

## **ARRANGEMENTS (uspořádání)**

#### PETR FELKEL

FEL CTU PRAGUE felkel@fel.cvut.cz <u>https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start</u>

Based on [Berg], [Mount]

Version from 3.12.2020

# **Talk overview**

#### Arrangements of lines

- Incremental construction
- Topological plane sweep
- Duality next lesson





# Arrangements

- The next most important structure in CG after CH, VD, and DT
- Possible in any dimension arrangement of (d-1)-dimensional hyperplanes
- We concentrate on arrangement of lines in plane
- Typical application: problems of point sets in dual plane (collinear points, point on circles, ...)



# Some more applications (see CGAL)

- Finding the minimum-area triangle defined by a set of points,
- computation of the sorted angular sequences of points,
- finding the ham-sandwich cut,
- planning the motion of a polygon translating among polygons in the plane,
- computing the offset polygon,
- constructing the farthest-point Voronoi diagram,
- coordinating the motion of two discs moving among obstacles in the plane,
- performing Boolean operations on curved polygons.



## Line arrangement

- A finite set L of lines subdivides the plane into a cell complex, called arrangement A(L)
- In plane, arrangement defines a planar graph
  - Vertices intersections of (2 or more) lines
  - Edges intersection free segments (or rays or lines)
  - Faces convex regions containing no line (possibly unbounded)



## Line arrangement

- Simple arrangement assumption
  - = no three lines intersect in a single point
    - Can be solved by careful implementation or symbolic perturbation



# Line arrangement

• Formal problem: graph must have bounded edges

- Topological fix: add vertex in infinity
- Geometrical fix: BBOX, often enough as abstract with corners  $\{-\infty, -\infty\}, \{\infty, \infty\}$



#### **Combinatorial complexity of line arrangement**

- $O(n^2)$
- Given *n* lines in general position, max numbers are - Vertices  $\binom{n}{2} = \frac{n(n-1)}{2} \rightarrow$  each line intersect n-1 others Edges  $n^2$  $\rightarrow n-1$  intersections create n edges on each of n lines - Faces  $\frac{n(n+1)}{2} + 1 = {n \choose 2} + n + 1$   $f_0 = 1$  (celá rovina)  $f_n = f_{n-1} + n$ n=2 n=3  $f_n = f_0 + \sum_{i=1}^n i = \frac{n(n+1)}{2}$ n=1 n=0  $f_1 = 2$  $f_0 = 1$

# **Construction of line arrangement**



# **A. Incremental construction of arrangement**

- O(n<sup>2</sup>) time, O(n<sup>2</sup>) space
  ~size of arrangement => it is an optimal algorithm
- Not randomized depends on n only, not on order
- Add line  $l_i$  one by one  $(i = 1 \dots n)$ 
  - Find the leftmost intersection with the BBOX among 2(i - 1) + 4 edges already on the BBOX ...O(i)
  - Trace the line through the arrangement  $A(L_{i-1})$  and split the intersected faces ...O(i) - why? See later
  - Update the subdivision (cell split)  $\dots O(1)$
- Altogether  $O(ni) = O(n^2)$   $\neq \neq \neq \neq +$  $\neq DCGI$ •  $O(ni) = O(n^2)$

# **A. Tracing the line through the arrangement**

- Walk around edges of current face (face walking)
- Determine if the line  $l_i$  intersects current edge e
- When intersection found, jump to the face on the other side of edge e



# **A. Incremental construction of arrangement**

Arrangement(*L*)

*Input:* Set of lines *L* in general position (no 3 intersect in 1 common point) *Output:* Line arrangement A(L) (resp. part of the arrangement stored in BBOX B(L) containing all the vertices of A(L))



# The Zone of edge $l_i$



# Edges in the cells of the zone



Total number of edges in all zone faces Naïve upper bound edge  $l_i$  passes max *i* faces ... O(i)each face bounded by at most *i* lines Tight upper bound 6i = O(i)n=8 lines, 16 edges tested of max 48 fight = 0(14/60)

# **Tracing the line through the arrangement**

- Number of traversed edges determines the insertion complexity
- Naïve estimation would be O(i<sup>2</sup>) traversed edges
  (*i* faces, *i* lines per face, *i*<sup>2</sup> edges)
- According to the Zone theorem, it is O(i) edges only!

