

WINDOWING

PETR FELKEL

FEL CTU PRAGUE

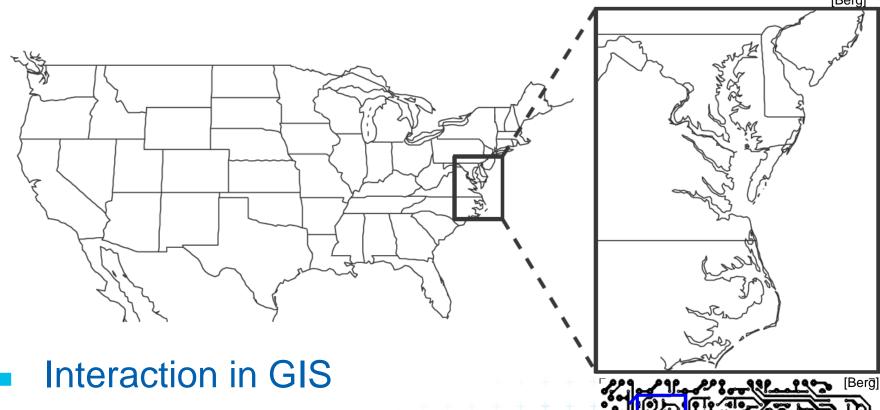
felkel@fel.cvut.cz

https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

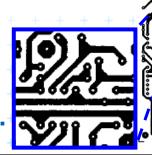
Based on [Berg], [Mount]

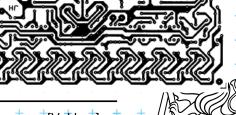
Version from 30.11.2022

Windowing queries - examples



- Select subset by outlining
- Zoom in and re-center
- Circuit board inspection,...

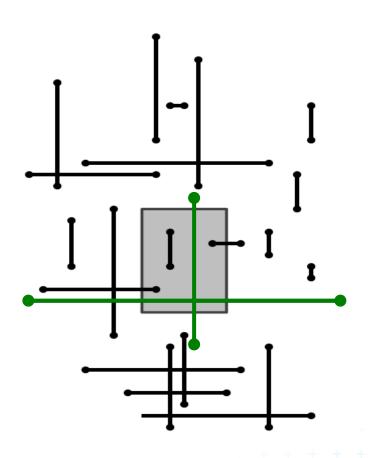


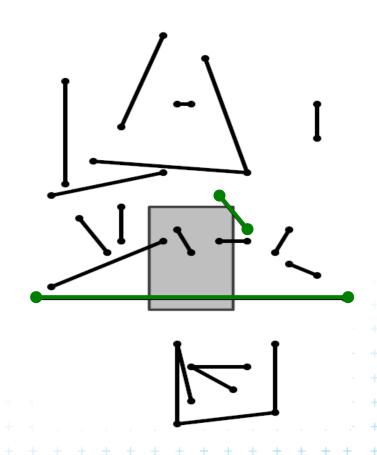


Windowing versus range queries

- Range queries (see range trees in Lecture 03)
 - Points
 - Often in higher dimensions
- Windowing queries
 - Line segments, curves, ...
 - Usually in low dimension (2D, 3D)
- The goal for both:
 Preprocess the data into a data structure
 - so that the objects intersected by the query rectangle can be reported efficiently

Windowing queries on line segments



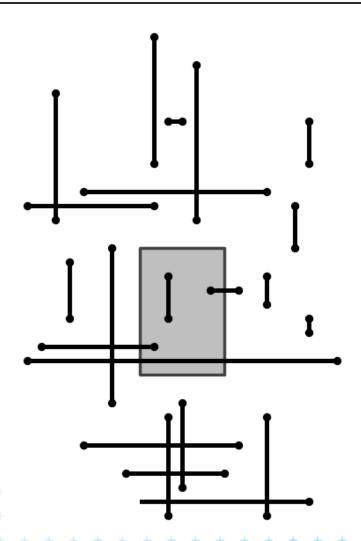


1. Axis parallel line segments

2. Arbitrary line segments (non-crossing)

[Vakken] +

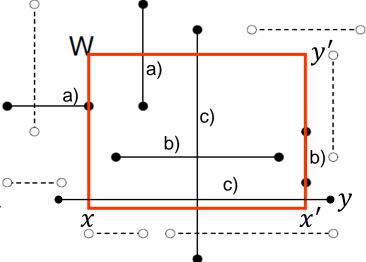
1. Windowing of axis parallel line segments



