WINDOWING

PETR FELKEL

FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Mount]

Version from 30.11.2022

Windowing queries - examples

- Select subset by outlining
- Zoom in and re-center
- Circuit board inspection,..

DCGI

Windowing versus range queries

- Range queries (see range trees in Lecture 03)
- Points
- Often in higher dimensions
- Windowing queries
- Line segments, curves, ...
- Usually in low dimension (2D, 3D)
- The goal for both:

Preprocess the data into a data structure

- so that the objects intersected by the query rectangle can be reported efficiently

Windowing queries on line segments

1. Axis parallel line segments

2. Arbitrary line segments (non-crōssing)
[Vakken]

1. Windowing of axis parallel line segments

[Vakken]

1. Windowing of axis parallel line segments

Window query

- Given
- a set of orthogonal line segments S (preprocessed),
- and orthogonal query rectangle $W=\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]$
- Count or report all the line segments of S that intersect W
- Such segments have
a) one endpoint in
b) two end points in - included
c) no end point in - cross over

Line segments with 1 or 2 points inside

a) one point inside

- Use a 2D range tree (lesson 3)
- $O(n \log n)$ storage
- $O\left(\log ^{2} n+k\right)$ query time or
- $O(\log n+k)$ with fractional cascading

b) two points inside - as a o one point inside
- Avoid reporting twice:
\longrightarrow Mark segment when reported (clear after the query) and skip marked segments or
when end point found, check the other end-point and

2D range tree (without fractional cascading-more in Lecture 3)

Search space: points
Query: Orthogonal intervals $\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]$

Line segments that cross over the window

c) No points inside

- Such segments not detected using end-point range tree
- Cross the boundary twice

For axis parallel segments

Check left and bottom boundary

For non-parallel segments
Check all 4 boündaries

Windowing problem summary

Cases a) and b)

- Segment end-point in the query rectangle (window)
- Solved by 2D range trees (see lecture 3, $o(n \log n)$ time \& memory)
- We will discuss only case c)
- Segment crosses the window

case c) principle

Segments cross the window

Line crosses the segments (horizontal + vertical)

Talk Outline

Line x line segments interval tree
For heat-up

2D

Line segment x line segments
2 variants of interval tree ${ }^{\circ}$.
1 variant of segment tree

Data structures for case c)

Interval tree (1D IT)

stores 1D intervals (end-points in sorted lists)
computes intersections with query interval
see intersection of axis angle rectangles - there is y-overlap used, here is x-overlap
We must extend Interval tree to 2D
variants differ in storage of interval end-points M_{L}, M_{R}
© 2D range trees priority search trees

Segment tree

splits the plane to slabs in X in elementary intervals

Talk overview

1. Windowing of axis parallel line segments in 2D

- 3 variants of interval tree - IT in x-direction
- Differ in storage of segment end points M_{L} and M_{R}

1D i. Line stabbing (standard IT with sorted lists) leecture 9 - ineresections
ii. Line segment stabbing (IT with range trees)
iii. Line segment stabbing (IT with priority search trees)
2. Windowing of line segments in general position

2D - segment tree + BST

i. Segment intersected by vertical line

- Query line $\ell:=\left(x=q_{x}\right)$

Report the segments stabbed by a vertical line
= 1 dimensional problem
(ignore y coordinate)

\Rightarrow Report the interval $\left[x: x^{\prime}\right]$ containing query point q_{x}

DS: Interval tree with sorted lists

Interval tree principle

Interval tree principle

(see lecture 9 - intersections)

i. Segment intersected by vertical line

Principle

- Store input segments in static interval tree
- In each interval tree node
- Check the segments in the set M
- These segments contain node's x Mid value
- M_{L} are left end-points
- M_{R} are right end-points
- q_{x} is the query value
- If $\left(q_{x}<x M i d\right)$ Sweep M_{L} from left $\mathrm{p} \in M_{L}$: if $p_{x} \leq q_{x} \Rightarrow$ intersection
- If $\left(q_{x}>x\right.$ Mid $)$ Sweep M_{R} from right $\ldots, \mathrm{p} \in M_{R}$: if $p_{x} \geq q_{x} \Rightarrow$ intersection