#### Zone theorem

= given an arrangement A(L) of n lines in the plane and given any line l in the plane, the total number of edges in all the cells of the zone  $Z_A(L)$  is at



# Key idea of a proof

- Find a way to add up edges so that each line will induce a constant number of edges
- Split 6*n* edges of the zone into
  - 3n left bounding edges
  - 3n right bounding edges
  - 6*n* bounding edges total

n = 1, one left bounding edge,  $1 \le 3 = 3n$ 



# Cell split in O(1)

- 1 new vertex
- 2 new face records, 1 face record (f) destroyed
- 3x2 new half-edges, 2 half-edges destroyed
- update pointers ... O(1)



# **Complexity of incremental algorithm**

- n insertions
- O(i) = O(n) time for one line insertion instead of  $O(i^2)$ (Zone theorem)

```
=> Complexity: O(n^2) + n O(i) = O(n^2)
```

bbox edges walked



# **B.** Topological plane sweep algorithm

- Complete arrangement needs  $O(n^2)$  storage
- Often we need just to process each arrangement element just once – and we can throw it out then
- Classical Sweep line algorithm (for arrangement of lines)
  - needs O(n) storage
  - needs  $\log n$  for heap manipulation in  $O(n^2)$  event points
  - $\Rightarrow O(n^2 \log n)$  algorithm

>  $O(n^2)$  algorithm

- Topological sweep line TSL
  - no  $O(\log n)$  factor in time complexity in  $O(n^2)$  event points
  - array of n neighbors and a stack of ready vertices O(1)

4 4 4 4

#### **Illustration from Edelsbrunner & Guibas**



# Topological line (curve) (an intuitive notion) Monotonic curve in y-dir intersects each line exactly once (as a sweep line)

#### Cut in an arrangement A

# **Topological plane sweep algorithm**

#### Starts at the leftmost cut

- Consist of left-unbounded edges of A (ending at  $-\infty$ )

topological

sweep line

- Computed in  $O(n \log n)$  time order of slopes
- The sweep line is
  - pushed from the leftmost cut to the rightmost cut
  - Advances in elementary steps

#### Elementary step

= Processing of any *ready vertex* (intersection of consecutive edges at their right-point)

ready vertex

- Swaps the order of lines along the sweep line
- Is always possible (e.g., the point with smallest x)
- Searching of smallest x would need  $O(\log n)$  time.



## **Step 1 – after processing of c4 x c5**



## Step 2 – after processing of c3 x c4



# How to determine the next right point?

- Elementary step (intersection at edges right-point)
  - Is always possible (e.g., the point with smallest x)
  - But searching the smallest x would need  $O(\log n)$  time
  - We need O(1) time
- Right endpoint of the edge in the cut results from
  - Intersecting it from above (traced from L to R) or

LHT line of *larger slope* intersecting it *from below*.

- Use Upper and Lower Horizon Trees (UHT, LHT)
  - Common segments of UHT and LHT belong to the cut
  - Intersect the trees, find pairs of consecutive edges

 $\neq \neq \pm$  use the right points as legal steps (push to stack)

# **Upper and lower horizon tree**

- Upper horizon tree (UHT)
  - Insert lines in order of decreasing slope (cw)
  - When two edges meet, keep the edge with higher slope and trim the inserted edge (with lower slope)
  - To get one tree and not the forest of trees (if not connected) add a vertical line in  $+\infty$  (slope +90°)
  - Left endpoints of the edges in the cut
    do not belong to the tree
- Lower horizon tree (LHT) construction symmetrical
- UHT and LHT serve for right endpts determination





#### **Overlap UHT and LHT – detect ready vertices**



# **Upper horizon tree (UHT) – init. construction**

new line

- Insert lines in order of decreasing slope (cw)
- Each new line starts above all the current lines
- The uppermost face = convex polygonal chain
- Walk left to right along the chain to determine the intersection
- Never walk twice over a segment `
  - Such segment is no longer part of the upper chain
  - O(n) segments in UHT
  - $\Rightarrow O(n)$  initial construction
    - (after n log n sorting of the lines ~slope)

# **Upper horizon tree (UHT) – update**

- After the elementary step
- Two edges swap position along the sweep line
- Lower edge l (lower slope, comes from above)
  - Reenter to UHT
  - Terminate at nearest edge of UHT
  - Start in edge below in the current cut
  - Traverse the face in CCW order
  - Intersection must exist, as *l* has lower slope than the other edge from *v* and both belong to the same face

Ready vertex

# **Data structures for topological sweep alg.**

Topological sweep line algorithm uses 5 arrays:

1) Line equation coefficients - E [1:n] 2) Upper horizon tree – UHT [1*:n*] 3) Lower horizon tree – LHT [1*:n*] Order of lines cut by the sweep line – C [1:n] Edges along the sweep line - N [1:n] 6) Stack for ready vertices (events) – S (*n* number of lines) + + + + + + + + + + + + + + + + + + + +

# 1) Line equation coefficients *E* [1:*n*]



Array of line

equations E

# Array of line equation coefs. E

- Contains coefficients  $a_i$  and  $b_i$ of line equations  $y = a_i x + b_i$
- E is indexed by the line index
- Lines are ordered according to their slope (angle from -90° to 90°)



# 2) and 3) – Horizon trees UHT and LHT



## 4) Order of lines cut by sweep line – C [1:n]

- The topological sweep line cuts each line once
- Order of the cuts (along the topological sweep line) is stored in array C as a sequence of line indices



