

ARRANGEMENTS (uspořádání)

PETR FELKEL

FEL CTU PRAGUE

felkel@fel.cvut.cz

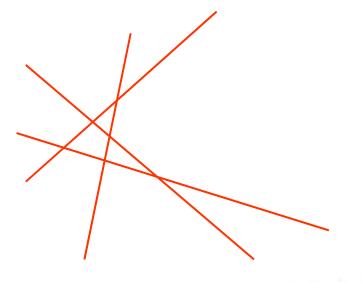
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Mount]

Version from 3.12.2020

Talk overview

- Arrangements of lines
 - Incremental construction
 - Topological plane sweep
- Duality next lesson



Arrangements

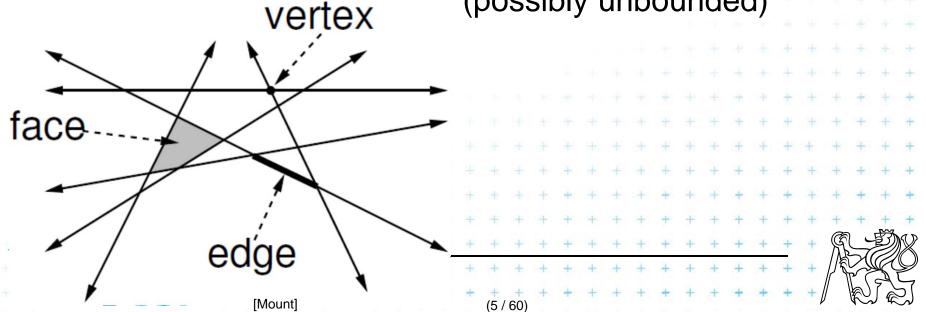
- The next most important structure in CG after CH, VD, and DT
- Possible in any dimension arrangement of (d-1)-dimensional hyperplanes
- We concentrate on arrangement of lines in plane
- Typical application: problems of point sets in dual plane (collinear points, point on circles, ...)

Some more applications (see CGAL)

- Finding the minimum-area triangle defined by a set of points,
- computation of the sorted angular sequences of points,
- finding the ham-sandwich cut,
- planning the motion of a polygon translating among polygons in the plane,
- computing the offset polygon,
- constructing the farthest-point Voronoi diagram,
- coordinating the motion of two discs moving among obstacles in the plane,
- performing Boolean operations on curved polygons.

Line arrangement

- A finite set L of lines subdivides the plane into a cell complex, called arrangement A(L)
- In plane, arrangement defines a planar graph
 - Vertices intersections of (2 or more) lines
 - Edges intersection free segments (or rays or lines)
 - Faces convex regions containing no line
 (possibly unbounded)



Line arrangement

- Simple arrangement assumption
 - = no three lines intersect in a single point
 - Can be solved by careful implementation or symbolic perturbation

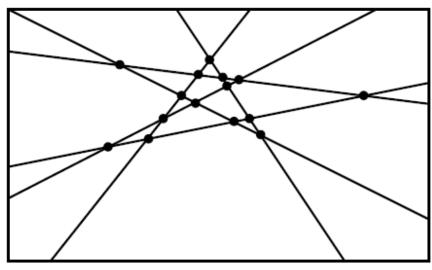
Line arrangement

Formal problem: graph must have bounded edges

Topological fix: add vertex in infinity

- Geometrical fix: BBOX, often enough as abstract

with corners $\{-\infty, -\infty\}, \{\infty, \infty\}$



bounding box

[Mount]

Combinatorial complexity of line arrangement

- $O(n^2)$
- Given n lines in general position, max numbers are

- Vertices
$$\binom{n}{2} = \frac{n(n-1)}{2}$$
 → each line intersect $n-1$ others

Edges

 $\rightarrow n-1$ intersections create n edges

on each of n lines

- Faces
$$\frac{n(n+1)}{2} + 1 = \binom{n}{2} + n + 1$$
 on each of n lines $f_0 = 1$ (celá rovina) $f_n = f_{n-1} + n$

$$n=0$$
 $n=1$ $n=2$ $n=3$

$$f_0 = 1$$
 $f_1 = 2$ $f_2 = 4$ $f_3 = 7$

$$f_n = f_0 + \sum_{i=1}^n i = \frac{n(n+1)}{2} + 1$$

Construction of line arrangement

(0. Plane sweep method)

- $O(n^2 \log n)$ time and O(n) storage plus $O(n^2)$ storage for the arrangement $(n^2 \text{ vertices, edges, faces. } \log n^2 \text{ - heap \& BVS access)}$

 $n^2 \log n^2$ $= 2n^2 \log n$ $= O(n^2 \log n)$

A. Incremental method

- $O(n^2)$ time and $O(n^2)$ storage
- Optimal method

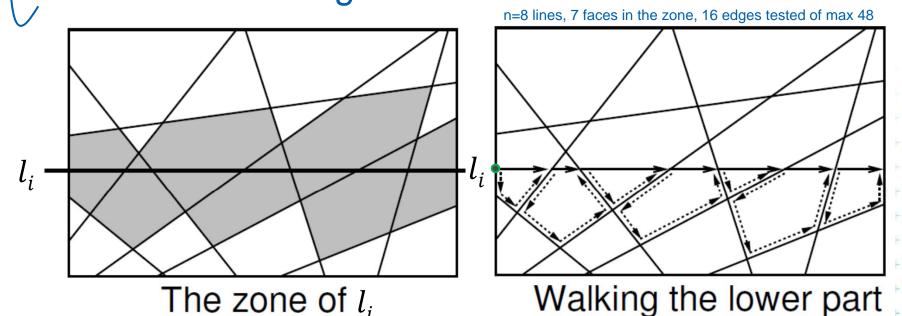
B. Topological plane sweep

- $O(n^2)$ time and O(n) storage only
- Does not store the result arrangement
- Useful for applications that may throw out the
- arrangement after processing

A. Incremental construction of arrangement

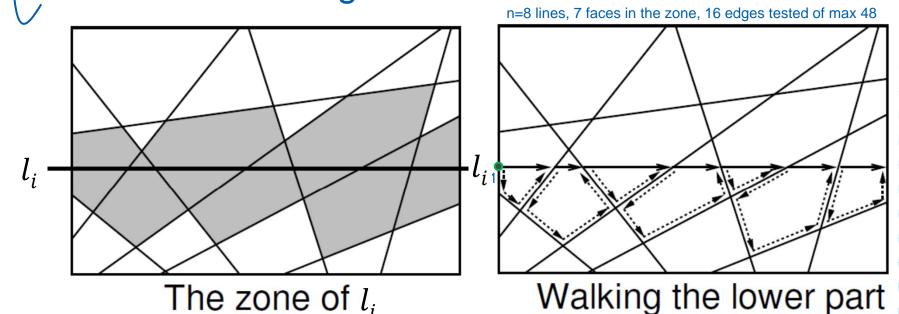
- $O(n^2)$ time, $O(n^2)$ space ~size of arrangement => it is an optimal algorithm
- Not randomized depends on n only, not on order
- Add line l_i one by one $(i = 1 \dots n)$
 - Find the leftmost intersection with the BBOX among 2(i-1) + 4 edges already on the BBOX ...O(i)
 - Trace the line through the arrangement $A(L_{i-1})$ and split the intersected faces ...O(i) why? See later
 - Update the subdivision (cell split) ...0(1)
- Altogether $O(ni) = O(n^2)$

- Walk around edges of current face (face walking)
- **Determine** if the line l_i intersects current edge e
- When intersection found, jump to the face on the other side of edge e



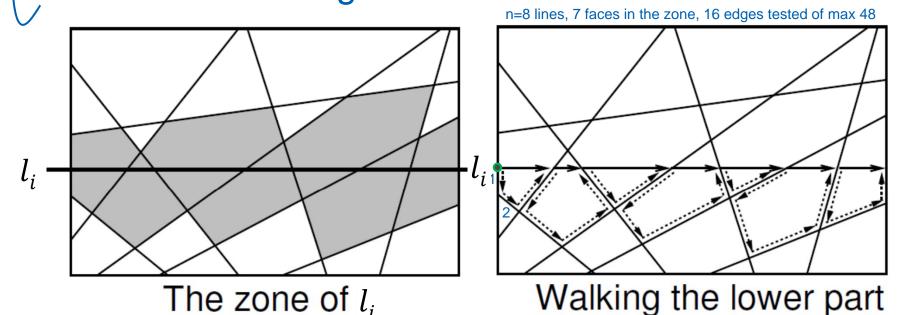
[Berg]

- Walk around edges of current face (face walking)
- Determine if the line l_i intersects current edge e
- When intersection found, jump to the face on the other side of edge e



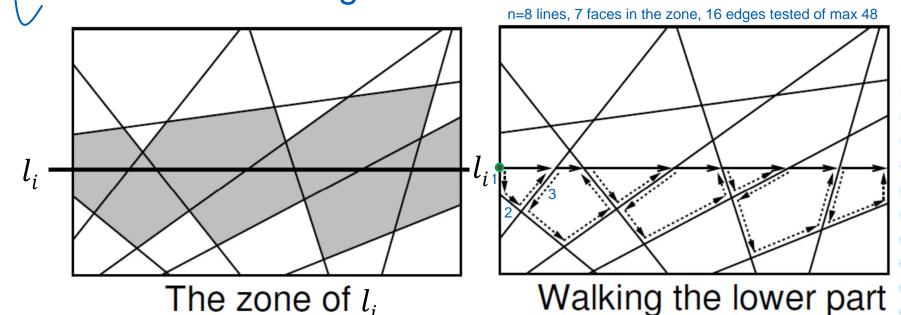
[Berg]

- Walk around edges of current face (face walking)
- Determine if the line l_i intersects current edge e
- When intersection found, jump to the face on the other side of edge e



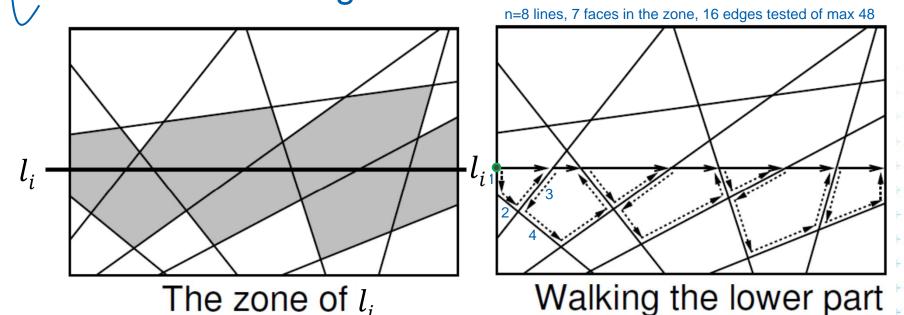
[Berg]

- Walk around edges of current face (face walking)
- Determine if the line l_i intersects current edge e
- When intersection found, jump to the face on the other side of edge e



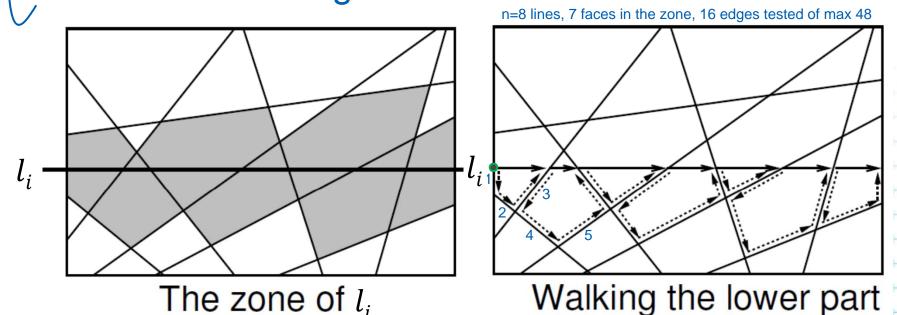
[Berg]

- Walk around edges of current face (face walking)
- Determine if the line l_i intersects current edge e
- When intersection found, jump to the face on the other side of edge e



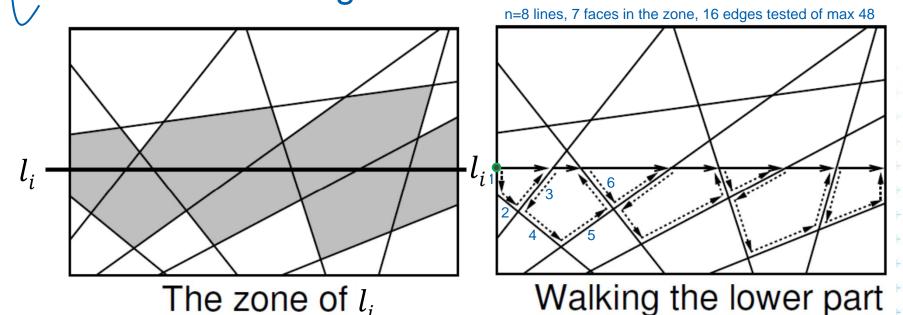
[Berg]

- Walk around edges of current face (face walking)
- Determine if the line l_i intersects current edge e
- When intersection found, jump to the face on the other side of edge e



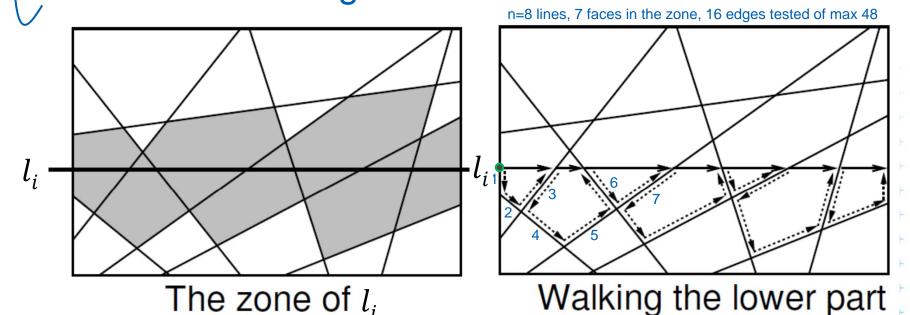
[Berg]

- Walk around edges of current face (face walking)
- Determine if the line l_i intersects current edge e
- When intersection found, jump to the face on the other side of edge e



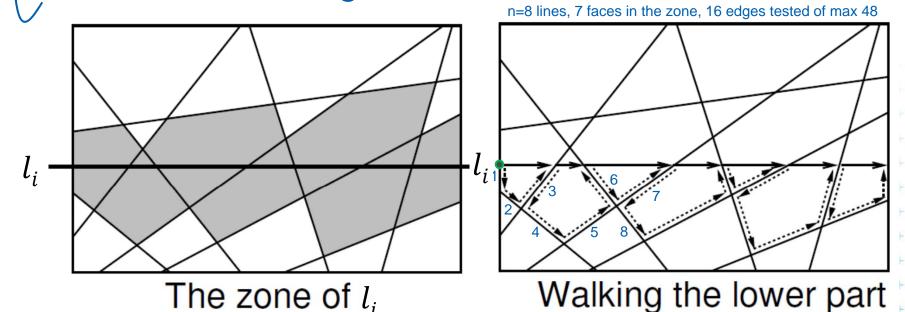
[Berg]

- Walk around edges of current face (face walking)
- Determine if the line l_i intersects current edge e
- When intersection found, jump to the face on the other side of edge e



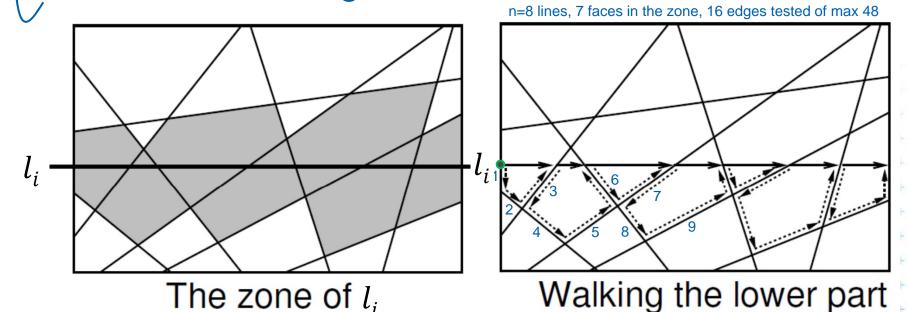
[Berg]

- Walk around edges of current face (face walking)
- Determine if the line l_i intersects current edge e
- When intersection found, jump to the face on the other side of edge e