Segment intersection (left from xMid)

All line segments from M pass through $x M i d$
$\Rightarrow q_{x}$ must be between $p_{x, i}$ and x Mid to intersect the line segment i
\Rightarrow left endpoints $p_{x, i} \leq q_{x} \Rightarrow$ intersection

Intersection with line ℓ means
Intersection with half'space q

Principle once more

Instead of
intersecting edges by line
search points in half-space

(20 / 70)

i. Segment intersected by vertical line

De facto a 1D problem

- Query line $\ell:=q_{x} \times[-\infty: \infty]$
- Horizontal segment of M stabs the query line ℓ left of $x M i d$ iff its (segments) left endpoint lies in half-space

$$
q:=\left(-\infty: q_{x}\right] \times[-\infty: \infty]
$$

- In IT node with stored median x Mid report all segments from M - $M_{L}:$ whose left point lies in $\left(-\infty: q_{x}\right]$
if ℓ lies left from \times Mid
- M_{R} : whose right point lies in $\left[q_{x}:+\infty\right)$
if ℓ lies right from \times Mid

Static interval tree [Edelsbrunner80]

Tree over sorted segment end-points

Primary structure - static tree for endpoints

Secondary lists of incident interval end-pts.

ML(v) - left endpoints of interval containing v
Dynamic

Interval tree construction

ConstructIntervalTree(S) // Intervals all active - no active lists

 Input: \quad Set S of intervals on the real line - on x-axisOutput: The root of an interval tree for S

1. if $(|S|==0)$ return null // no more intervals
2. else
3. $\mathrm{xMed}=$ median endpoint of intervals in S // median endpoint
4. $\mathrm{L}=\{[\mathrm{xlo}$, xhi $]$ in $\mathrm{S} \mid \mathrm{xhi}<\mathrm{xMed}\} \quad \bullet$.../ left of median
5. $R=\{[$ xlo, xhi $]$ in $S|x| 0>x M e d\} \quad \bullet / /$ right of median
6. $-\mathrm{M}=\{[$ xlo, xhi $]$ in $\mathrm{S} \mid \mathrm{xlo}<=\mathrm{xMed}<=\mathrm{xhi}\} \bullet \bullet / /$ contains median
7. $\longrightarrow \mathrm{ML}=$ sort M in increasing order of xlo
// sort M
8. $\longrightarrow \mathrm{MR}=$ sort M in decreasing order of xhi
9. $\mathrm{t}=$ new IntTreeNode(xMed, ML, MR) // this node
10. t.left $=$ ConstructIntervalTree(L) // left subtree
11. t.right $=$ ConstructIntervalTree(R) $++_{+}++++/ /$right subtree
12. return t

steps 4.,5.,6. done in one step if presorted
[Mount]

Line stabbing query for an interval tree

Stab (t, qx)
Input: IntTreeNode t, Scalar qx
Output: prints the intersected intervals

1. if $(t==$ null) return
2. if ($q \times<t . x M e d$)
3. \quad for $(i=0 ; i<t . M L . l e n g t h ; ~ i++)$
4. if (t.ML[i].lo $\leq q x)$ print (t.ML[i]) else break
5. Stab (t.left, qx)
6. else // (qx \geq t.xMed)
7. for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{t} . \mathrm{MR}$.length; $\mathrm{i}++$) \{ if (t.MR[i].hi $\geq \mathrm{qx}$) print (t.MR[i]) else break
8.
9. Stab (t.right, qx)

Less effective variant of QueryInterval ($\mathrm{b}, \mathrm{e}, \mathrm{T}$)
on slide 34 in lecture 09
with merged parts: fork and search right
// no leaf: fell out of the tree
// left of median?
// traverse M_{L} left end-points
// ..report if in range
// ..else done
// recurse on left subtre
// right of or equal to median
// traverse M_{R} rightend-points
// ..report if in range
// ..else done
// recurse on right subtree