1. Windowing of axis parallel line segments

Window query

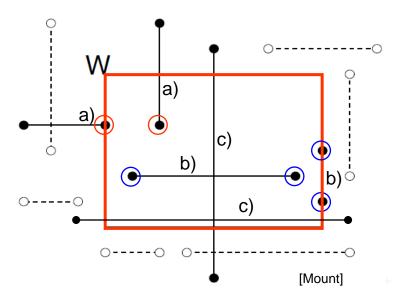
- Given
 - a set of orthogonal line segments S (preprocessed),
 - and orthogonal query rectangle $W = [x : x'] \times [y : y']$
- Count or report all the line segments of S that intersect W
- Such segments have
 - a) one endpoint in
 - b) two end points in included
 - c) no end point in cross over



Line segments with 1 or 2 points inside

a) one point inside

- Use a 2D range tree (lesson 3)
- $O(n \log n)$ storage
- $O(\log^2 n + k)$ query time or
- $O(\log n + k)$ with fractional cascading



b) two points inside - as a) one point inside

– Avoid reporting twice:

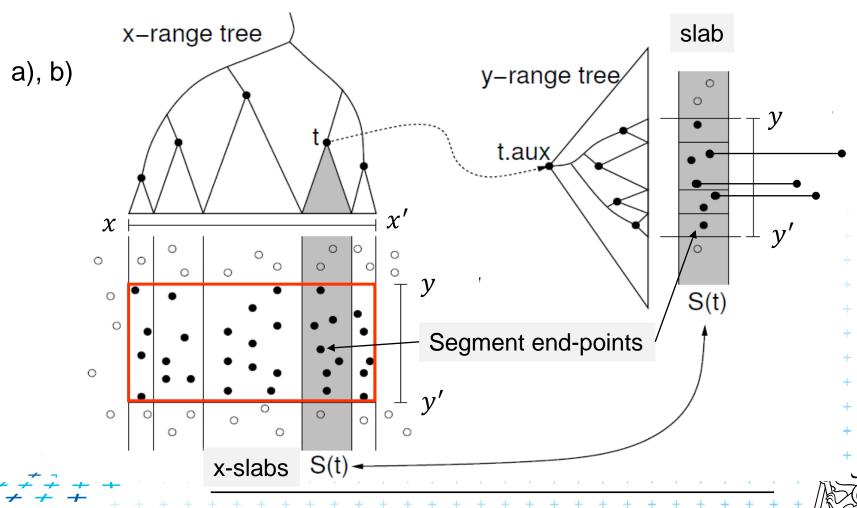
Mark segment when reported (clear after the query) and skip marked segments or

when end point found, check the other end-point and report only one of them (the leftmost or the bottom)

2D range tree (without fractional cascading-more in Lecture 3)

Search space: points

Query: Orthogonal intervals $[x : x'] \times [y : y']$

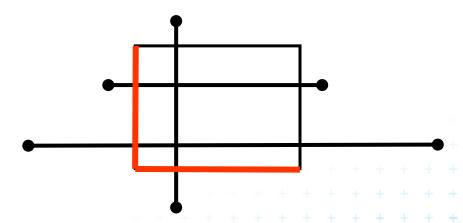


Line segments that cross over the window

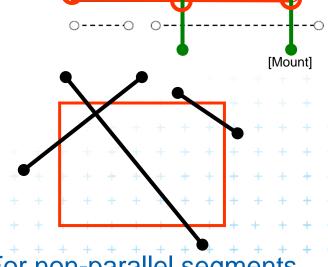
c) No points inside

- Such segments not detected using end-point range tree
- Cross the boundary twice