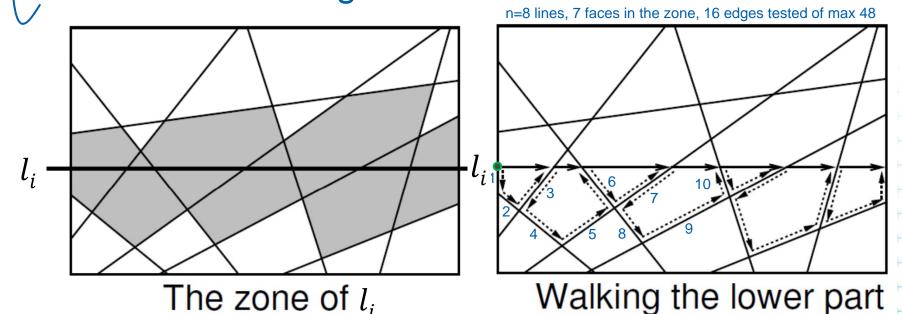
[Berg]

- Walk around edges of current face (face walking)
- Determine if the line l_i intersects current edge e
- When intersection found, jump to the face on the other side of edge e



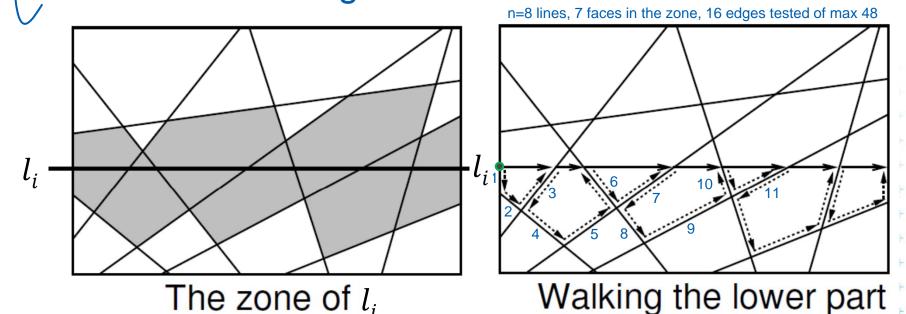
[Berg]

- Walk around edges of current face (face walking)
- Determine if the line l_i intersects current edge e
- When intersection found, jump to the face on the other side of edge e



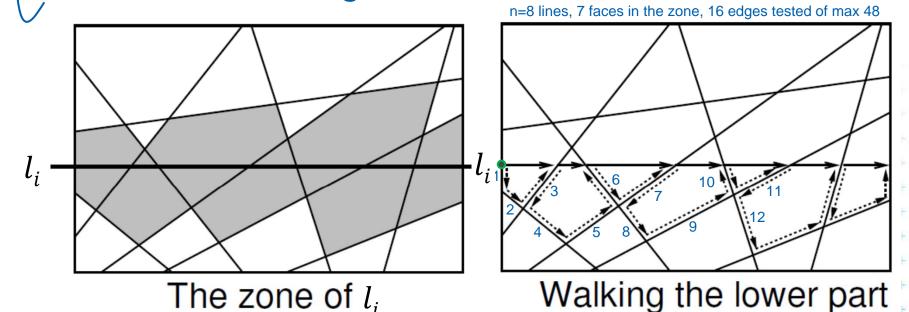
[Berg]

- Walk around edges of current face (face walking)
- Determine if the line l_i intersects current edge e
- When intersection found, jump to the face on the other side of edge e



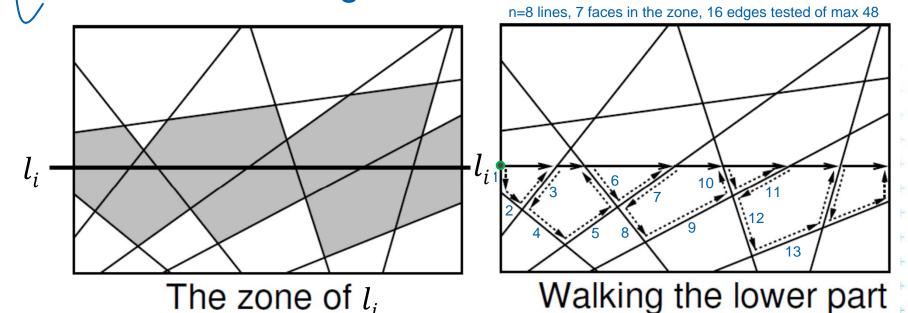
[Berg]

- Walk around edges of current face (face walking)
- Determine if the line l_i intersects current edge e
- When intersection found, jump to the face on the other side of edge e



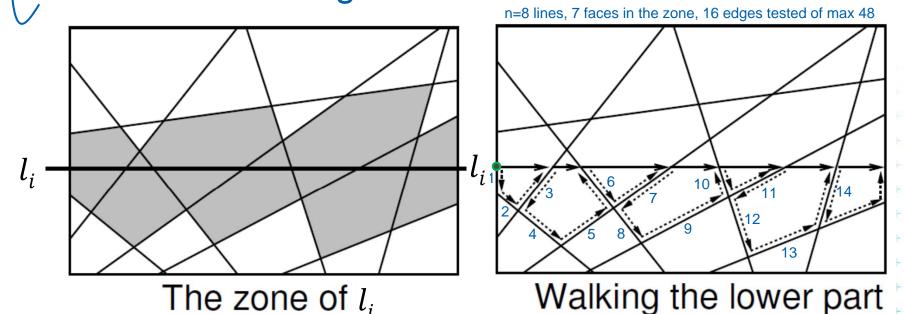
[Berg]

- Walk around edges of current face (face walking)
- Determine if the line l_i intersects current edge e
- When intersection found, jump to the face on the other side of edge e



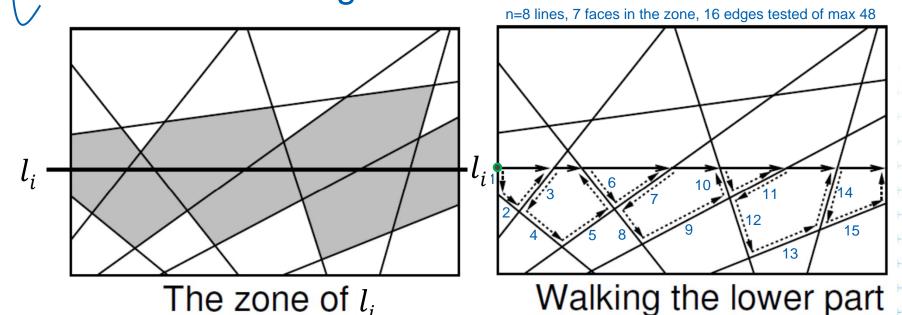
[Berg]

- Walk around edges of current face (face walking)
- Determine if the line l_i intersects current edge e
- When intersection found, jump to the face on the other side of edge e



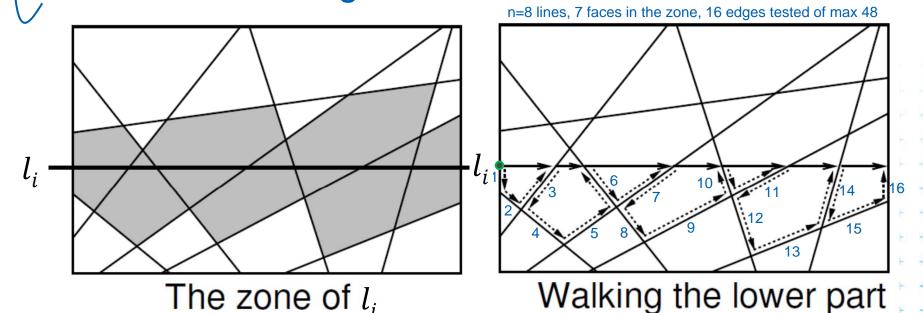
[Berg]

- Walk around edges of current face (face walking)
- Determine if the line l_i intersects current edge e
- When intersection found, jump to the face on the other side of edge e



[Berg]

- Walk around edges of current face (face walking)
- Determine if the line l_i intersects current edge e
- When intersection found, jump to the face on the other side of edge e

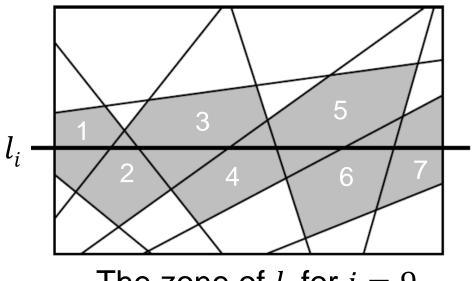


[Berg]

A. Incremental construction of arrangement

```
Arrangement( L )
         Set of lines L in general position (no 3 intersect in 1 common point)
Input:
Output: Line arrangement A(L) (resp. part of the arrangement stored in
         BBOX B(L) containing all the vertices of A(L))
    Compute the BBOX B(L) containing all the vertices of A(L)
                                                                    ...0(n^2)
    Construct DCEL for the subdivision induced by BBOX B(L)
                                                                    ...0(1)
    for i = 1 to n do
                      /\!\!/ insert line l_i
      find edge e, where line l_i intersects the BBOX of 2(i-1)+4 edges ...O(i)
4.
      f = bounded face incident to the edge e
      while f is in B(L) (bounded face f = f is in the BBOX)
             split f and set f to be the next intersected face
                                   across the intersected edge
             update the DCEL (split the cell) + + + + +
8.
                    + + + + + + + + + + + + + + + + +
```

The Zone of edge l_i



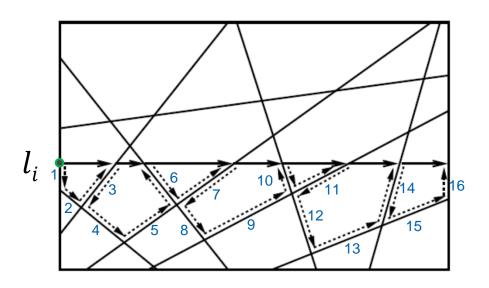
The zone of l_i for i = 9

Zone $Z_A(l_i)$ = set of i faces of A(L) intersected by l_i

 l_i crosses max i-1 lines $\Rightarrow i$ faces

 l_9 : i - 1 = 8 lines, 7 of max 9 faces in the zone

Edges in the cells of the zone



Total number of edges in all zone faces

Naïve upper bound

edge l_i passes max i faces ... O(i) each face bounded by at most i lines O(i)

Tight upper bound 6i = O(i)

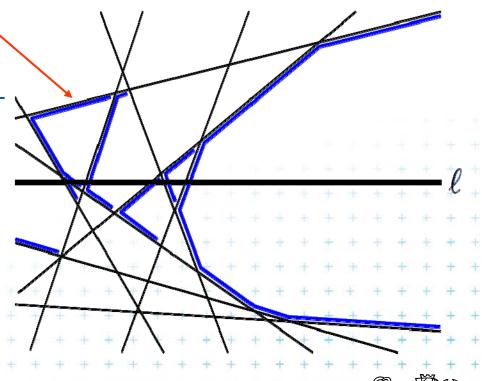
n=8 lines, 16 edges tested of max 48

- Number of traversed edges determines the insertion complexity
- Naïve estimation would be $O(i^2)$ traversed edges (*i* faces, *i* lines per face, i^2 edges)
- According to the Zone theorem, it is O(i) edges only!

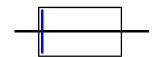
Zone theorem

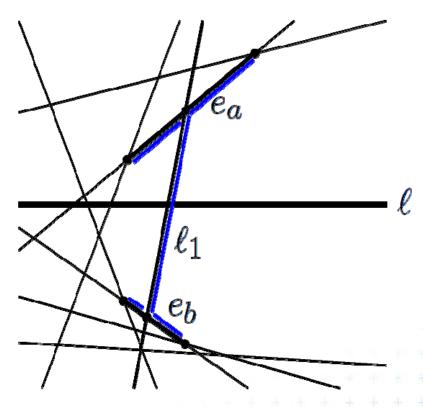
= given an arrangement A(L) of n lines in the plane and given any line l in the plane, the total number of edges in all the cells of the zone $Z_A(L)$ is at most 6n

- Find a way to add up edges so that each line will induce a constant number of edges
- Split 6n edges of the zone into
 - -3n left bounding edges
 - -3n right bounding edges
 - 6n bounding edges total



n = 1, one left bounding edge, $1 \le 3 = 3n$





True for n-1 lines \Rightarrow holds for n lines

 l_1 = rightmost line intersecting l

Without l_1

3(n-1) left bounding edges

Insert l_1

+1 left bounding edge l_1

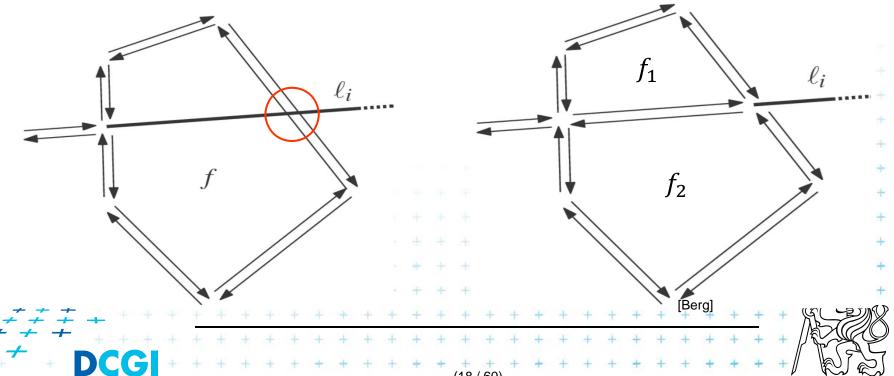
+2 split e_a and e_b

 $3(n-1)+3=3n \Rightarrow \text{hold}$

or less if right bounding edges

Cell split in O(1)

- 1 new vertex
- 2 new face records, 1 face record (f) destroyed
- 3x2 new half-edges, 2 half-edges destroyed
- update pointers ... O(1)



Complexity of incremental algorithm

- n insertions
- O(i) = O(n) time for one line insertion instead of $O(i^2)$ (Zone theorem)

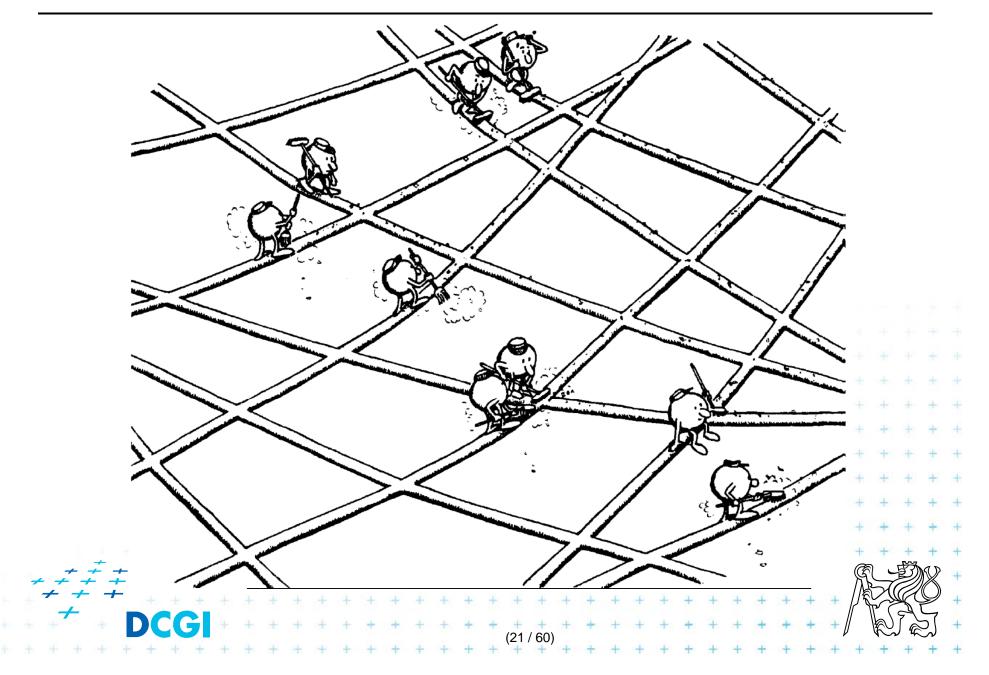
=> Complexity:
$$O(n^2) + n O(i) = O(n^2)$$

bbox edges walked

B. Topological plane sweep algorithm

- Complete arrangement needs $O(n^2)$ storage
- Often we need just to process each arrangement element just once – and we can throw it out then
- Classical Sweep line algorithm (for arrangement of lines)
 - needs O(n) storage
 - needs $\log n$ for heap manipulation in $O(n^2)$ event points
 - $\Rightarrow O(n^2 \log n)$ algorithm
- Topological sweep line TSL
 - no $O(\log n)$ factor in time complexity in $O(n^2)$ event points
 - array of n neighbors and a stack of ready vertices O(1)
 - $\Rightarrow O(n^2)$ algorithm