Note: Small inefficiency for $q x==$ t.xMed - recurse on right

Complexity of line stabbing via interval tree

with sorted lists
－Construction－$O(n \log n)$ time
－Each step divides at maximum into two halves or less （minus elements of M ）$=>$ tree of height $h=O(\log n)$
－If presorted endpoints in three lists L, R ，and M then median in $\mathrm{O}(1)$ and copy to new $\mathrm{L}, \mathrm{R}, \mathrm{M}$ in $O(n)$
－Vertical line stabbing query $-O(k+\log n)$ time
－One node processed in $O\left(1+k^{\prime}\right)$ ，k^{\prime} reported intervals
－v visited nodes in $O(v+k), \quad k$ total reported intervals
$-v=h=$ tree height $=O(\log n) k=\Sigma k^{\prime}$
－Storage－$O(n)$
－Tree has $O(n)$ nodes，each segment stored twice
沶寺寺（two endpoints）

Talk overview

1. Windowing of axis parallel line segments in 2D

- 3 variants of interval tree - IT in x-direction
- Differ in storage of segment end points M_{L} and M_{R}

1D i. Line stabbing (standard $I T$ with sorted lists) leecture 9 -ineresections
ii. Line segment stabbing (IT with range trees)
iii. Line segment stabbing (IT with priority search trees)
2. Windowing of line segments in general position

2D - segment tree + BST

Line segment stabbing (IT with range trees)

Enhance 1D interval trees to 2D

change lines

$q_{x} \times[-\infty: \infty]$ (no y-test)
to segments

$q_{x} \times\left[q_{y}: q_{y}^{\prime}\right]$ (additional y-test)

Range trees

i. Segments \times vertical line

De facto a 1D problem

- Query line $\ell:=q_{x} \times[-\infty: \infty]$
- Horizontal segment of $M_{\llcorner }$stabs the query line ℓ left of x Mid iff its left endpoint lies in half-space

$$
q:=\left(-\infty: q_{x}\right] \times[-\infty: \infty]
$$

- In IT node with stored median xMid report all segments from M
$-M_{L}$: whose left point lies in
($-\infty: q_{x}$]
if ℓ lies left from x Mid
- M_{R} : whose right point lies in $\left[q_{x}:+\infty\right)$
if ℓ lies right from x Mid

ii. Segments \times vertical line segment $: \square=$

- Query segment $q:=q_{x} \times\left[q_{y}: q_{y}^{\prime}\right]$
- Horizontal segment of $M_{\llcorner }$stabs the query segment q left of x Mid inf its left endpoint lies in q semi-infinite rectangular region New test

$$
q:=\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]
$$

- In IT node with stored median xMid report all segments
$\left.-\begin{array}{l}M_{L}: \text { whose left points lie in } \\ \left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right] \\ \text { where } q_{x} \text { lies left from } x \mathrm{Mid}\end{array}\right)$

$$
1 V_{R}: \text { whose right point lies in }
$$

$$
\left[q_{x}:+\infty\right) \times\left[q_{y}: q_{y}^{\prime}\right]
$$

Data structure for endpoints

- Storage of M_{L} and M_{R}
- 1D Sorted lists is not enough for line segments
- We need to test in y too
- Use 2D range trees
(one for M_{L} and one for M_{R} in each node)
- Instead $O(n)$ sequential search in M_{L} and M_{R} perform $O(\log n)$ search in range tree with fractional cascading

2D range tree (without fractional cascading-more in Lecture 3)

