
- Comes from infinity
- is delimited by edge $E[2]$

6) Stack S

- The exact order of events is not important (event = intersection in ready vertex)
- Alg. can process any "ready vertex"
- Event queue is therefore replaced by a stack (faster: $O(1)$ instead of $O(\log n)$ for queue) Stack s
- The stack stores just the upper edge c_{i} Ready vertex from the pair intersecting in ready vertex
- Intersection in the ready vertex is computed between stored c_{i} and $\mathrm{c}_{\mathrm{i}+1}$

$\mathrm{c} 4 \times \mathrm{c} 5$
$\mathrm{c} 1 \times \mathrm{c} 2$
:---:
c 1

Topological sweep line demo

Input

- set of lines L in the plane
- ordered in increasing slope ($\angle-90^{\circ}$ to 90°), simple, not vertical
- line parameters in array E

1) Initial leftmost cut - C

- Store the indices of lines in E into the Cut lines array C in increasing slope order

CUT Lines C
Indexes of sup-
porting lines

1) Initial leftmost cut - N

Array of line equations E
$y=a_{i} x+b$

1	a_{1}	$\mathrm{~b}_{1}$
2	a_{2}	$\mathrm{~b}_{2}$
3	a_{3}	$\mathrm{~b}_{3}$
4	a_{4}	$\mathrm{~b}_{4}$
	a_{5}	$\mathrm{~b}_{5}$

indices of lines
DCGI

- Prepare array N for endpoints of the cut edges (resp. for line indices delimiting these edges)
- Init it by line "ends" $-\infty,+\infty$

CUT edges N CUT Lines C
Pairs of line indices Indexes of sup-
delimiting the edge porting lines

Index of delimiter edge in $-\infty$

2a) Compute Upper Horizon Tree - UHT

CUT Lines C
Indexes of supporting lines

| | c1 |
| :--- | :--- | 1

CUT edges N
Pairs of line indices
delimiting the edge

	c1	$-\infty$
c2	$-\infty$	∞
	$-\infty$	∞
	$-\infty$	∞
	$-\infty$	$-\infty$
	∞	$-\infty$
		∞

$\begin{array}{ll} & \text { c1 } \\ \text { Order of } & \text { c2 } \\ \text { insertion } & \text { c3 } \\ \text { into UHT } & \text { c5 } \\ & \\ \text { Additional "help edge" }\end{array}$
Unlimited, bottom-up

2b) Compute Lower Horizon Tree - LHT

3a) Determine right delimiters of edges -N

Array of line UHT array equations E

Delimiting
lines indices
$y=a_{i} x+b$

1	a_{1}	$\mathrm{~b}_{1}$
2	a_{2}	$\mathrm{~b}_{2}$
3	a_{3}	$\mathrm{~b}_{3}$
4	a_{4}	$\mathrm{~b}_{4}$
	a_{5}	$\mathrm{~b}_{5}$

1	$-\infty$	2
2	$-\infty$	5
3	$-\infty$	5
4	$-\infty$	5
	$-\infty$	6
	$-\infty$	$+\infty$

LHT array
Delimiting
lines indices

	$-\infty$	6
	$-\infty$	1
	$-\infty$	1
	$-\infty$	3
	$-\infty$	4
6	$+\infty$	$-\infty$

CUT edges N CUT Lines C Stack S Pairs of line indices delimiting the edge
porting lines
Ready vertex first edge idx

c1	$-\infty$	2	c1	1
c2	$-\infty$	1	c2	2
c3	$-\infty$	5	c3	3
c4	$-\infty$	5	c4	4
c5	$-\infty$	4	c5	5

3b) Ready vertices $=$ inters. of neighbors $-S$

Array of line equations $E$$y=a_{i} x+b$			UHT array Delimiting lines indices			LHT array Delimiting lines indices		
1	a_{1}	b_{1}	1	$-\infty$	2	1	$-\infty$	6
2	a_{2}	b_{2}	2	$-\infty$	5	2	$-\infty$	1
3	a_{3}	b_{3}	3	$-\infty$	5	3	$-\infty$	1
4	a_{4}	b_{4}	4	$-\infty$	5	4	$-\infty$	3
5	a_{5}	b_{5}	5	$-\infty$	6	5	$-\infty$	4
			6	$-\infty$	$+\infty$	6	$+\infty$	$-\infty$

Compute intersections of neighbors - push into stack (46 / 60)

4a) Pop ready vertex from S - process c4

Array of line UHT array equations E

Delimiting
lines indices

1	$-\infty$	2
2	$-\infty$	5
3	$-\infty$	5
4	$-\infty$	5
5	$-\infty$	6
6	$-\infty$	$+\infty$