Illustration from Edelsbrunner & Guibas

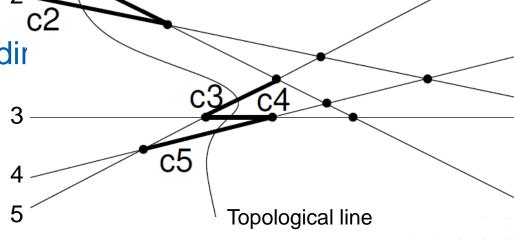


Topological line and cut

Topological line (curve) (an intuitive notion)

Monotonic curve in y-dir

 intersects each line exactly once (as a sweep line)



Cut in an arrangement A

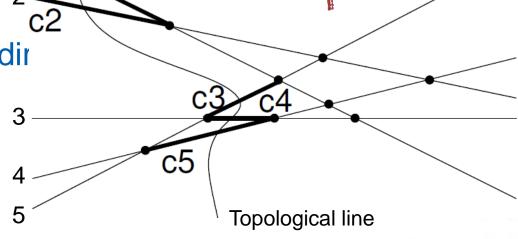
- is an ordered sequence of edges $c_1, c_2, ..., c_n$ in A (one taken from each line), such that for $1 \le i \le n-1$, c_i and c_{i+1} are incident to the same face of A and c_i is above and c_{i+1} below the face
- Edges in the cut are not necessarily connected (as c_2 and c_3)

Topological line and cut

Topological line (curve) (an intuitive notion)

Monotonic curve in y-dir

 intersects each line exactly once (as a sweep line)



Cut in an arrangement A

- is an ordered sequence of edges $c_1, c_2, ..., c_n$ in A (one taken from each line), such that for $1 \le i \le n-1$, c_i and c_{i+1} are incident to the same face of A and c_i is above and c_{i+1} below the face
- Edges in the cut are not necessarily connected (as c_2 and c_3)

Topological plane sweep algorithm

Starts at the leftmost cut

- Consist of left-unbounded edges of A (ending at $-\infty$)
- Computed in $O(n \log n)$ time order of slopes

The sweep line is

pushed from the leftmost cut to the rightmost cut

topological sweep line

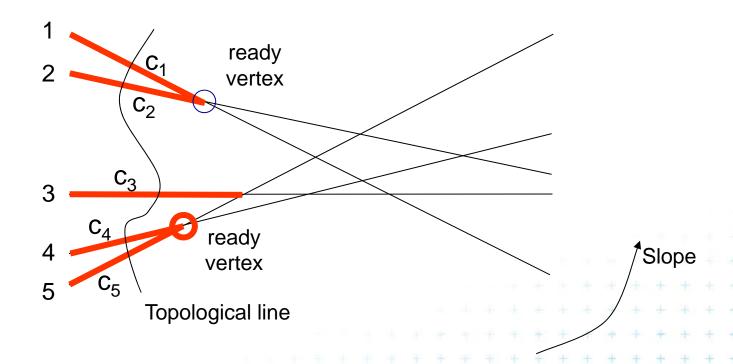
Advances in elementary steps

= Processing of any ready vertex (intersection of consecutive edges at their right-point)

- Swaps the order of lines along the sweep line
- Is always possible (e.g., the point with smallest x)
- Searching of smallest x would need $O(\log n)$ time ...

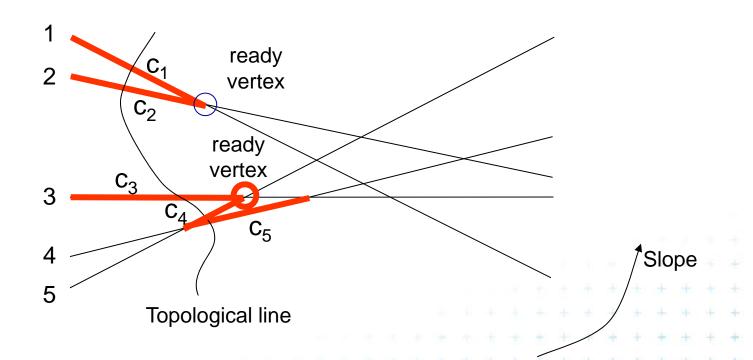
ready vertex

Step 0 – the leftmost cut

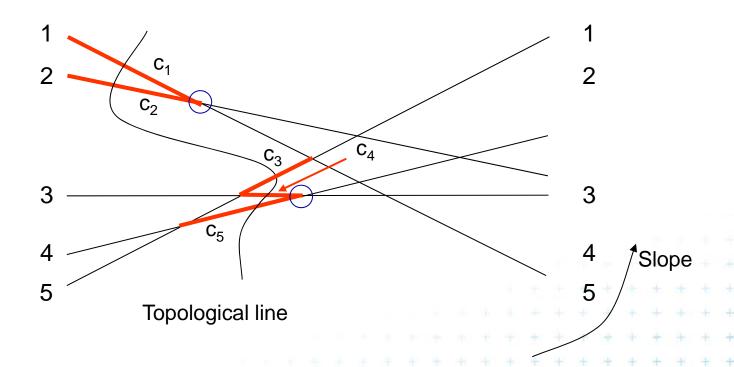


c_i = ordered sequence of edges along the topological sweep line

Step 1 – after processing of c4 x c5



Step 2 – after processing of c3 x c4

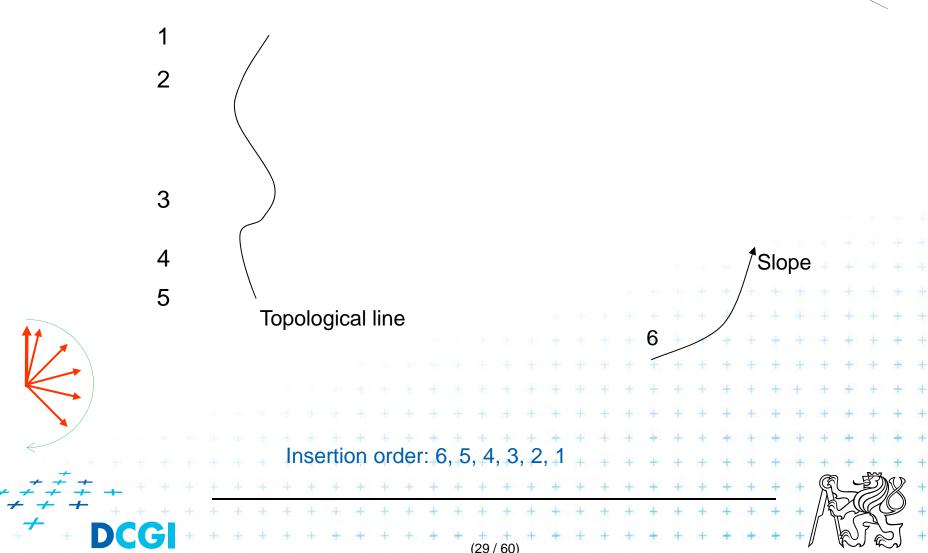


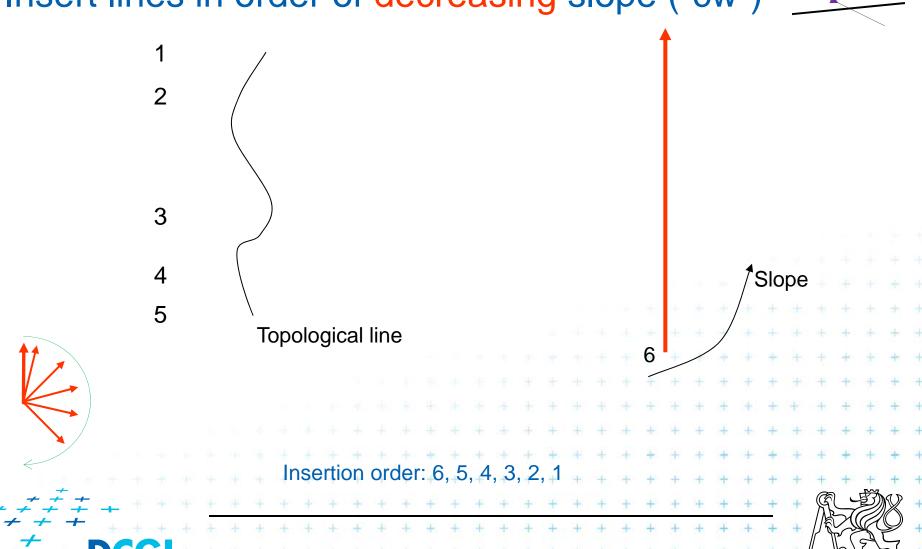
How to determine the next right point?

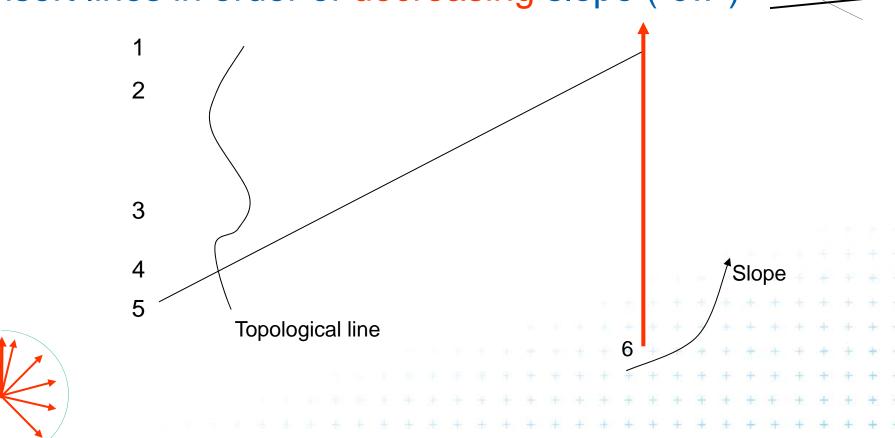
- Elementary step (intersection at edges right-point)
 - Is always possible (e.g., the point with smallest x)
 - But searching the smallest x would need $O(\log n)$ time
 - We need O(1) time
- Right endpoint of the edge in the cut results from
 - a line of *smaller slope* intersecting it *from above* (traced from L to R) or
 - line of *larger slope* intersecting it *from below*.
- Use Upper and Lower Horizon Trees (UHT, LHT)
 - Common segments of UHT and LHT belong to the cut
 - Intersect the trees, find pairs of consecutive edges
 - use the right points as legal steps (push to stack)

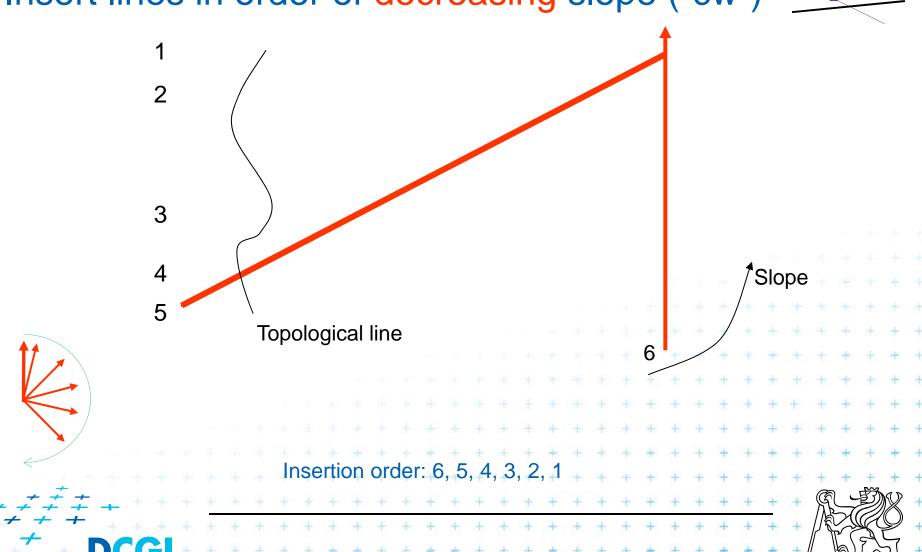
Upper and lower horizon tree

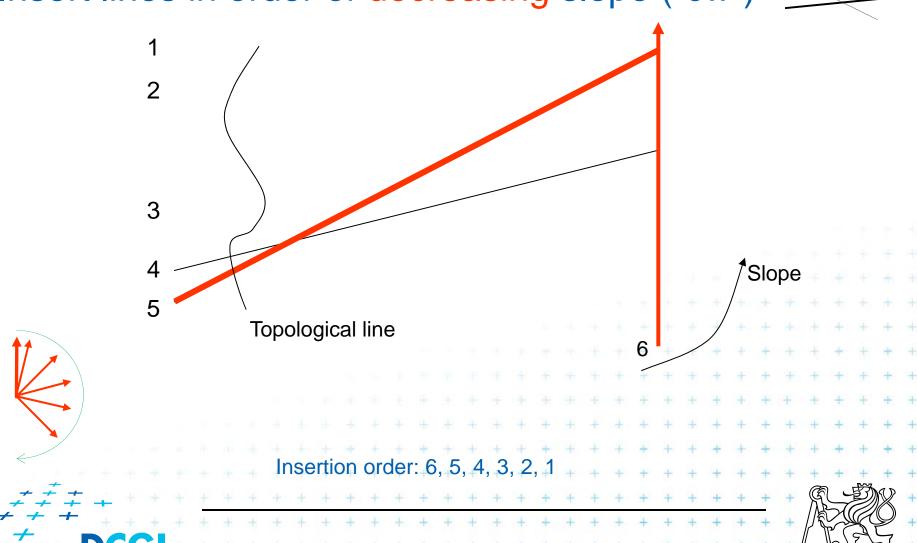
- Upper horizon tree (UHT)
 - Insert lines in order of decreasing slope (cw)
 - When two edges meet, keep the edge with higher slope and trim the inserted edge (with lower slope)
 - To get one tree and not the forest of trees (if not connected) add a vertical line in +∞ (slope +90°)
 - Left endpoints of the edges in the cut
 do not belong to the tree
- Lower horizon tree (LHT) construction symmetrical
- UHT and LHT serve for right endpts determination