${ }_{ \pm} \pm$Segment left end-points for M_{L}
DCGI

Complexity of range tree line segment stabbing

- Construction - $O(n \log n)$ time
- Each step divides at maximum into two halves L,R or less (minus elements of M) $=>$ int. tree height $O(\log n)$
- If the range trees are efficiently build in $O(n)_{\text {after points sorted }}$
- Vertical line segment stab. q. $-O\left(k+\log ^{2} n\right)$ time
- Onne node processed in in $0\left(\log n+k^{2}\right), k^{\prime}$ repal tred segm.
- v-visited nod intervalree in $O(v \log n+k), k$ total reported segm.
$-v=$ interval tree height $=O(\log n) \quad \mathrm{k}=\sum k^{\prime}$
$-O\left(k+\log ^{2} n\right)$ time - range tree with fractional cascading
- $O\left(k+\log ^{3} n\right)$ time - range tree without fractional casc.
- Storage - $O(n \log n)$

Can be done better?
$\neq \neq$ Dominated by the range trees

Talk overview

1. Windowing of axis parallel line segments in 2D

- 3 variants of interval tree - IT in x-direction
- Differ in storage of segment end points M_{L} and M_{R}

1D i. Line stabbing (standard IT with sorted lists) leecture 9 - ineresections
2D ii. Line segment stabbing (IT with range trees)
iii. Line segment stabbing (IT with priority search trees)
2. Windowing of line segments in general position

2D - segment tree + BST

- Another variant for case c) on slide 9

- Exploit the fact that query rectangle in each node in interval tree is unbounded (in x direction)
- Priority search trees

- as secondary data structure for both left and right endpoints (M_{L} and M_{R}) of segments in nodes of interval tree - one for ML, one for MR
- Improve the storage to $O(n)$ for horizontal segment intersection with left Window edge (2D range tree has $O(n \log n)$)
- For cases a$)$ and b$)-O(n \log n)$ storage remains
- we need range trees for windowing segment endpoints

Rectangular range queries variants

- Let $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ is set of points in plane - Goal: rectangular range queries of the form $\underbrace{\left.\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]-\text { unbounded (in } x \text { direction) }\right) ~}$
- In 1D: search for nodes v with $v_{x} \in\left(-\infty: q_{x}\right]$
- range tree $\quad O(\log n+k)$ time (search the end, report left)
- ordered list $\quad O(1+k)$ time $\quad 1$ s toroossiby y all lestot the first (start in the leftmost, stop on v with $v_{x}>q_{x}$)
- use heap $\quad O(1+k)$ time !
(traverse all children, stop when $v_{x}>q_{x}$)
- In 2D - use heap for points with $x \in\left(-\infty: q_{x}\right]$ \pm integrate information about y-coordinate
= Priority search tree

Heap for 1D unbounded range queries

- Traverse all children, stop if $v_{x}>q_{x}$
- Example: Query ($-\infty: 10], q_{x}=10$

Principle of priority search tree

- Heap \leq_{x}
- relation between parent and its child nodes only
- no relation between the child nodes themselves
- Priority search tree
- relate the child nodes according to $y \leq_{y}$

$$
\begin{gathered}
x \text { Heap } \\
\mathrm{A} \leq_{x} \mathrm{~B} \\
\mathrm{~A} \leq_{x} \mathrm{C} \\
y \mathrm{BVS} \\
\mathrm{~B} \leq_{y} \mathrm{~A} \leq_{y} \mathrm{C} \Rightarrow \mathrm{~B} \leq_{y} \mathrm{C}
\end{gathered}
$$

Priority search tree (PST)

$=$ Heap in 2D that can incorporate info about both x, y

- BST on y-coordinate (horizontal slabs) ~ 1D range tree
- Heap on x-coordinate (minimum x from slab along x)
- If P is empty, PST is empty leaf
- else
- $p_{\text {min }}=$ point with smallest x-coordinate in P - a heap root
- $y_{\text {med }}=y$-coord. median of points $P \backslash\left\{p_{\text {min }}\right\}$ - BST root
- $P_{\text {below }}:=\left\{p \in P \backslash\left\{p_{\text {min }}\right\}: p_{y} \leq y_{\text {med }}\right\}$
- $\quad P_{\text {above }}:=\left\{p \in P \backslash\left\{p_{\text {min }}\right\}: p_{y}>y_{\text {med }}\right\}$
- Point $p_{\text {min }}$ and scalar $y_{\text {med }}$ are stored in the PST root
- The left subtree is PST of $P_{\text {below }}$
- The right subtree is PST of $P_{\text {above }}$