	$-\infty$	6
	$-\infty$	1
	$-\infty$	$-\infty$
	$-\infty$	1
	$-\infty$	4
6	$+\infty$	$-\infty$

$c 1$	$-\infty$	2
c2	$-\infty$	1
c3	$-\infty$	5
c4	$-\infty$	5
c5	$-\infty$	4

c1	1
c2	2
c3	3
c4	4
c5	5

4b) Swap lines c4 and c5 - swap 4 and 5

 equations E

Delimiting
lines indices
$y=a_{i} x+b$

1	a_{1}	$\mathrm{~b}_{1}$
2	a_{2}	$\mathrm{~b}_{2}$
	a_{3}	$\mathrm{~b}_{3}$
4	a_{4}	$\mathrm{~b}_{4}$
	a_{5}	$\mathrm{~b}_{5}$

	$-\infty$	$-\infty$
	$-\infty$	2
3	$-\infty$	5
	$-\infty$	$-\infty$
	$-\infty$	5
6	$-\infty$	$+\infty$

	$-\infty$	6
	$-\infty$	1
	$-\infty$	$-\infty$
4	$-\infty$	3
	$-\infty$	4
6	$+\infty$	$-\infty$

CUT edges N CUT Lines C Stack S Pairs of line indices Indexes of supdelimiting the edge porting lines

	c1	$-\infty$
c2	2	
c2	$-\infty$	1
c3	$-\infty$	5
c4	$-\infty$	4
c5	$-\infty$	5

c1	1
c2	2
c3	3
	5
c5	4

C1

4c) Update the horizon trees - UHT and LHT

Array of line UHT array equations E

Delimiting
lines indices

	a_{1}	b_{1}
2	a_{2}	b_{2}
3	a_{3}	b_{3}
4	a_{4}	b_{4}
	a_{5}	b_{5}

1	$-\infty$	2
2	$-\infty$	5
3	$-\infty$	5
4	5	6
5	4	6
6	$-\infty$	$+\infty$

LHT array Delimiting lines indices

1	$-\infty$	6
	$-\infty$	1
3	$-\infty$	1
4	5	3
	4	3
6	$+\infty$	$-\infty$

CUT edges N CUT Lines C Stack S Pairs of line indices Indexes of sup- Ready vertex delimiting the edge porting lines upper edge id>

	c1
	$-\infty$
c2	$-\infty$
	$-\infty$
c3	$-\infty$
c4	$-\infty$
	$-\infty$
	$-\infty$

c1	1
c2	2
c3	3
c4	5
	4

c1.

4d) Determine new cut edges endpoints - N

Array of line UHT array equations E

Delimiting lines indices
$y=a_{i} x+b$

1	a_{1}	b_{1}
2	a_{2}	b_{2}
3	a_{3}	b_{3}
4	a_{4}	b_{4}
5	a_{5}	b_{5}

1	$-\infty$	2
2	$-\infty$	5
3	$-\infty$	5
4	5	6
	4	6
6	$-\infty$	$+\infty$

LHT array Delimiting lines indices

CUT edges N CUT Lines C Stack S Pairs of line indices Indexes of sup porting lines
 Ready vertex upper edge id>

4e) Intersect with neighbors - push into S

Array of line UHT array equations E
$y=a_{i} x+b$

1	a_{1}	$\mathrm{~b}_{1}$
2	a_{2}	$\mathrm{~b}_{2}$
	a_{3}	$\mathrm{~b}_{3}$
4	a_{4}	$\mathrm{~b}_{4}$
	a_{5}	$\mathrm{~b}_{5}$

1	$-\infty$	2
2	$-\infty$	5
3	$-\infty$	5
4	5	6
	4	6
		$-\infty$
	$-\infty$	$+\infty$

LHT array Delimiting lines indices

	$-\infty$	6
	$-\infty$	1
3	$-\infty$	1
	$-\infty$	5
5	4	3
	$+\infty$	$-\infty$

CUT edges N CUT Lines C Stack S Pairs of line indices Indexes of sup- Ready vertex delimiting the edge porting lines upper edge id>

[^0]
4a) Pop ready vertex from S - process c3

Array of line UHT array equations E

Delimiting
lines indices
$y=a_{i} x+b$

	a_{1}	$\mathrm{~b}_{1}$
2	a_{2}	$\mathrm{~b}_{2}$
3	a_{3}	$\mathrm{~b}_{3}$
	a_{4}	$\mathrm{~b}_{4}$
	a_{5}	$\mathrm{~b}_{5}$