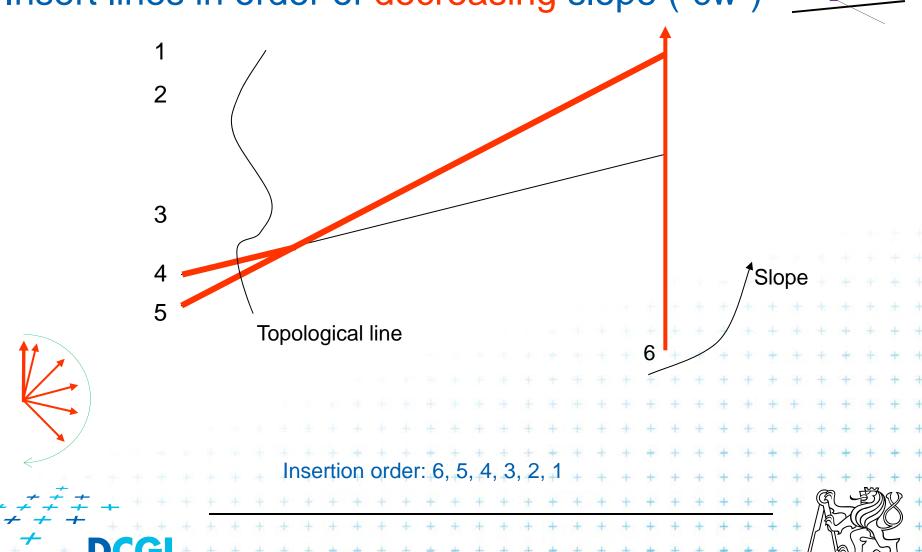


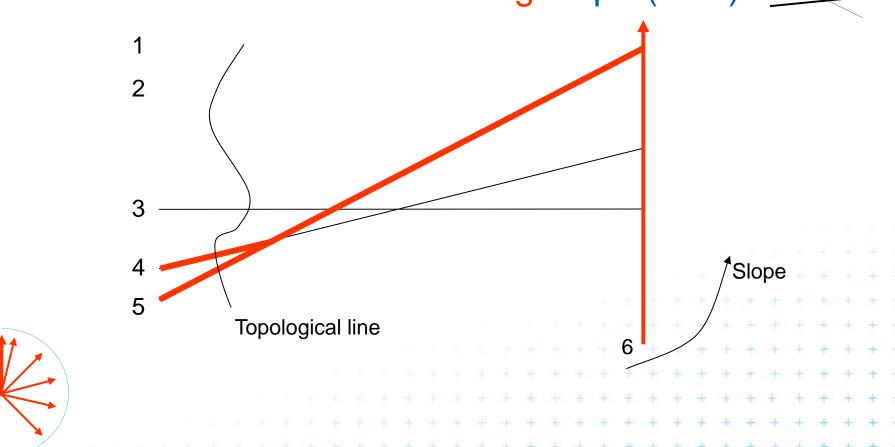




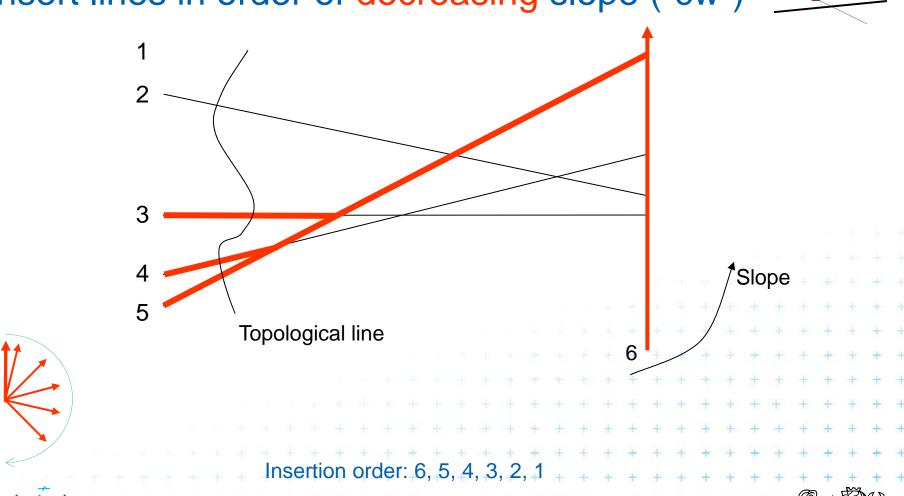


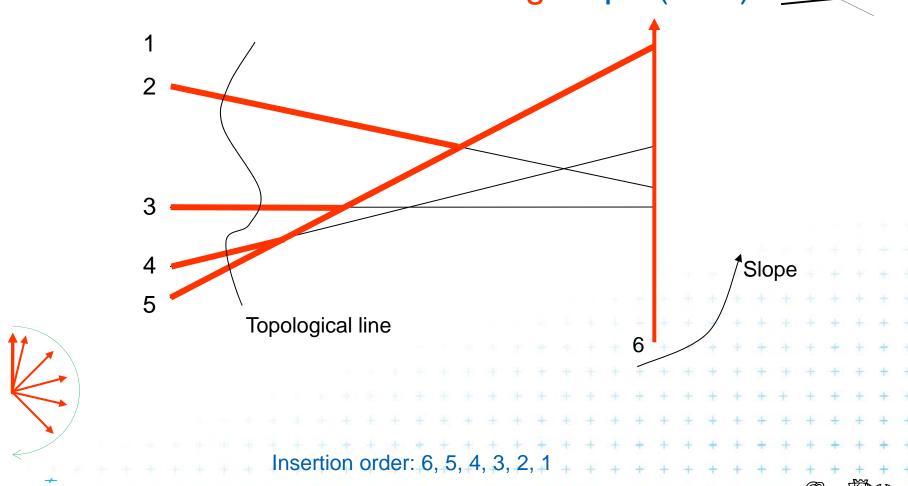


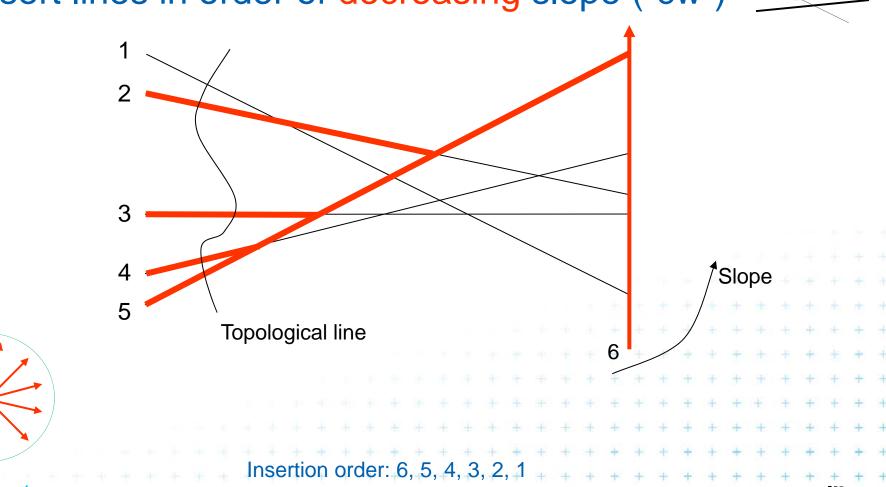


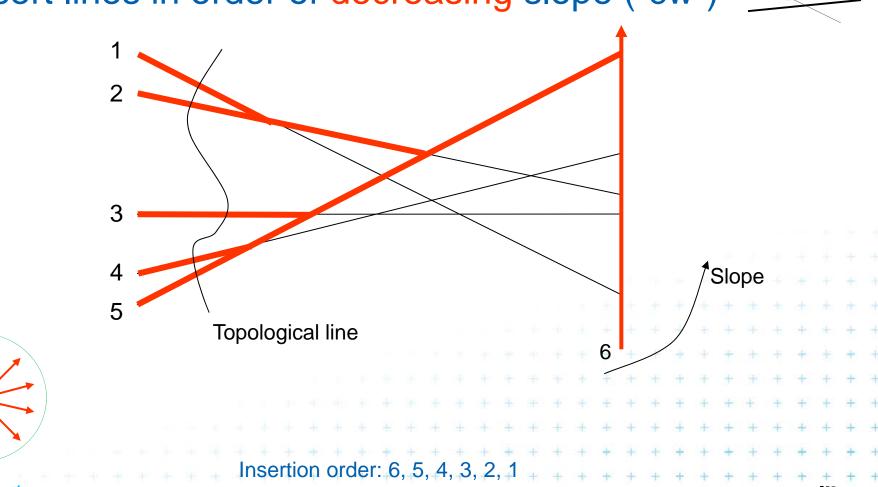


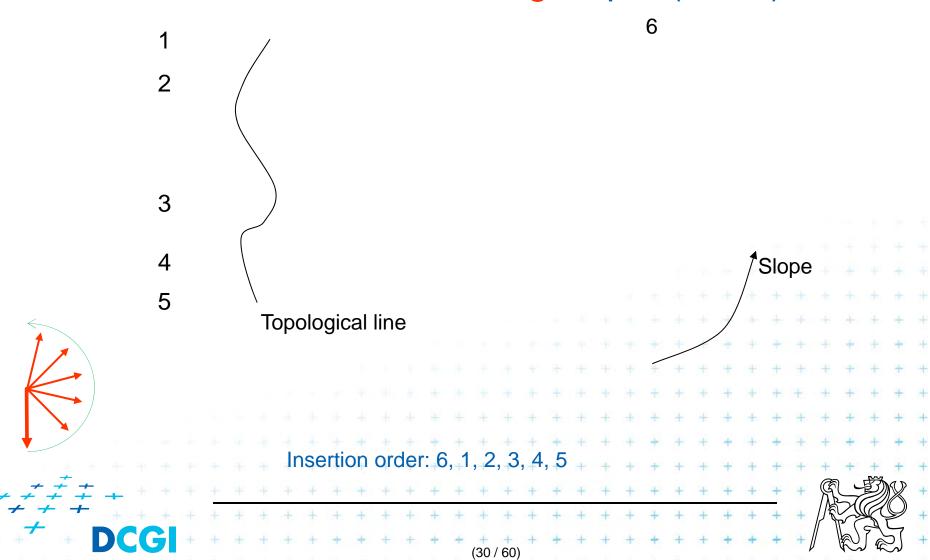


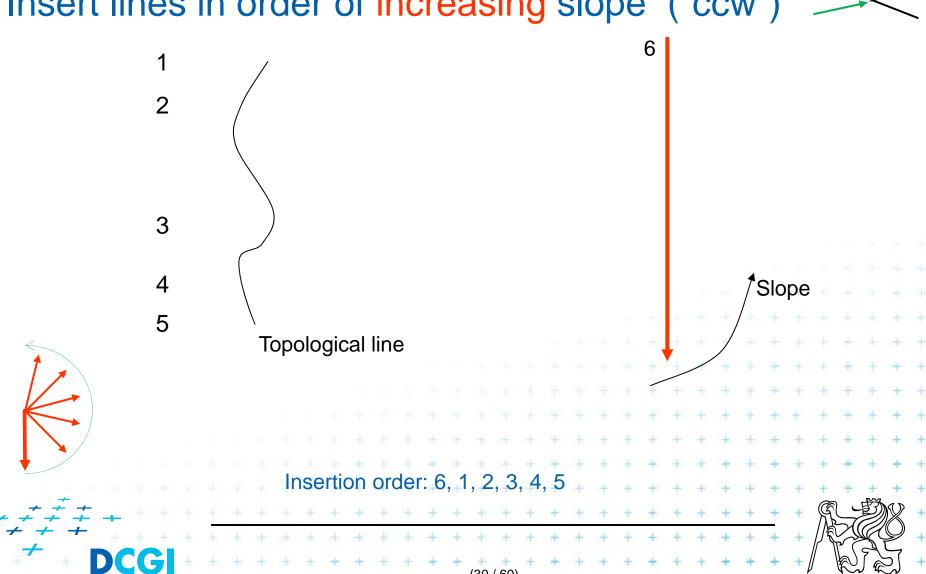


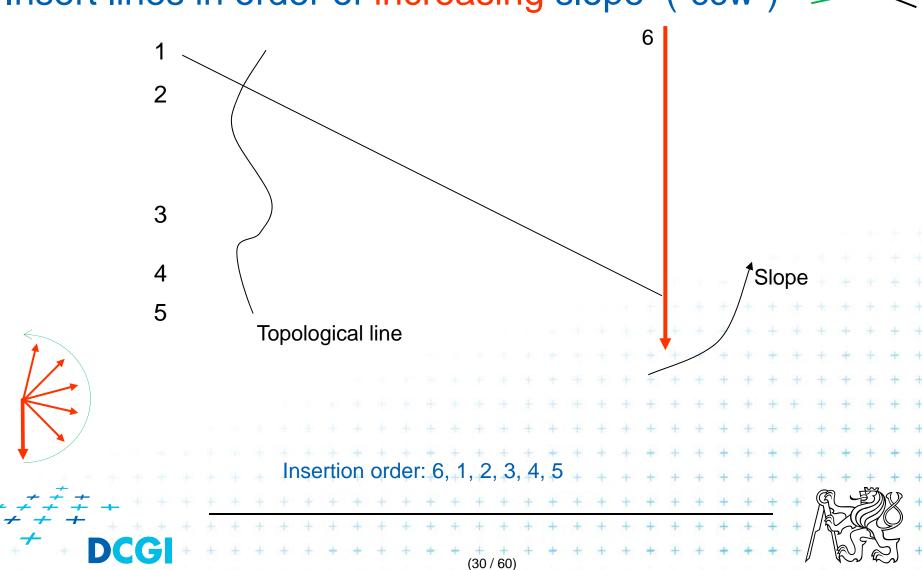


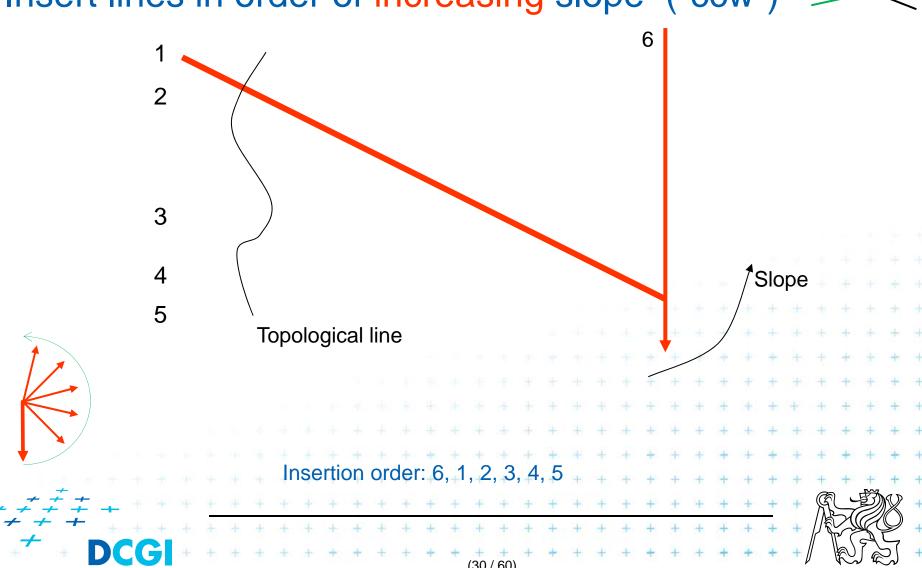


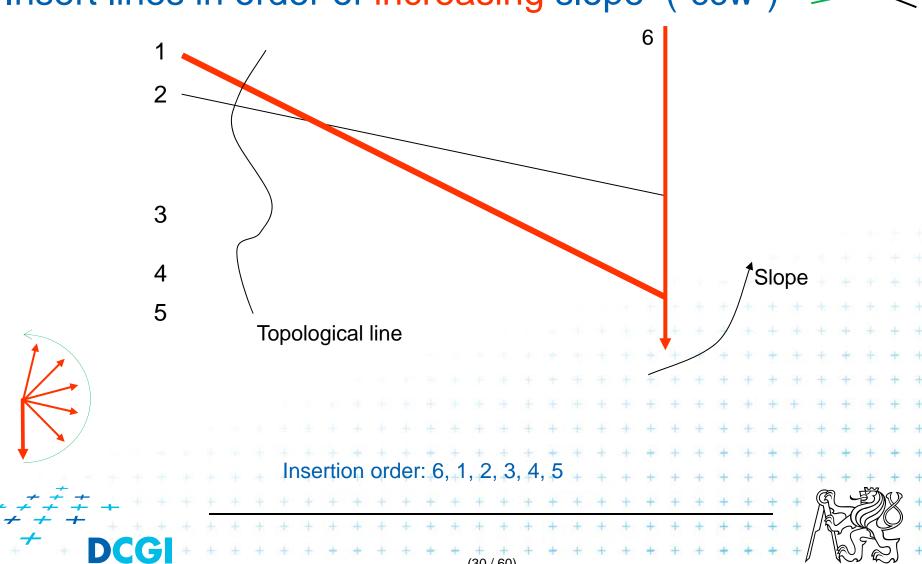


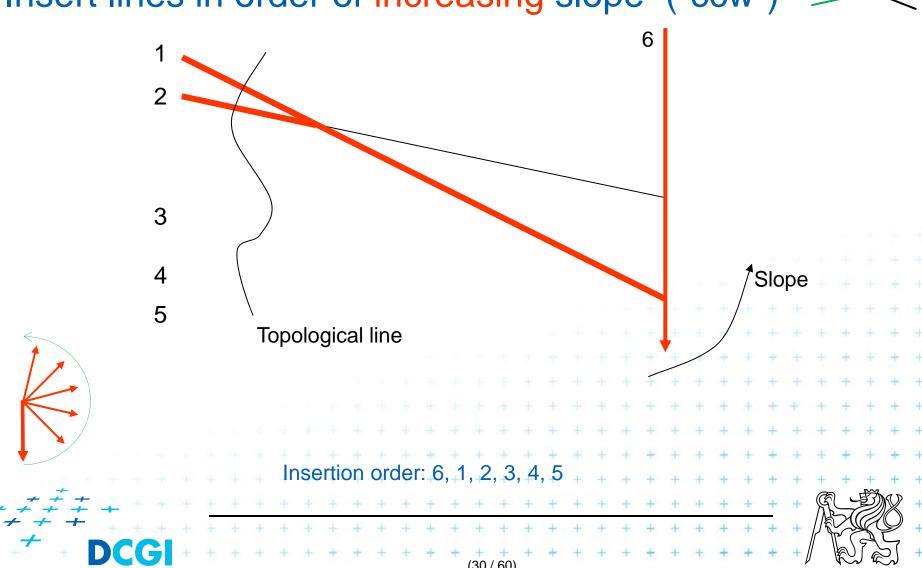


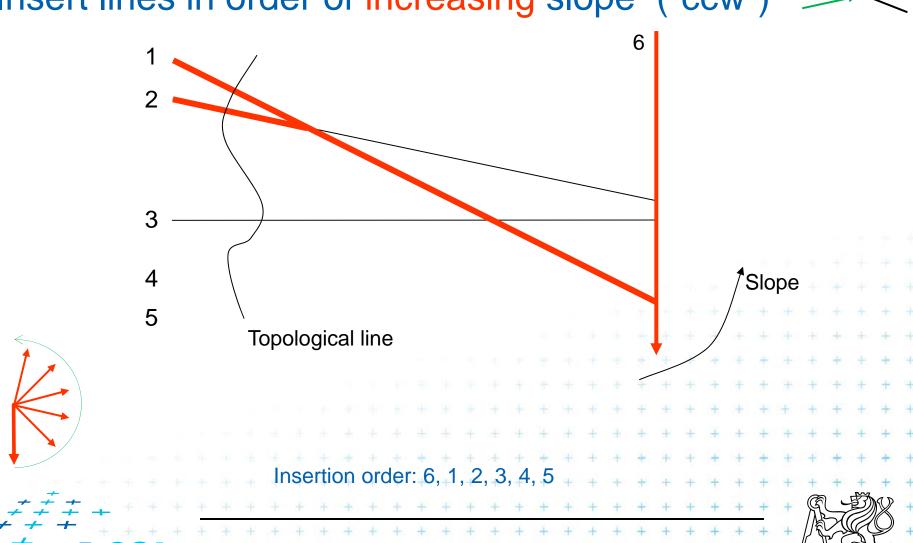


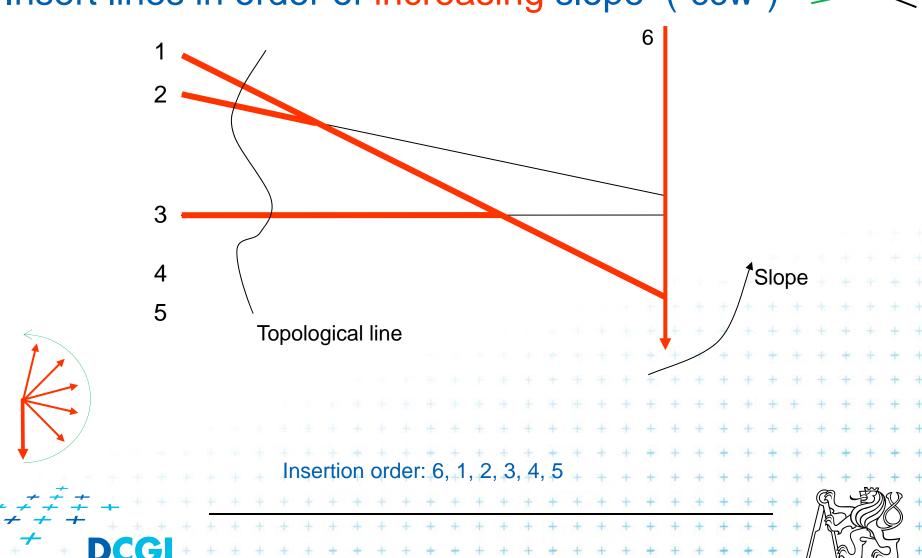


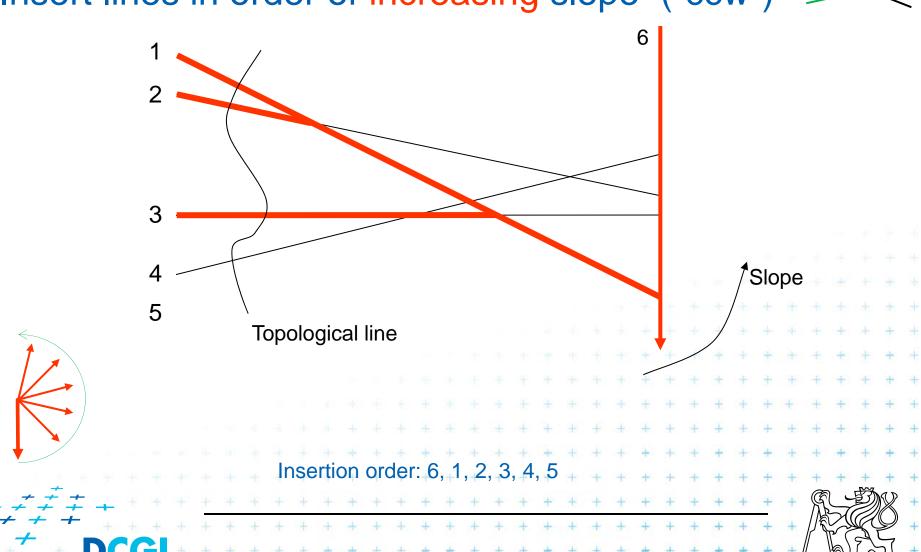


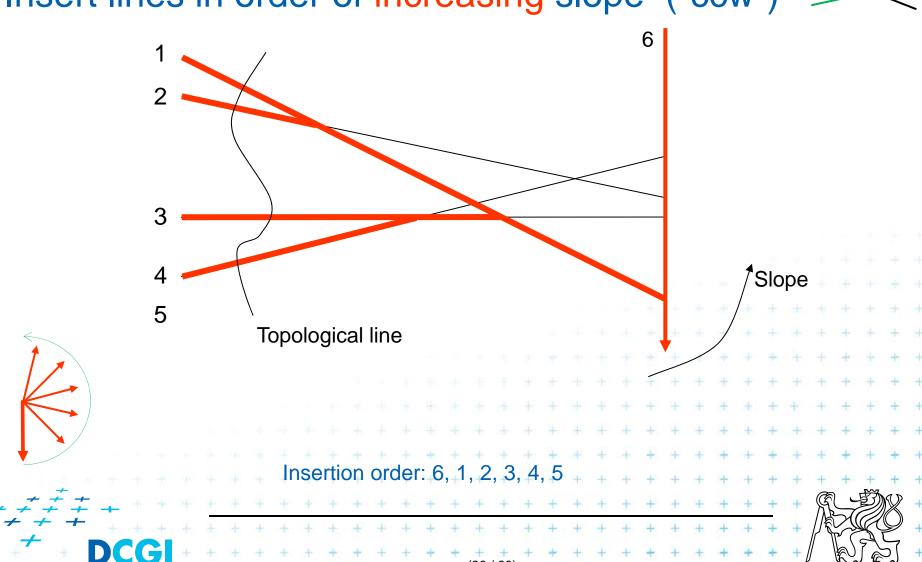


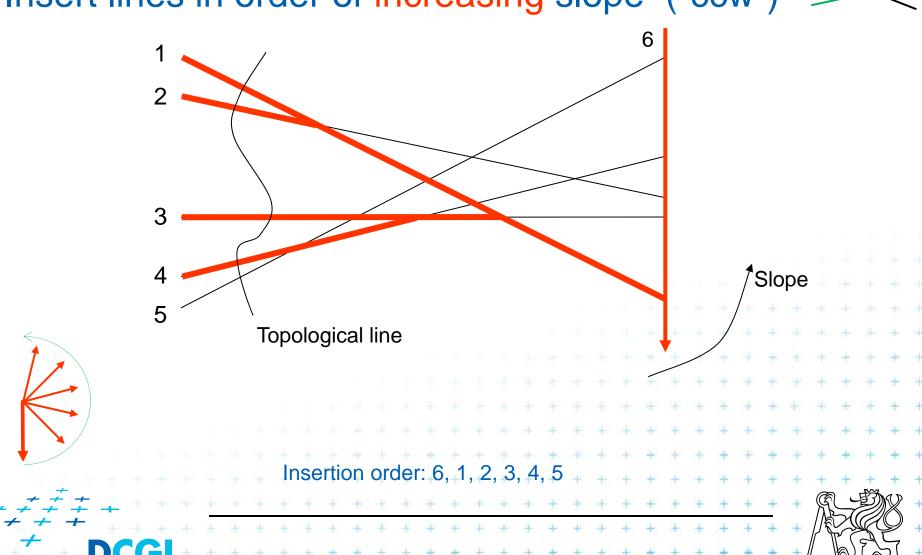


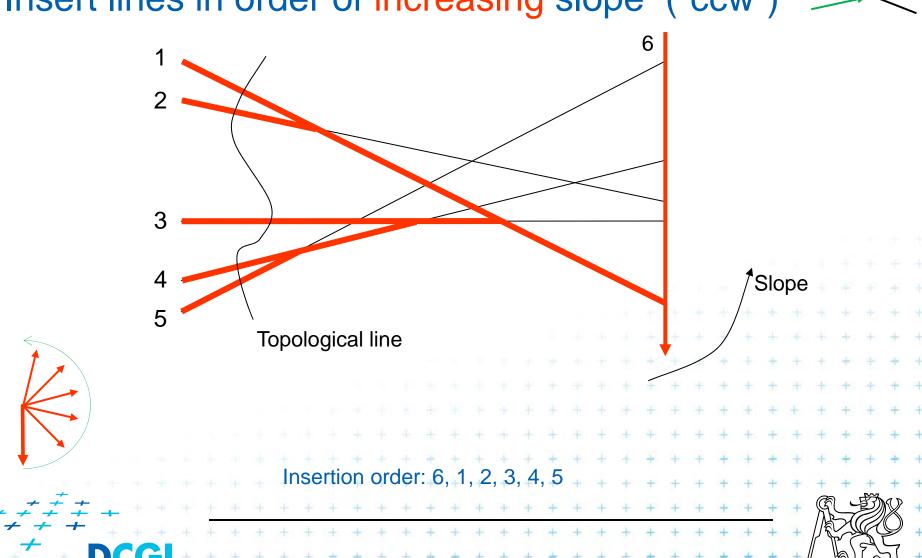




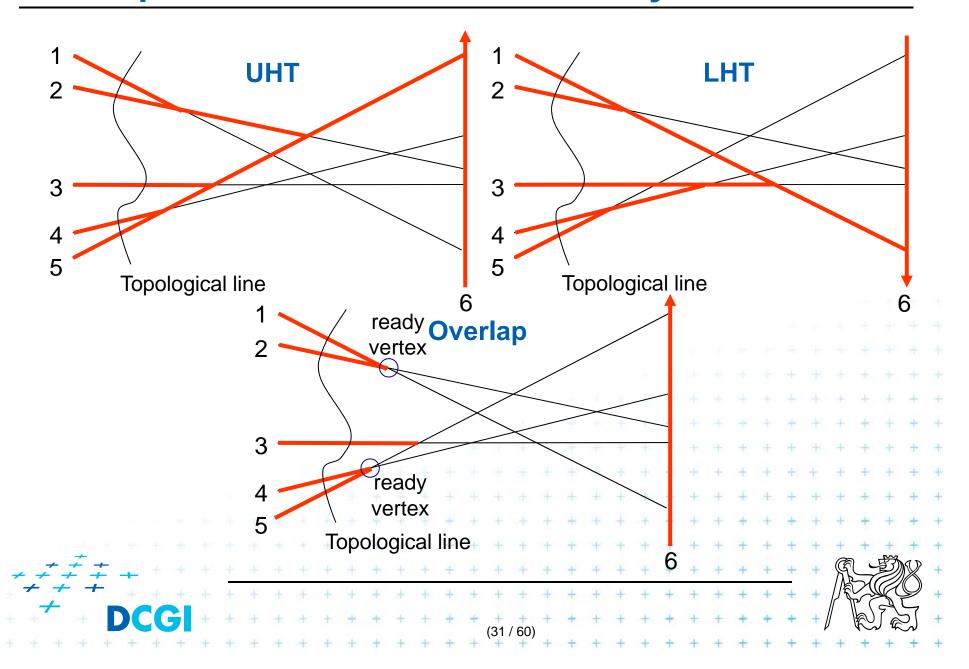








Overlap UHT and LHT – detect ready vertices



Upper horizon tree (UHT) - init. construction

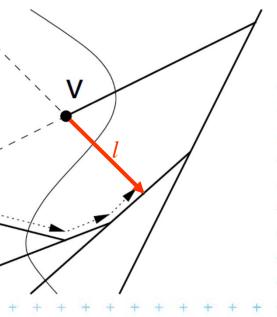
- Insert lines in order of decreasing slope (cw)
- Each new line starts above all the current lines
- The uppermost face = convex polygonal chain
- Walk left to right along the chain to determine the intersection
- Never walk twice over a segment
 - Such segment is no longer part of the upper chain
 - O(n) segments in UHT
 - => O(n) initial construction (after $n \log n$ sorting of the lines ~slope)

new line

Upper horizon tree (UHT) – update

- After the elementary step
- Two edges swap position along the sweep line

- Reenter to UHT
- Terminate at nearest edge of UHT
- Start in edge below in the current cut
- Traverse the face in CCW order
- Intersection must exist, as l has lower;
 slope than the other edge from v
 and both belong to the same face



Ready vertex

Data structures for topological sweep alg.

Topological sweep line algorithm uses 5 arrays:

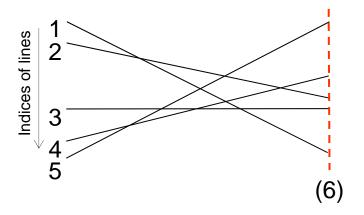
- 1) Line equation coefficients -E[1:n]
- 2) Upper horizon tree UHT [1:n]
- 3) Lower horizon tree LHT [1:n]
- 4) Order of lines cut by the sweep line C [1:n]
- 5) Edges along the sweep line N [1:n]

+ + + + + + + + + + + + +

6) Stack for ready vertices (events) − S

(n number of lines)

1) Line equation coefficients *E* [1*:n*]



Contains coefficients a_i and b_i

of line equations $y = a_i x + b_i$

Array of line equation coefs. *E*

E is indexed by the line index

 Lines are ordered according to their slope (angle from -90° to

90°)

Array of line equations E

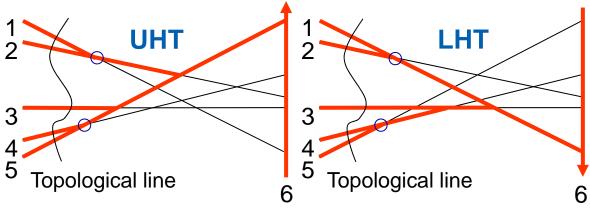
$$y = a_i x + b_i$$
1 a_1 b_1
2 a_2 b_2