Priority search tree construction example

[Schirra]

Priority search tree construction example

Priority search tree construction example

$y_{\text {med }}$ BST

$$
\begin{gathered}
x+\underset{x+1}{x+x}+ \\
x+\text { DCS }
\end{gathered}
$$

(45 / 70)

Priority search tree construction

PrioritySearchTree(P)

Input: set P of points in plane
Output: priority search tree T

1. if $P=\varnothing$ then PST is an empty leaf
2. else
3. $\quad p_{\min }=$ point with smallest x-coordinate in P // heap on x root
4. $y_{\text {med }}=y$-coord. median of points $P \backslash\left\{p_{\text {min }}\right\} \quad / /$ BST on y root
5. Split points $P \backslash\left\{p_{\text {min }}\right\}$ into two subsets - according to $y_{\text {med }}$
6. $\quad P_{\text {below }}:=\left\{p \in P \backslash\left\{p_{\text {min }}\right\}: p_{y} \leq y_{\text {med }}\right\}$
7. $\quad P_{\text {above }}:=\left\{p \in P \backslash\left\{p_{\text {min }}\right\}: p_{y}>y_{\text {med }}\right\}$
8. $\quad T=$ newTreeNode() $\quad .$. Notation on the next slide:
9. T. $\mathrm{p}=p_{\min } \quad / /$ point $[x, y]$
10. T. $y=y_{\text {med }} \quad / /$ scalar
$\ldots p(v), v=$ tree node
11. \quad T.left $=$ PrioritySearchTree $\left(P_{\text {below }}\right)$
$\ldots y(v)$
12. \quad T.rigft $=$ PrioritySearchTree $\left(P_{\text {above }}\right)$
$\ldots l(v)$
13. $O(n \log n)$, but $O(n)$ if presorted on y-coordinate and bottom up

DCGI

Query Priority Search Tree

QueryPrioritySearchTree($\left.T,\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]\right)$
Input: A priority search tree and a range, unbounded to the left
Output: All points lying in the range

1. Search with q_{y} and q_{y}^{\prime} in $T \quad / /$ BST on y-coordinate - select y range Let $v_{\text {split }}$ be the node where the two search paths split (split node)
2. for each node v on the search path of q_{y} or $q_{y}^{\prime} / /$ points \cdot along the paths
3. if $p(v) \in\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$ then Report $p(v) / /$ starting in tree root
4. for each node v on the path of q_{y} in the left subtree of $v_{\text {split }} / /$ inner trees
5. if the search path goes left at v
6. ReportInSubtree $\left(r(v), q_{x}\right)$
7. for each node v on the path of q_{y}^{\prime} in right subtree of $v_{\text {split }}$
8. if the search path goes right at v
9. ReportInSubtree $\left(l(v), q_{x}\right) \quad / /$ rep. left subtree Δ

Reporting of subtrees between the y-paths

ReportInSubtree(v, q_{x})
Input: The root v of a subtree of a priority search tree and a value q_{x}. Output: All points p in the subtree with x-coordinate at most q_{x}.

1. if $x(p(v)) \leq q_{x} \quad / / x \in\left(-\infty: q_{x}\right] \quad-$ heap condition
2. Report point $p(v)$.
3. if v is not a leaf
4. ReportInSubtree $\left(l(v), q_{x}\right)$
5. ReportInSubtree $\left(r(v), q_{x}\right)$

Search according to x in the heap

Priority search tree query $\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$

1. select y range (y-BVS~ 1D range tree)
2. report points on paths (x-heap)
3. report subtrees (x-heap)