## 5) Edges along the sweep line – N [1:n]

- Edges intersected by the topological sweep line are stored here (edges along the sweep line)
- Instead of endpoints themselves, we store the indices of lines whose intersections delimit the edge
- Order of these edges is the same as in C (both use the index *ci*)
- c2 Index *ci* stores the index c3 of *i-th* edge from top along c4 the sweep line **c5**

CUT edges N Pairs of line indices delimiting the edge

c1



# 6) Stack S

- The exact order of events is not important (event = intersection in ready vertex)
- Alg. can process any "ready vertex"
- Event queue is therefore replaced by a stack (faster: 0(1) instead of 0(log n) for queue) Stack S
- The stack stores just the upper edge c<sub>i</sub> from the pair intersecting in ready vertex
- Intersection in the ready vertex is computed between stored c<sub>i</sub> and c<sub>i+1</sub>



**Ready vertex** 

first edge idx

## **Topological sweep line demo**



set of lines L in the plane

 ordered in increasing slope (∠ -90° to 90°), simple, not vertical

(40 / 60)

line parameters in array E

## 1) Initial leftmost cut - C



## 1) Initial leftmost cut - N



## 2a) Compute Upper Horizon Tree - UHT



## **2b) Compute Lower Horizon Tree - LHT**



## 3a) Determine right delimiters of edges - N



#### **3b) Ready vertices = inters. of neighbors – S**



#### 4a) Pop ready vertex from S – process c4



#### 4b) Swap lines c4 and c5 – swap 4 and 5



### 4c) Update the horizon trees – UHT and LHT



### 4d) Determine new cut edges endpoints – N



### 4e) Intersect with neighbors – push into S



#### 4a) Pop ready vertex from S – process c3



#### 4b) Swap lines c4 and c5 – swap 4 and 5



#### 4c) Update the horizon trees – UHT and LHT



#### 4d) Determine new cut edges endpoints



## 4e) Intersect with neighbors – push into S



## **Topological sweep algorithm**

TopoSweep(L)SlopeInput:Set of lines L sorted by slope (-90° to 90°), simple, not verticalOutput:All parts of an Arrangement A(L) detected and then destroyed

- 1. Let C be the initial (leftmost) cut lines in increasing order of slope
- 2. Create the initial UHT and LHT incrementally:
  - a) UHT by inserting lines in decreasing order of slope
  - b) LHT by inserting lines in increasing order of slope
- 3. By consulting UHT and LHT
  - a) Determine the right endpoints N of all edges of the initial cut C
  - b) Store neighboring lines with common endpoint into stack S (initial set of *ready vertices*)
- 4. Repeat until stack not empty
  - a) Pop next ready vertex from stack S (its upper edge  $c_i$ )
  - b) Swap these lines within the cut C  $(c_i < -> c_{i+1})$
  - c) Update the horizon trees UHT and LHT (reenter edge parts )
  - d) Consulting UHT and LHT determine new cut edges endpoints N
  - If new neighboring edges share an endpoint -> push them or S

+ + + + + + + + + + + + + + + +

## **Determining cut edges from UHT and LHT**

- for lines i = 1 to n
  - Compare UHT and LHT edges on line *i*
  - Set the cut lying on edge *i* to the shorter edge of these
- Order of the cuts along the sweep line
  - Order changes only at the intersection v (neighbors)
  - Order of remaining cuts not incident with intersection v does not change
- After changes of the order, test the new neighbors for intersections
  - Store intersections right from sweep line into the stack



# Complexity

- O(n<sup>2</sup>) intersections
  => O(n<sup>2</sup>) events (elementary steps)
- O(1) amortized time for one step 4c)
  => O(n<sup>2</sup>) time for the algorithm

#### Amortized time

= even though a single elementary step can take more than O(1) time, the total time needed to perform  $O(n^2)$  elementary steps is  $O(n^2)$ , hence the average time for each step is O(1).



## References

- [Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapters 8., <u>http://www.cs.uu.nl/geobook/</u>
- [Mount] Mount, D.: Computational Geometry Lecture Notes for Fall 2016, University of Maryland, Lectures 14, 15, and 27. http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf

[Edelsbrunner] Edelsbrunner and Guibas. Topologically sweeping an arrangement. TR 9, 1986, Digital <u>www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-9.pdf</u>

[Rafalin] E. Rafalin, D. Souvaine, I. Streinu, "Topological Sweep in Degenerate cases", in Proceedings of the 4th international workshop on Algorithm Engineering and Experiments, ALENEX 02, in LNCS 2409, Springer-Verlag, Berlin, Germany, pages 155-156. <u>http://www.cs.tufts.edu/research/geometry/other/sweep/paper.pdf</u>

[Agarwal] Pankaj K. Agarwal and Mica Sharir. Arrangements and Their Applications, 1998, <u>http://www.math.tau.ac.il/~michas/arrsurv.pdf</u>

\* \* \* \* \* \* \* \* \* \* \* \* \* \* \*

+ + + + +