3 a_3 b_3
4 a_4 b_4

Slope

2) and 3) – Horizon trees UHT and LHT

Their intersection is used for searching of legal steps (right points)

- the shorter edge wins

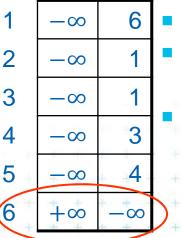


UHT array **Delimiting** lines indices

 $-\infty$



 $-\infty$ 3 $-\infty$ $-\infty$ 5 $-\infty$ 6 $-\infty$ LHT array **Delimiting** lines indices



Store pairs of line indices in E that delimit segment l_i to the left and to the right

Segments are half open o Unlimited line has "indices"

$$(-\infty, +\infty](+\infty, -\infty]$$

One additional vertical line

- prevents the tree from splitting into forest of trees
- is inserted first and never trimmed
- + is $(-\infty, +\infty]$ for UHT
- is $(+\infty, -\infty]$ for LHT+

4) Order of lines cut by sweep line – C [1:n]

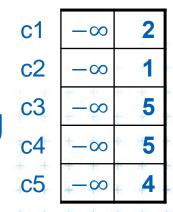
- The topological sweep line cuts each line once
- Order of the cuts (along the topological sweep line) is stored in array C as a sequence of line indices
- Array C "points" to the array E of line equations
- For the initial leftmost cut,
 the order is the same as in E
- Index ci addresses i-th line from top along the sweep line

CUT Lines C
Indexes of supporting lines

5) Edges along the sweep line – N [1:n]

- Edges intersected by the topological sweep line are stored here (edges along the sweep line)
- Instead of endpoints themselves, we store the indices of lines whose intersections delimit the edge
- Order of these edges is the same as in C (both use the index ci)
- Index ci stores the index of i-th edge from top along the sweep line

CUT edges N
Pairs of line indices
delimiting the edge



The first edge along the sweep line:

- lies on line C[c1] +
- Comes from infinity +
- is delimited by edge E[2]

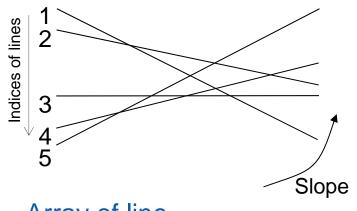
6) Stack S

- The exact order of events is not important (event = intersection in ready vertex)
- Alg. can process any "ready vertex"
- Event queue is therefore replaced by a stack (faster: O(1) instead of $O(\log n)$ for queue) Stack S
- The stack stores just the upper edge c_i
 from the pair intersecting in ready vertex
- Intersection in the ready vertex is computed between stored c_i and c_{i+}

Ready vertex

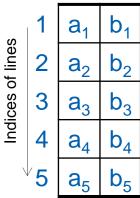
first edge idx

Topological sweep line demo



Array of line equations E

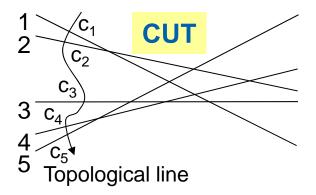
$$y = a_i x + b$$



Input

- set of lines L in the plane
- ordered in increasing slope (∠ -90° to 90°), simple, not vertical
- line parameters in array E