Priority search tree complexity

For set of n points in the plane

- Build
- Storage
$O(n \log n)$
$O(n)$
Query
$O(k+\log n)$
- points in query range $\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$
- k is number of reported points
- Use Priority search tree as associated data structure for interval trees for storage of set M (one for M_{L}, one for M_{R})

Talk overview

1. Windowing of axis parallel line segments in 2D

- 3 variants of interval tree - IT in x-direction
- Differ in storage of segment end points M_{L} and M_{R}

1D i. Line stabbing (standard IT with sorted lists) leecture 9 - ineresections
2D ii. Line segment stabbing (IT with range trees)
iii. Line segment stabbing (IT with priority search trees)
2. Windowing of line segments in general position

2D - segment tree + BST

2. Windowing of line segments in general position

$$
\begin{gathered}
x+ \pm+\underset{x+1}{x+t}+ \\
x+\text { DCS }
\end{gathered}
$$

Windowing of arbitrary oriented line segments

- Two cases of intersection
a,b) Endpoint inside the query window => range tree
c) Segment intersects side of query window => ???
- Intersection with BBOX (segment bounding box)?
- Intersection with 4n sides of the segment BBOX?
- But segments may not intersect the window \rightarrow query y

Talk overview

1. Windowing of axis parallel line segments in 2D (variants of interval tree - IT)
1D i. Line stabbing
(IT with sorted lists)
ii. Line segment stabbing (IT with range trees)

2D iii. Line segment stabbing (IT with priority search trees)
2. Windowing of line segments in general position

2D - segment tree
Note: \quad segment = interval
it consists of elementary intervals

- Exploits locus approach
- Partition parameter space into regions of same answer
- Localization of such region = knowing the answer
- For given set S of n intervals (segments) on real line
- Finds m elementary intervals (induced by interval end-points)
- Partitions 1D parameter space into these elementary intervals ${ }_{-\infty}^{\circ}{ }_{x_{1}}^{0-0}$ $\left(-\infty: x_{1}\right),\left[x_{1}: x_{1}\right],\left(x_{1}: x_{2}\right),\left[x_{2}: x_{2}\right], \ldots$, $\left(x_{m-1}: x_{m}\right),\left[x_{m}: x_{m}\right],\left(x_{m}:+\infty\right)$
- Stores line segments s_{i} with the elementary intervals
- Reports the segments s_{i} containing query point q_{x}.

Plain is partitioned into vertical slabs

Segment tree example

Segments $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$

$s_{i}=\left[x_{i}, x_{i}^{\prime}\right]$

Elementary Intervals

$$
\left[x_{1}: x_{1}\right]
$$

Intervals

Number of elementary intervals for n segments

$$
\begin{aligned}
& n=0 \longrightarrow \longrightarrow \#=1
\end{aligned}
$$

$n \quad$ Each end-point adds two elementary intervals $\#=4 n+1$
Each segment four...

Segment tree definition

Segment tree

- Skeleton is a balanced binary tree T
- Leaves ~ elementary intervals
- Internal nodes v
\sim union of elementary intervals of its children
- Store: 1. interval $\operatorname{Int}(v)=$ union of elementary intervals of its children

2. canonical set $S(v)$ of segments $\left[x_{i}: x_{i}{ }^{\prime}\right] \in S$

- Holds $\operatorname{Int}(v) \subseteq\left[x_{i}: x_{i}^{\prime}\right]$ and $\operatorname{Int}(\operatorname{parent}(v)] \nsubseteq\left[x_{i}: x_{i}^{\prime}\right]$ (node interval is not larger than the segment)
- Segments $\left[x_{i}: x_{i}{ }^{\prime}\right]$ are stored as high as possible, such that $\operatorname{Int}(v)$ is completely contained in the segment

Segments span the slab

Segments span the slab of the node, but not of its parent (stored as up as possible)

$$
S\left(v_{2}\right)=\left\{s_{1}, s_{2}\right\}
$$

node,
$\operatorname{Int}\left(v_{j}\right) \subseteq s_{i}$ and
$\operatorname{Int}(\operatorname{parent}(v)) \nsubseteq s_{i}$

$$
s_{i}
$$

Query segment tree - stabbing query (1D)

QuerySegmentTree $\left(v, q_{x}\right)$
Input: The root of a (subtree of a) segment tree and a query point q_{x} Output: All intervals (=segments) in the tree containing q_{x}.