1	$-\infty$	2
2	$-\infty$	5
3	$-\infty$	5
4	5	6
5	4	6
6	$-\infty$	$+\infty$

LHT array Delimiting lines indices

1	$-\infty$	6
2	$-\infty$	1
3	$-\infty$	1
4	5	3
5	4	3
6	$+\infty$	$-\infty$

CUT edges N CUT Lines C Stack S Pairs of line indices
delimiting the edge

Indexes of supporting lines

c1	$-\infty$	2
c2	$-\infty$	1
c3	$-\infty$	5
c4	4	3
c5	5	3

Ready vertex first edge idx

4b) Swap lines c4 and c5 - swap 4 and 5

4c) Update the horizon trees - UHT and LHT

Array of line UHT array equations E

Delimiting
lines indices
$y=a_{i} x+b$

1	$-\infty$	2
2	$-\infty$	5
3	5	4
4	5	6
	3	6
6	$-\infty$	$+\infty$

1	$-\infty$	6
2	$-\infty$	1
3	5	1
4	5	3
5	3	1
6	$+\infty$	$-\infty$

LHT array
Delimiting lines indices

CUT edges N CUT Lines C Stack S Pairs of line indices Indexes of supdelimiting the edge porting lines

	c1	$-\infty$
cy	$-\infty$	
c2	$-\infty$	1
c3	4	3
c4	$-\infty$	5
c5	5	3

c1	1
c2	2
c3	5
c4	3
c5	4

C1

4d) Determine new cut edges endpoints

4e) Intersect with neighbors - push into S

Array of line UHT array equations E
$y=a_{i} x+b$

1	$-\infty$	2
2	$-\infty$	5
3	5	4
4	5	6
	3	6
6	$-\infty$	$+\infty$

LHT array Delimiting lines indices

1	$-\infty$	6
	$-\infty$	1
3	5	1
4	5	3
	3	1
	$+\infty$	$-\infty$

CUT edges N CUT Lines C Stack S Pairs of line indices Indexes of sup- Ready vertex delimiting the edge porting lines first edge idx

Topological sweep algorithm

TopoSweep(L)
Slope
Input: \quad Set of lines L sorted by slope (-90° to 90°), simple, not vertical Output: All parts of an Arrangement $A(L)$ detected and then destroyed

1. Let C be the initial (leftmost) cut - lines in increasing order of slope
2. Create the initial UHT and LHT incrementally:
a) UHT by inserting lines in decreasing order of slope
b) LHT by inserting lines in increasing order of slope
3. By consulting UHT and LHT
a) Determine the right endpoints N of all edges of the initial cut C
b) Store neighboring lines with common endpoint into stack S (initial set of ready vertices)
4. Repeat until stack not empty
a) Pop next ready vertex from stack S (its upper edge c_{i})
b) Swap these lines within the cut $C \quad\left(c_{i}<->c_{i+1}\right)$
c) Update the horizon trees UHT and LHT (reenter edge parts)
d) Consulting UHT and LHT determine new cut edges endpoints N

4d)
 Determining cut edges from UHT and LHT

- for lines $i=1$ to n
- Compare UHT and LHT edges on line i
- Set the cut lying on edge i to the shorter edge of these
- Order of the cuts along the sweep line
- Order changes only at the intersection v (neighbors)
- Order of remaining cuts not incident with intersection v does not change
- After changes of the order, test the new neighbors for intersections
- Store intersections right from sweep line into the stack
(58 / 60)

Complexity

- $O\left(n^{2}\right)$ intersections
=> $O\left(n^{2}\right)$ events (elementary steps)
- O(1) amortized time for one step -4c)
=> $O\left(n^{2}\right)$ time for the algorithm

Amortized time

= even though a single elementary step can take more than $\mathrm{O}(1)$ time, the total time needed to perform $O\left(n^{2}\right)$ elementary steps is $O\left(n^{2}\right)$, hence the average time for each step is $O(1)$.

DCGI

References

[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapters 8., http://www.cs.uu.nl/geobook/
[Mount] Mount, D.: Computational Geometry Lecture Notes for Fall 2016, University of Maryland, Lectures 14, 15, and 27. http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf
[Edelsbrunner] Edelsbrunner and Guibas. Topologically sweeping an arrangement. TR 9, 1986, Digital www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR9.pdf
[Rafalin] E. Rafalin, D. Souvaine, I. Streinu, "Topological Sweep in Degenerate cases", in Proceedings of the 4th international workshop on Algorithm Engineering and Experiments, ALENEX 02, in LNCS 2409, SpringerVerlag, Berlin, Germany, pages 155-156.
http://www.cs.tufts.edu/research/geometry/other/sweep/paper.pdf
[Agarwal] Pankaj K. Agarwal and Mica Sharir. Arrangements and Their Applications, 1998, http://www.math.tau.ac.il/~michas/arrsurv.pdf

[^0]: Intersections of neighbors - into stack