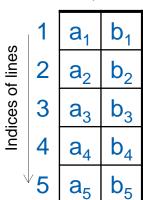
1) Initial leftmost cut - C



Store the indices of lines in E into the Cut lines array C in increasing slope order

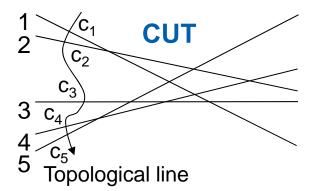
Array of line equations E

$$y = a_i x + b$$



CUT Lines C Indexes of supporting lines

1) Initial leftmost cut - N



Array of line equations E

$$y = a_i x + b$$

| 1 | a ₁ | b_1 |
|---|-----------------------|----------------|
| 2 | \mathbf{a}_2 | b ₂ |
| 3 | a_3 | b_3 |
| 4 | a_4 | b_4 |

- indices of lines
 - **DCGI**

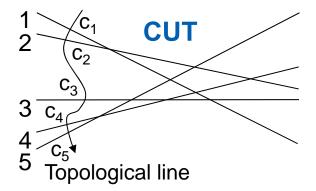
- Prepare array N for endpoints of the cut edges (resp. for line indices delimiting these edges)
- Init it by line "ends" $-\infty$, $+\infty$

CUT edges N CUT Lines C

Pairs of line indices Indexes of supdelimiting the edge porting lines

| c1 | -∞ | ∞ | c 1 | 1 |
|------------|----------|----------|------------|----|
| c2 | -∞ | ∞ | c2 | 2 |
| c 3 | -8 | ∞ | c 3 | 3 |
| c4 | 8 | ∞ | c4 | 4 |
| c5 | -∞ | ∞ | -c5 | 5 |
| | de de la | 1 | | 4. |

1) Initial leftmost cut - N



- Prepare array N for endpoints of the cut edges (resp. for line indices delimiting these edges)
- Init it by line "ends" $-\infty$, $+\infty$

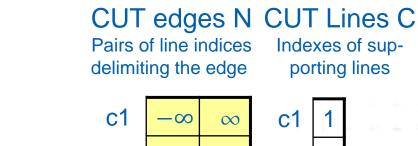
Array of line equations E

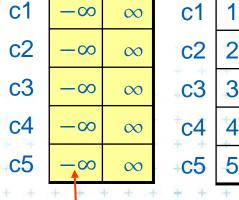
$$y = a_i x + b$$

| 1 | a_1 | b_1 |
|---|-------|-------|
| 2 | a | b_2 |

$$3 \mid a_3 \mid b_3$$

indices of lines

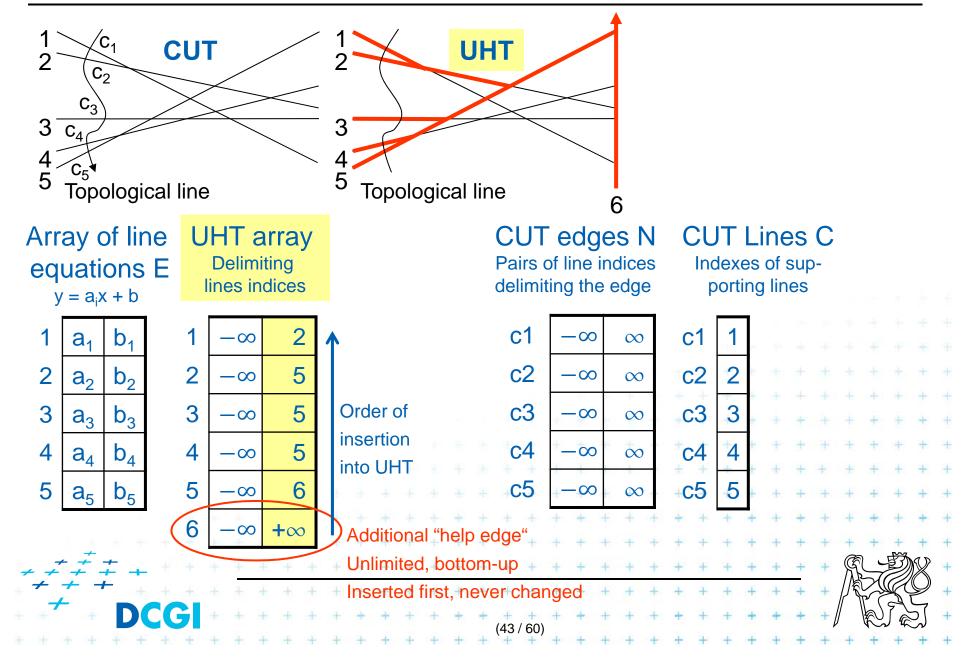




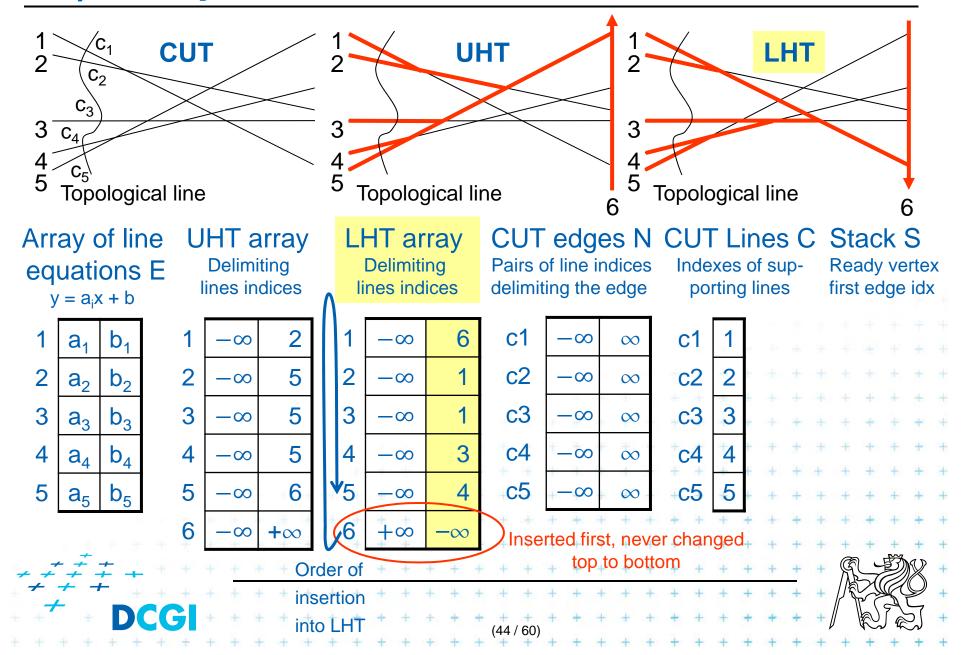
Index of delimiter edge in $-\infty$

DCG

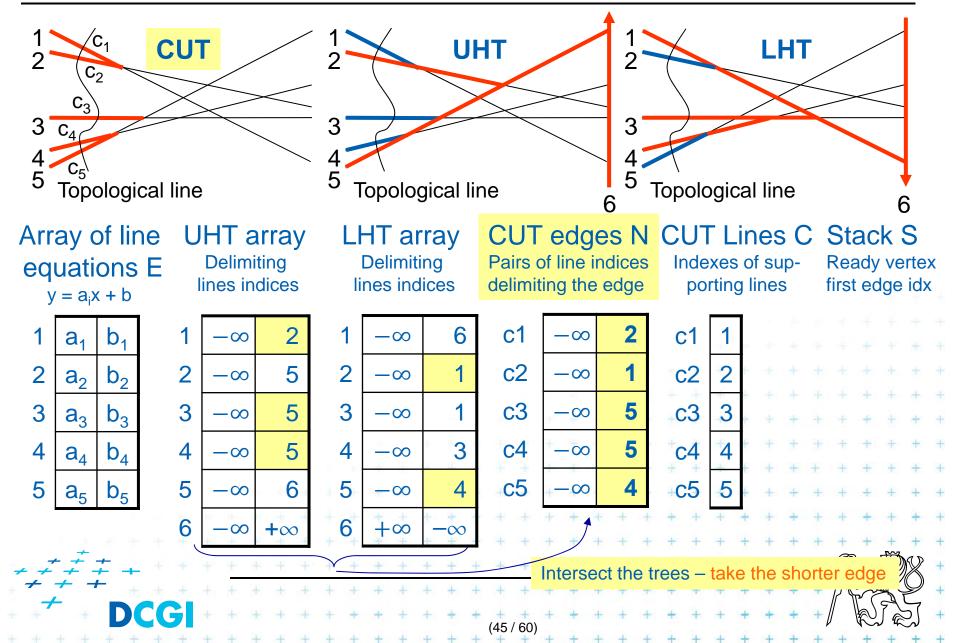
2a) Compute Upper Horizon Tree - UHT

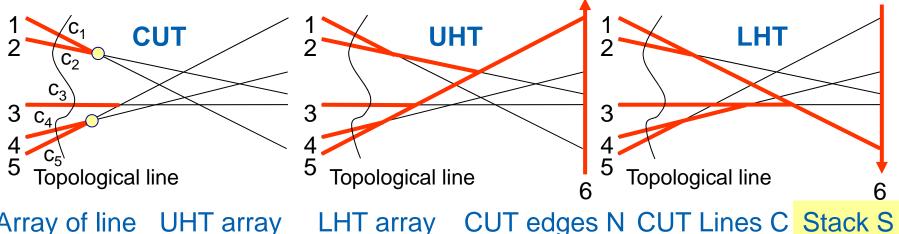


2b) Compute Lower Horizon Tree - LHT



3a) Determine right delimiters of edges - N





Array of line equations E

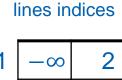
 $y = a_i x + b$

| 1 | a_1 | b ₁ |
|---|-------|----------------|
| 2 | 0 | ٦ |

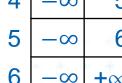
| | 3 | 3 |
|---|-----------------------|-----------------------|
| 4 | a_4 | b ₄ |
| 5 | a ₅ | b ₅ |