1. Report all the intervals s_{i} in $S(v)$. // covered by the current node
2. if v is not a leaf // root covers "all" $(-\infty,+\infty)$
3. if $q_{x} \in \operatorname{lnt}(l(v))$
// go left
4. QuerySegmentTree($\left.l(v), q_{x}\right)$
5. else // or go right
6. \quad QuerySegmentTree $\left(r(v), q_{x}\right)$

Query time $O(\log n+k)$, where k is the number of reported intervals $O\left(1+k_{v}\right)$ for one node Height $O(\log n)$

Segment tree construction

ConstructSegmentTree(S)
Input: \quad Set of intervals (segments) S
Output: segment tree

1. Sort endpoints of segments in S, get elementary intervals $\ldots O(n \log n)$
2. Construct a binary search tree T on elementary intervals $\ldots O(n)$ (bottom up) and determine the interval $\operatorname{Int}(v)$ it represents
3. Compute the canonical subsets for the nodes (lists of their segments s_{i}):
4. $\quad \mathrm{v}=\operatorname{root}(T)$
5. for all segments $s_{i}=\left[x_{i}: x_{i}^{\prime}\right] \in S$
6. InsertSegmentTree($\left.v,\left[x_{i}: x_{i}^{\prime}\right]\right)$

Segment tree construction - interval insertion

InsertSegmentTree($\left.v,\left[x: x^{\prime}\right]\right)$
Input: The root of (a sub-tree of) a segment tree and an interval.
Output: The interval will be stored in the sub-tree.

1. if $\operatorname{Int}(\mathrm{v}) \subseteq\left[x: x^{\prime}\right] \quad / / \operatorname{Int}(\mathrm{v})$ contains $s_{i}=\left[x: x^{\prime}\right]$
2. store $s_{i}=\left[x: x^{\prime}\right]$ at v
3. else if $\operatorname{Int}(\mathrm{l}(\mathrm{v})) \cap\left[x: x^{\prime}\right] \neq \varnothing \quad / /$ part of s_{i} to the left
4. InsertSegmentTree(l(v), $\left.\left[x: x^{\prime}\right]\right)$
5. if $\operatorname{Int}(\mathrm{r}(\mathrm{v})) \cap\left[x: x^{\prime}\right] \neq \varnothing \quad / /$ part of s_{i} to the right
6. InsertSegmentTree($\left.\mathrm{r}(\mathrm{v}),\left[x: x^{\prime}\right]\right)$

One interval is stored at most twice in one level =>
Single interval insert $O(\log n)$, insert n intervals $O(z n \log n)$
Construction total $O(n \log n)$
Storage $O(n \log n)$
Tree height $O(\log n)$, name stored max 2 x in one level
Storage total $O(n \log n)$ - see next slide

Space complexity - notes

[Berg]
Worst case $-O\left(n^{2}\right)$ segments in leafs But
Store segments as high, as possible Segment max 2 times in one level max $4 n+1$ elementary intervals (leaves) $\Rightarrow O(n)$ space for the tree
$\Rightarrow O(n \log n)$ space for interval names

[Berg]
s covered by v_{1} and v_{3}
$\Rightarrow v_{2}$ covered, $\operatorname{Int}\left(v_{2}\right) \in s$
As v_{2} lies between v_{1} and v_{3}
$\Rightarrow \operatorname{Int}\left(\operatorname{parent}\left(v_{2}\right)\right) \in s \Rightarrow$ segment s will not be stored in v_{2}

Segment tree complexity

A segment tree for set S of n intervals in the plane,

- Build $O(n \log n)$
- Storage $O(n \log n)$
- Query $\quad O(k+\log n)$
- Report all intervals that contain a query point
- k is number of reported intervals