UHT array

Delimiting



 $-\infty$ 3 $-\infty$ $-\infty$

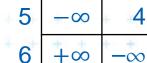


LHT array

Delimiting lines indices

6 $-\infty$ $-\infty$

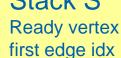


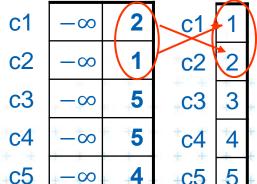


Pairs of line indices delimiting the edge

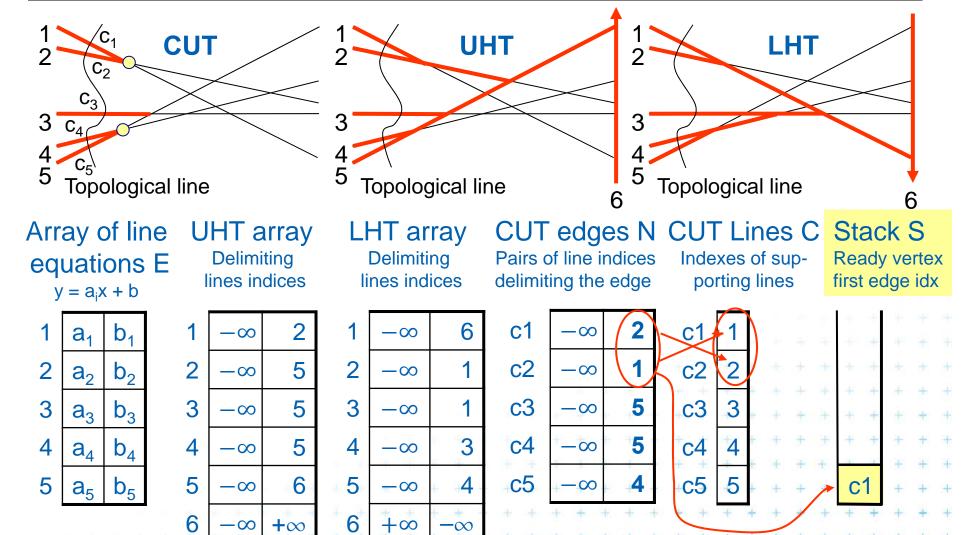
 $-\infty$

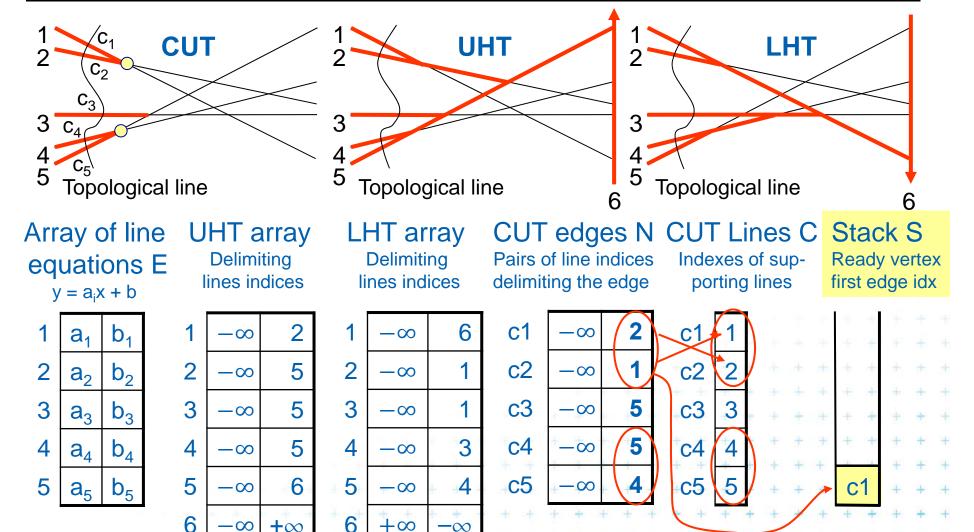
Indexes of sup-

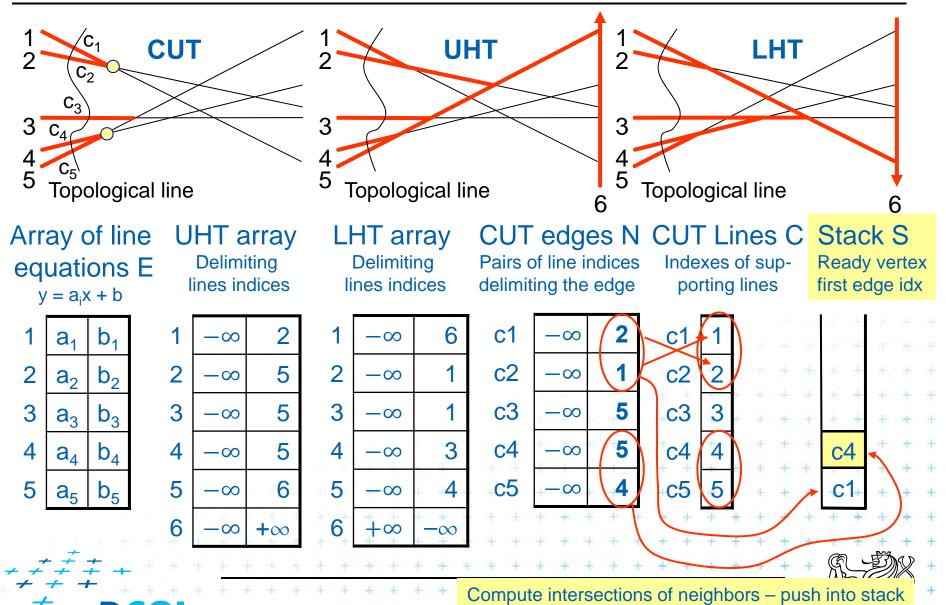




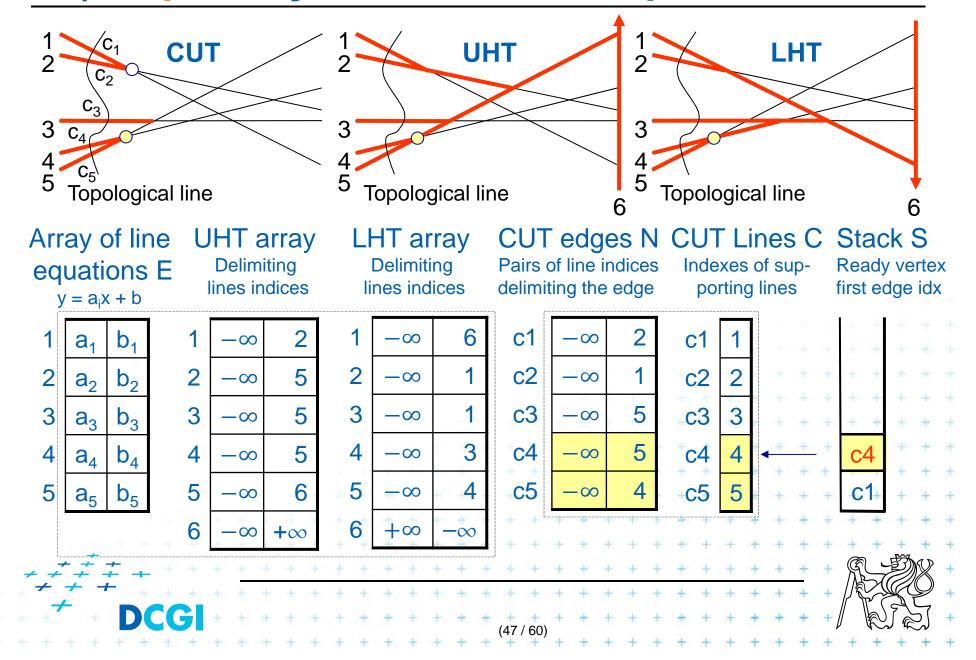




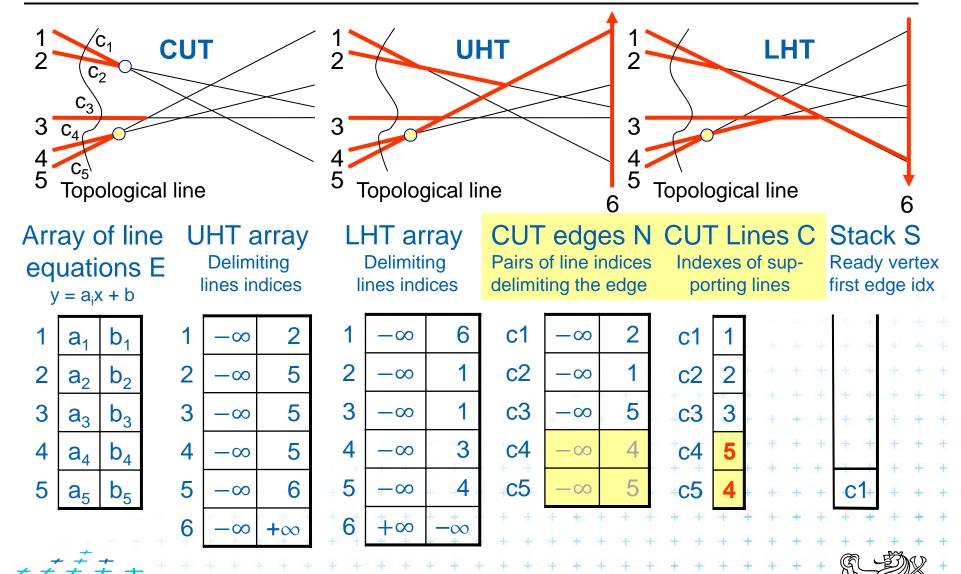




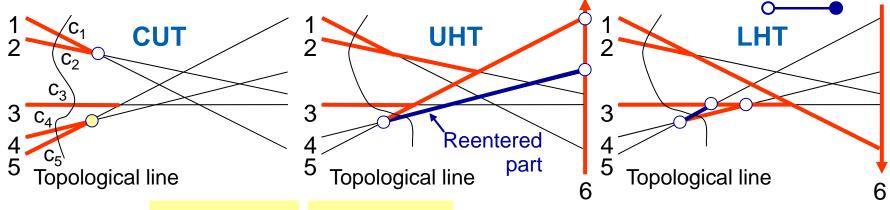
(46 / 60)



4b) Swap lines c4 and c5 – swap 4 and 5

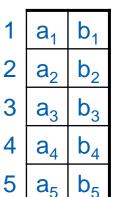


4c) Update the horizon trees – UHT and LHT

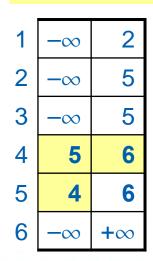


Array of line equations E

$$y = a_i x + b$$



UHT array **Delimiting** lines indices



LHT array **Delimiting** lines indices

6 $-\infty$ $-\infty$ $-\infty$ 5 $+\infty$ $-\infty$

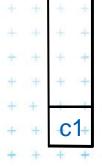
CUT edges N CUT Lines C Stack S

Pairs of line indices delimiting the edge

Indexes of supporting lines

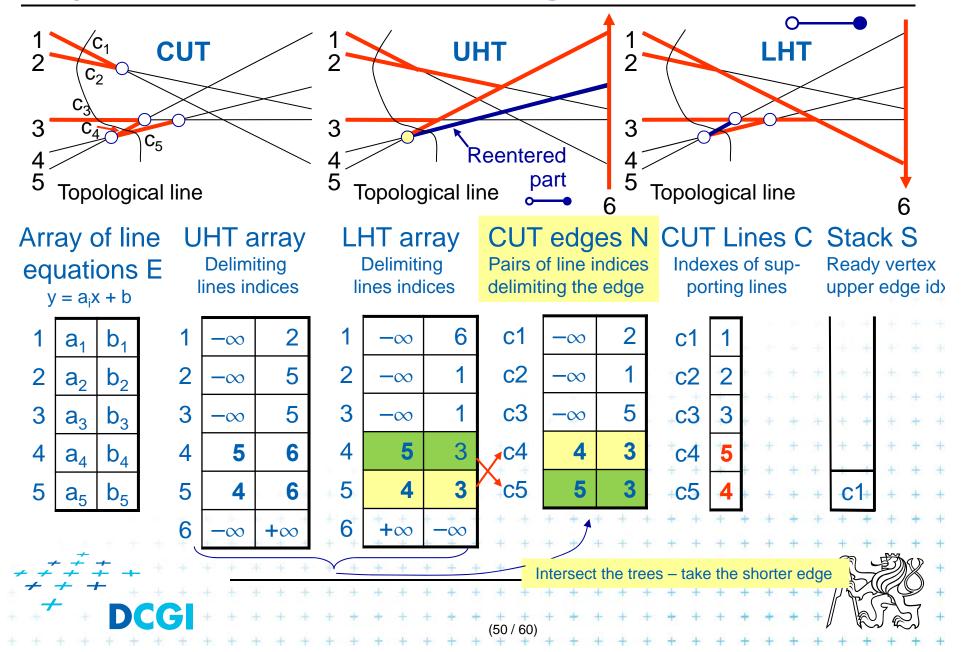
Ready vertex upper edge id>

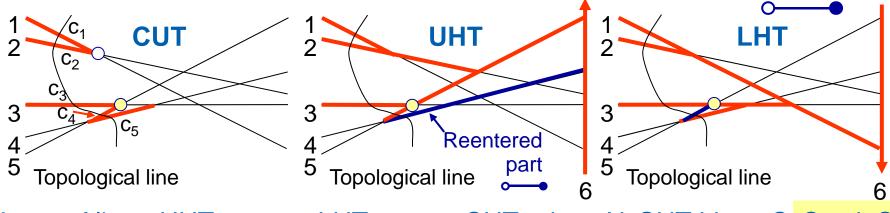
| c1 | $-\infty$ | 2 | c1 | 1 |
|-----------|-----------|---|------------|---|
| c2 | $-\infty$ | 1 | c2 | 2 |
| c3 | $-\infty$ | 5 | c 3 | 3 |
| c4 | $-\infty$ | 4 | c4 | 5 |
| c5 | $-\infty$ | 5 | -c5 | 4 |



Edges are half open to prevent the tree after reinsertion

4d) Determine new cut edges endpoints - N

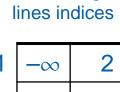




Array of line equations E

$$y = a_i x + b$$

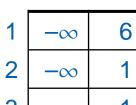
 b_1 a₁ a_2 b_2 3 a_3 b_3 a_4 b_4 **a**₅ b_5 UHT array **Delimiting**





LHT array

Delimiting lines indices



 $+\infty$ $-\infty$ CUT edges N CUT Lines C Stack S

Pairs of line indices delimiting the edge

 $-\infty$

 $-\infty$

 $-\infty$

porting lines

Indexes of sup-

Ready vertex upper edge id>

| | | _ |
|-------|---|---|
| c1 | 1 | |
| c2 | 2 | H |
| сЗ | 3 | + |
| c4 | 5 | + |
| · C F | 1 | |

Intersections of neighbors - into stack

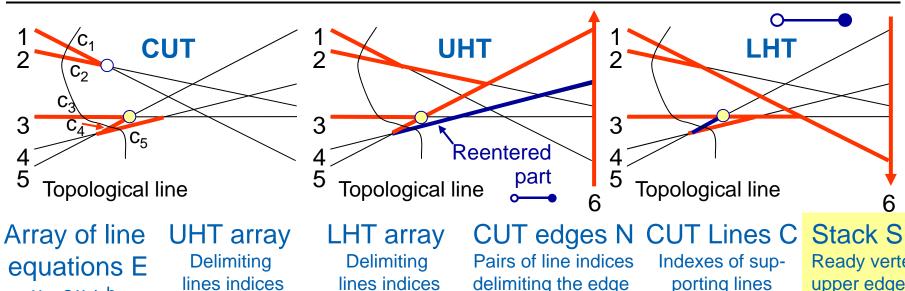
c1

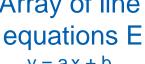
c2

c3

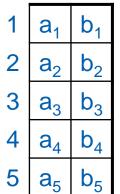
c4

c5





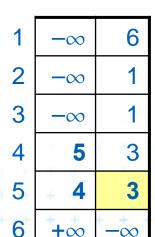
 $y = a_i x + b$



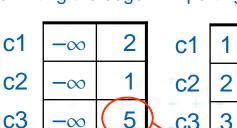
lines indices

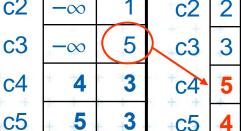


lines indices

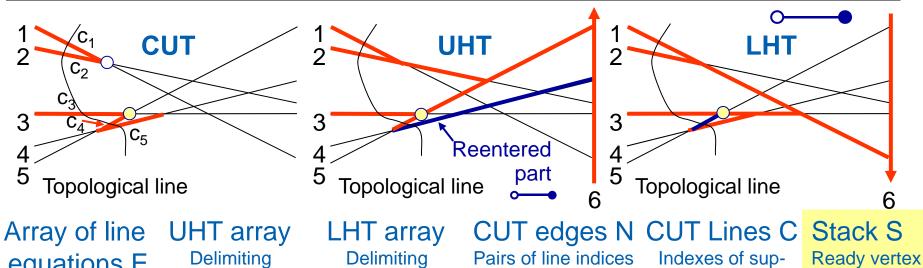


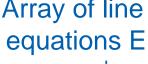
delimiting the edge





Intersections of neighbors - into stack

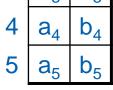




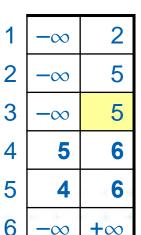
 $y = a_i x + b$

| 1 | a ₁ | b ₁ |
|---|----------------|----------------|
| 2 | \mathbf{a}_2 | b ₂ |

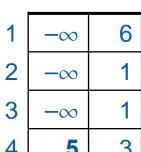
 a_3 b_3



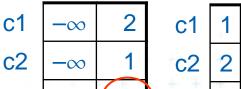
lines indices

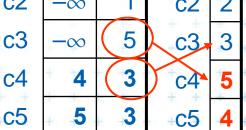


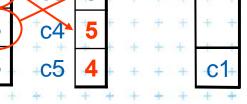
lines indices



delimiting the edge

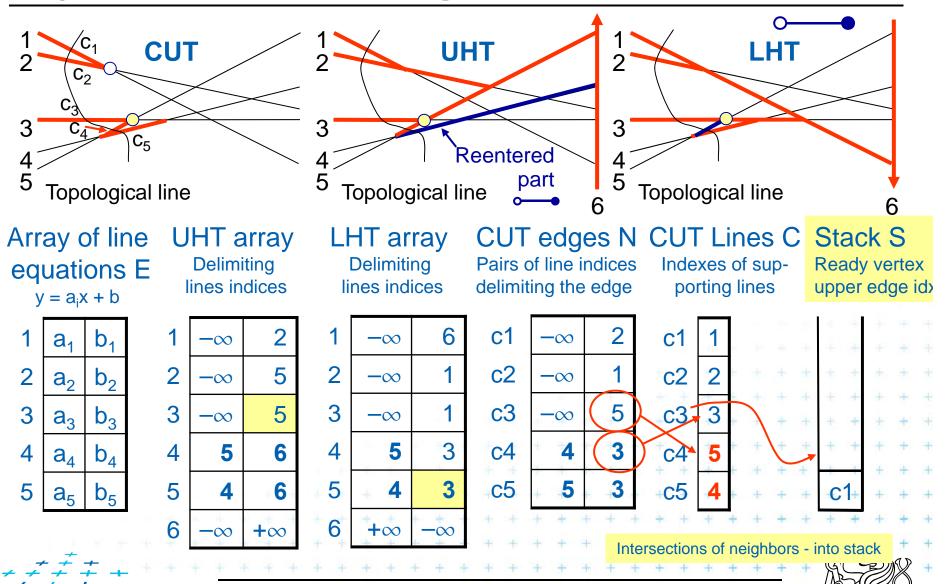


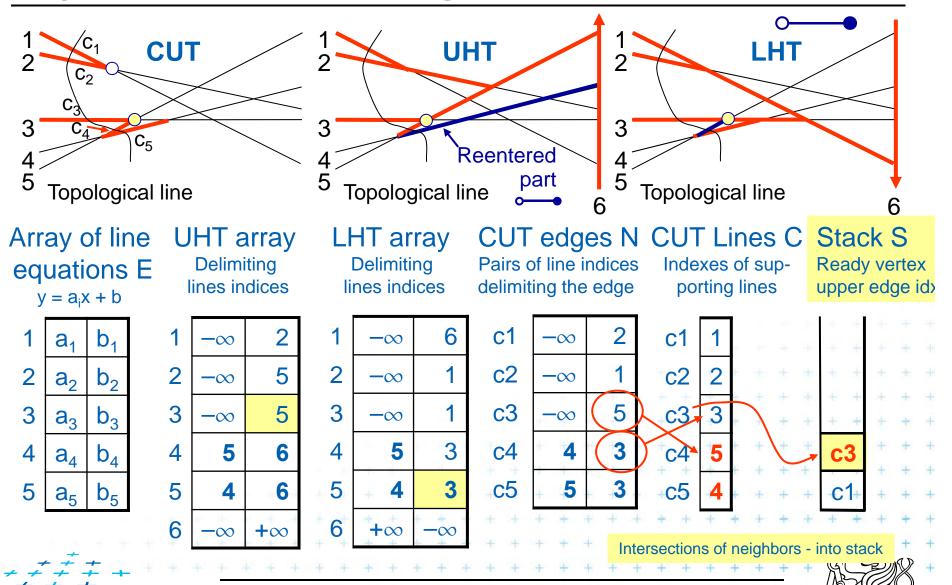


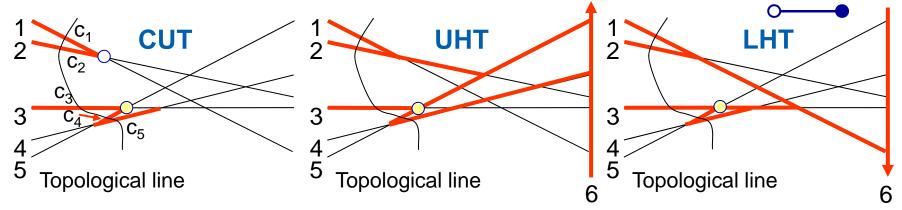


upper edge id>

Intersections of neighbors - into stack







Array of line equations E

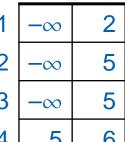
 $y = a_i x + b$

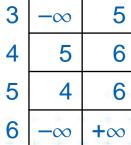
| 1 | a_1 | b_1 |
|---|-------|----------------|
| 2 | a_2 | b_2 |
| 3 | a_3 | b ₃ |
| | | |

UHT array

Delimiting

lines indices





LHT array

Delimiting lines indices

| 1 | -∞ | 6 |
|---|----|----|
| 2 | -∞ | 1 |
| 3 | -∞ | _1 |
| 4 | 5 | 3 |
| 5 | 4 | 3 |

| 5 | + 4 | + + |
|---|-----|-----|
| 6 | +∞ | -0 |

Pairs of line indices

delimiting the edge

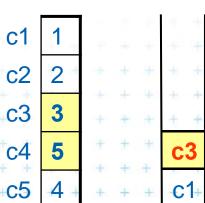
| c1 | $-\infty$ | 2 |
|------------|-----------|---|
| c2 | -∞ | 1 |
| c 3 | $-\infty$ | 5 |
| c4 | 4 | 3 |

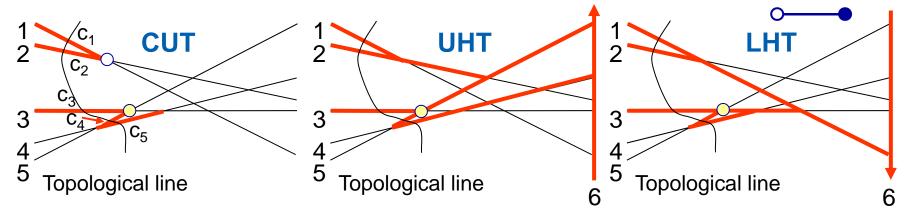
| 0-1 | | | | 0 |
|-----------|---|---|---|---|
| c5 | + | 5 | + | 3 |
| | | | | |

CUT edges N CUT Lines C Stack S

Indexes of supporting lines

Ready vertex first edge idx





Array of line equations E

$$y = a_i x + b$$

 b_1 a_1 a_2 b_2 3 b_3 a_3 a_4 b_4 b_5 UHT array

Delimiting lines indices

LHT array

Delimiting

lines indices

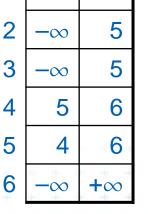
CUT edges N CUT Lines C Stack S Pairs of line indices

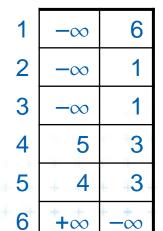
delimiting the edge

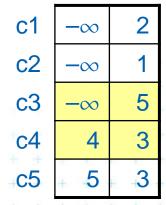
Indexes of supporting lines

Ready vertex first edge idx

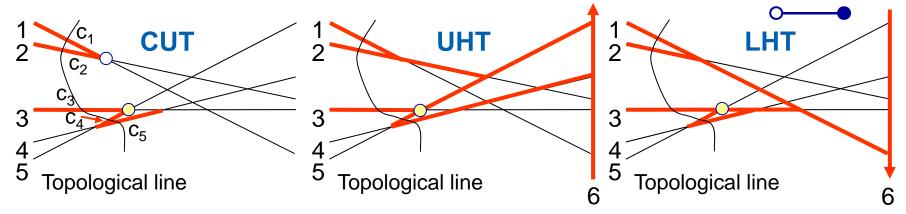
| 1 | -∞ | 2 |
|---|------------|---|
| 2 | - ∞ | 5 |
| 3 | - ∞ | 5 |
| 4 | 5 | 6 |
| _ | | |







| | | - | | + | + | + |
|------------|-----|---|---|-----|---|---|
| c1 | 1 | ÷ | | + | + | + |
| c2 | 2 | + | | + | + | d |
| c 3 | 3 | * | + | + + | + | + |
| c4 | 5 | + | + | + | C | 3 |
| c5 | 4 + | + | + | + | С | + |



Array of line equations E

 $y = a_i x + b$

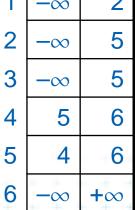
| 1 | a_1 | b_1 |
|---|-------|----------------|
| 2 | a_2 | b_2 |
| 3 | a_3 | b ₃ |

 b_4

UHT array

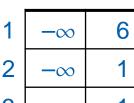
Delimiting

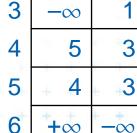
| ı | ines in | dices |
|---|---------|-------|
| | -∞ | 2 |



LHT array

Delimiting lines indices

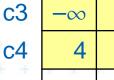




 $-\infty$

Pairs of line indices delimiting the edge

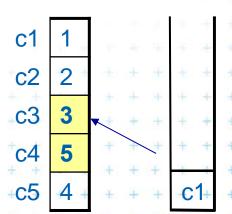
c1 $-\infty$ c2 $-\infty$



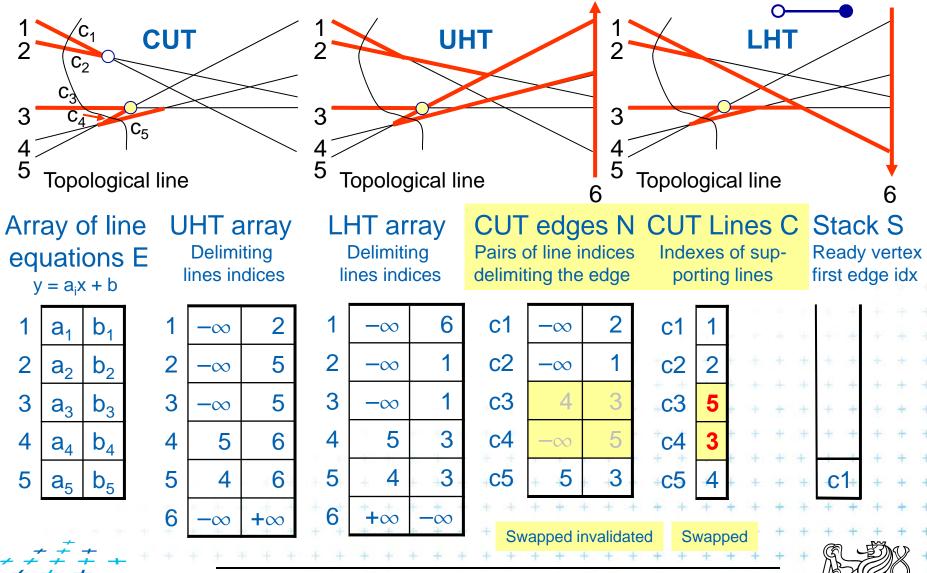
c5

CUT edges N CUT Lines C Stack S

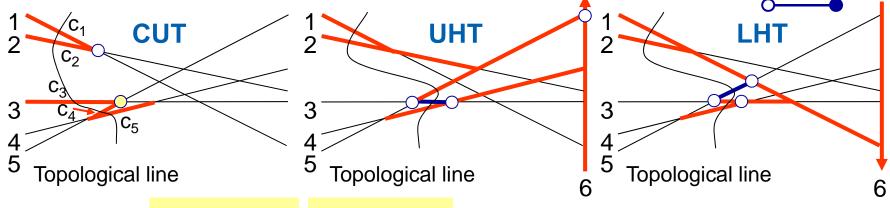
Indexes of sup-Ready vertex porting lines first edge idx



4b) Swap lines c4 and c5 - swap 4 and 5



4c) Update the horizon trees – UHT and LHT



Array of line equations E

 b_1 a₁ b_2 a_2 a_3 b_3 a_4 b₄ a_5 b_5

3

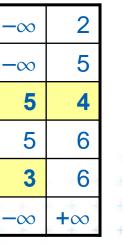
3

4

5

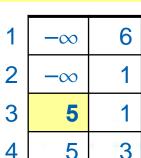
UHT array **Delimiting**

lines indices



LHT array **Delimiting**

lines indices

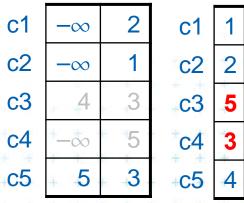


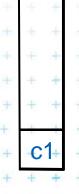
| 3 | 5 | 1 |
|---|----|----|
| 4 | 5 | 3 |
| 5 | 3 | 1 |
| 6 | +∞ | -∞ |

CUT edges N CUT Lines C Stack S

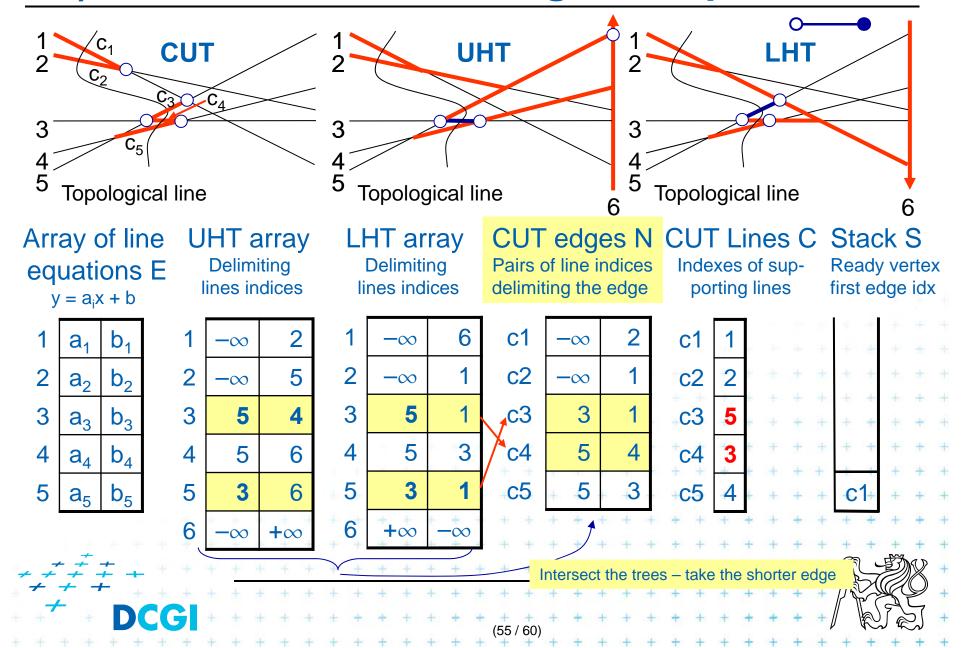
Pairs of line indices delimiting the edge

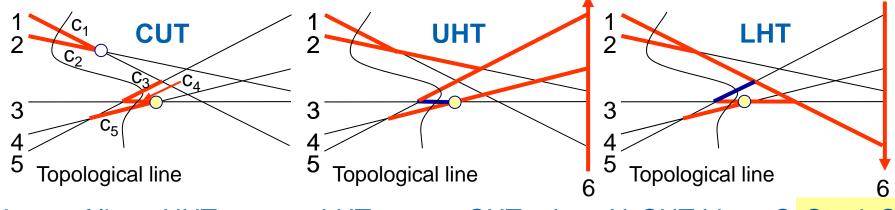
Ready vertex first edge idx





4d) Determine new cut edges endpoints





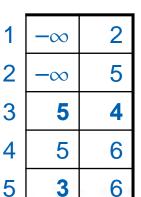
Array of line equations E

 $y = a_i x + b$

| 1 | a₁ | b₁ |
|---|-------|-----------------------|
| 2 | a_2 | b_2 |
| 3 | a_3 | b_3 |
| 4 | a_4 | b ₄ |

UHT array

Delimiting lines indices



LHT array

Delimiting lines indices

6 $-\infty$ $-\infty$

| 3 | 5 | 1 |
|---|----------|------|
| 4 | 5 | 3 |
| 5 | 3 | + +1 |
| | | |

CUT edges N CUT Lines C Stack S

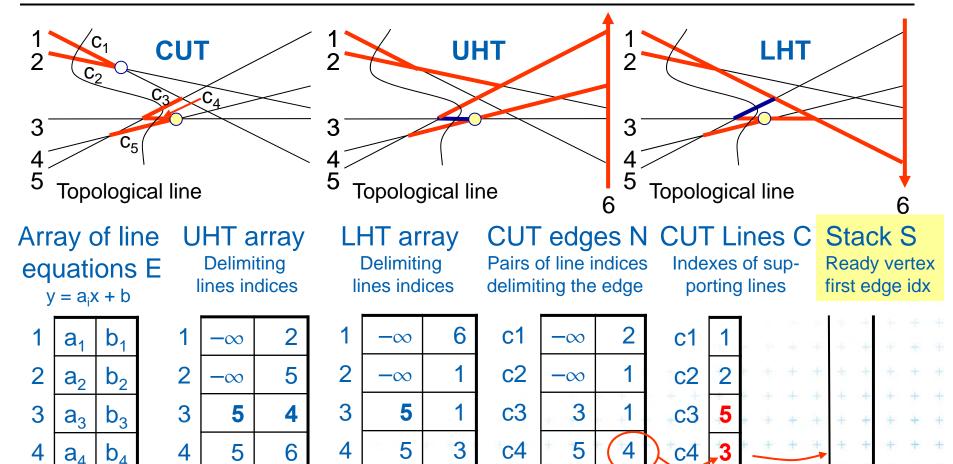
Pairs of line indices delimiting the edge

Indexes of supporting lines

Ready vertex first edge idx

| | | _ | | |
|------------|-----------|----|------------|---|
| c1 | -∞ | 2 | c 1 | 1 |
| c2 | $-\infty$ | 1 | c2 | 2 |
| c3 | 3 | _1 | c 3 | 5 |
| c4 | 5 | 4 | c4 | 3 |
| c 5 | + 5 | 3 | -c5 | 4 |

 b_5



5

 $+\infty$

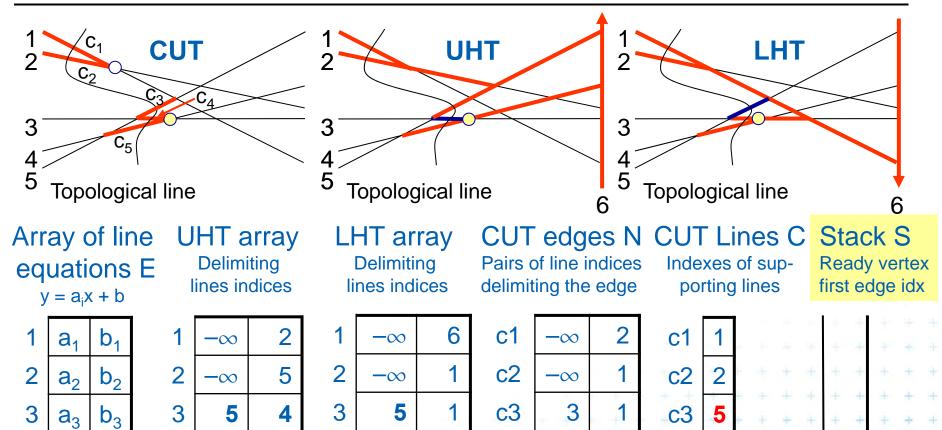
 $-\infty$

 b_5

a₅

5

c5



 a_4

a₅

 b_4

 b_5

4

5

5

 $+\infty$

 $-\infty$

c4

c5

c4

Topological sweep algorithm

TopoSweep(*L*)

Input: Set of lines L sorted by slope (-90° to 90°), simple, not vertical Output: All parts of an Arrangement A(L) detected and then destroyed

Slope

- 1. Let C be the initial (leftmost) cut lines in increasing order of slope
- 2. Create the initial UHT and LHT incrementally:
 - a) UHT by inserting lines in decreasing order of slope
 - b) LHT by inserting lines in increasing order of slope
- 3. By consulting UHT and LHT
 - a) Determine the right endpoints N of all edges of the initial cut C
 - b) Store neighboring lines with common endpoint into stack *S* (initial set of *ready vertices*)
- 4. Repeat until stack not empty
 - a) Pop next ready vertex from stack S (its upper edge c_i)
 - b) Swap these lines within the cut C $(c_i < -> c_{i+1})$
 - c) Update the horizon trees UHT and LHT (reenter edge parts)
 - d) Consulting UHT and LHT determine new cut edges endpoints N
 - (e) If new neighboring edges share an endpoint -> push them or self-

Determining cut edges from UHT and LHT

- for lines i = 1 to n
 - Compare UHT and LHT edges on line i
 - Set the cut lying on edge i to the shorter edge of these
- Order of the cuts along the sweep line
 - Order changes only at the intersection v (neighbors)
 - Order of remaining cuts not incident with intersection v does not change
- After changes of the order, test the new neighbors for intersections
 - Store intersections right from sweep line into the stack

Complexity

- O(n²) intersections
 > O(n²) events (elementary steps)
- O(1) amortized time for one step 4c)
 => O(n²) time for the algorithm

Amortized time

= even though a single elementary step can take more than O(1) time, the total time needed to perform O(n²) elementary steps is O(n²), hence the average time for each step is O(1).

References

- [Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapters 8., http://www.cs.uu.nl/geobook/
- [Mount] Mount, D.: Computational Geometry Lecture Notes for Fall 2016, University of Maryland, Lectures 14, 15, and 27. http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf
- [Edelsbrunner] Edelsbrunner and Guibas. Topologically sweeping an arrangement. TR 9, 1986, Digital www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-9.pdf
- [Rafalin] E. Rafalin, D. Souvaine, I. Streinu, "Topological Sweep in Degenerate cases", in Proceedings of the 4th international workshop on Algorithm Engineering and Experiments, ALENEX 02, in LNCS 2409, Springer-Verlag, Berlin, Germany, pages 155-156.

 http://www.cs.tufts.edu/research/geometry/other/sweep/paper.pdf
- [Agarwal] Pankaj K. Agarwal and Mica Sharir. Arrangements and Their Applications, 1998, http://www.math.tau.ac.il/~michas/arrsurv.pdf