Segment tree versus Interval tree

- Segment tree
- $O(n \log n)$ storage versus $O(n)$ of Interval tree
- But returns exactly the intersected segments s_{i}, interval tree must search the lists M_{L} and/or M_{R}

- Good for

1. extensions (allows different structuring of intervals)
2. stabbing counting queries

- store number of intersected intervals in nodes
$-O(n)$ storage and $O(\log n)$ query time $=$ optimal

3. higher dimensions - multilevel segment trees
(Interval and priority search trees do not exist in ^dims)

Talk overview

1. Windowing of axis parallel line segments in 2D (variants of interval tree - IT)
1 D i. Line stabbing (standard $I T$ with sorted lists)
ii. Line segment stabbing (IT with range trees)

2D
iii. Line segment stabbing (IT with priority search trees)
2. Windowing of line segments in general position

2D - segment tree

- the windowing algorithm

2. Windowing of line segments in general position

Windowing of arbitrary oriented line segments

- Let S be a set of arbitrarily oriented line segments in the plane.
- Report the segments intersecting a vertical query segment $q:=q_{x} \times\left[q_{y}: q_{y}^{\prime}\right]-$ window border
- Segment tree T on x intervals of segments in S
- node v of T corresponds to vertical slab $\operatorname{Int}(v) \times(-\infty: \infty)$
- segments span the slab of the node, but not of its parent
- segments do not intersect
=> segments in the slab (node) can be vertically ordered - BST

Segments between vertical segment endpoints

Segment s is intersected by vert.query segment q iff

- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s

Segments between vertical segment endpoints

- Segments (in the slab) do not mutually intersect
=> segments can be vertically ordered and stored in BST
- Each node v of the x segment tree (vertical slab) has an associated y-BST
- BST $T(v)$ of node v stores the canonical subset $S(v)$ according to the vertical order
- Intersected segments can be found by searching $T(v)$ in $O\left(k_{v}+\log n\right), k_{v}$ is the number of intersected segments

Windowing of arbitrary oriented line segments complexity

Structure associated to node (BST) uses storage linear in the size of $S(v)$

- Build $O(n \log n)$
- Storage $O(n \log n)$
- Query $O\left(k+\log ^{2} n\right) \ldots o(\log n)$ segm tree $+O(\log n)$ BST
- Report all segments that contain a query point
- k is number of reported segments

Windowing of line segments in 2D - conclusions

Construction: all interval tree variants $O(n \log n)$

1. Axis parallel

1D i. Line (sorted lists)
ii. Segment (range trees) $O\left(k+\log ^{2} n\right) \quad O(n \log n)$
iii. Segment (priority s. tr.) $O(k+\log n) \quad O(n)$
2. In general position

2D - segment tree $+B S T \quad O\left(k+\log ^{2} n\right) \quad O(n \log n)$
2D - segment tree $+B S T \quad O\left(k+\log ^{2} n\right) \quad O(n \log n)$
Search
Memory
$O(k+\log n) \quad O(n)$

$$
O(k+\log n) \quad O(n)
$$

References

[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, SpringerVerlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapters 3 and 9, http://www.cs.uu.nl/geobook/
[Mount] Mount, D.: Computational Geometry Lecture Notes for Fall 2016, University of Maryland, Lecture 33. http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf
[Rourke] Joseph O'Rourke: Computational Geometry in C, Cambridge University Press, 1993, ISBN 0-521-44592-2 http://maven.smith.edu/~orourke/books/compgeom.htmI
[Vigneron] Segment trees and interval trees, presentation, INRA, France, http://w3.jouv.inra.fr/unites/miai/public/vigneron/cs4235/slides.htm
[Schirra] Stefan Schirra. Geometrische Datenstrukturen. Sommersemester 2009 http://wwwisg.cs.unimagdeburg.de/ag/lehre/SS2009/GDS/slides/S10.pdf