For axis parallel segments



Check left and bottom boundary



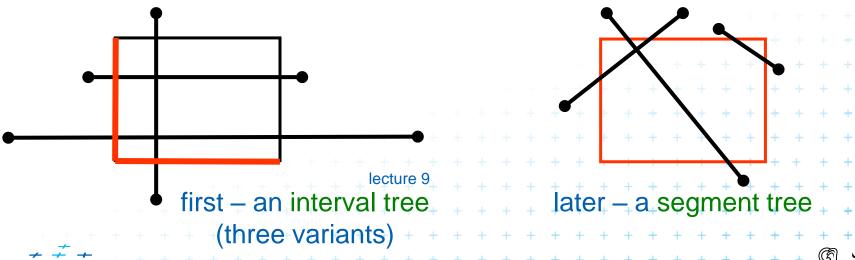
For non-parallel segments

Check all 4 boundaries

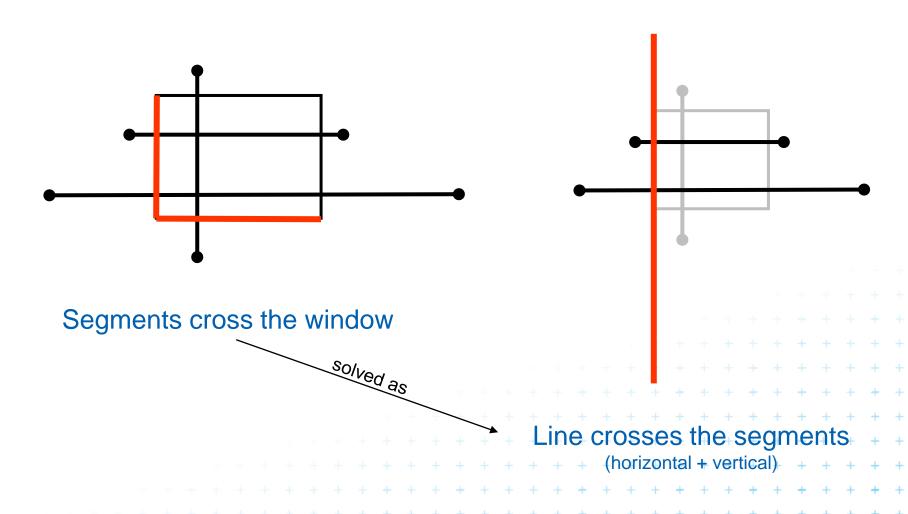
Windowing problem summary

Cases a) and b)

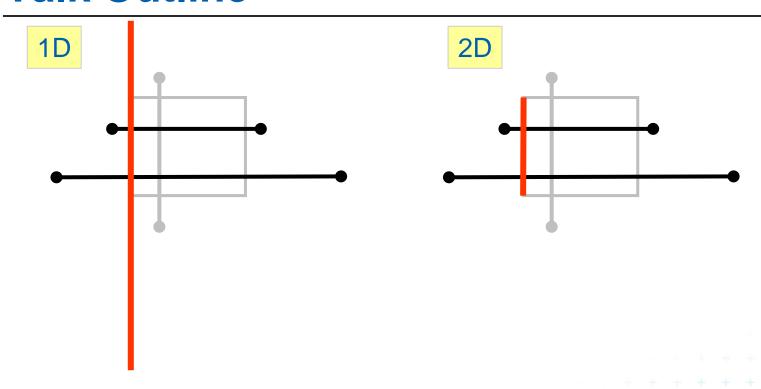
- Segment end-point in the query rectangle (window)
- Solved by 2D range trees (see lecture 3, $O(n \log n)$ time & memory)
- We will discuss only case c)
 - Segment crosses the window



case c) principle



Talk Outline



Line x line segments

interval tree

For heat-up

Line segment x line segments

2 variants of interval tree -

1 variant of segment tree

Data structures for case c)

Interval tree (1D IT)

stores 1D intervals (end-points in sorted lists)

computes intersections with query interval

see intersection of axis angle rectangles – there is y-overlap used, here is x-overlap

We must extend Interval tree to 2D

variants differ in storage of interval end-points M_L , M_R

priority search trees

Segment tree

splits the plane to slabs in x in elementary intervals

Talk overview



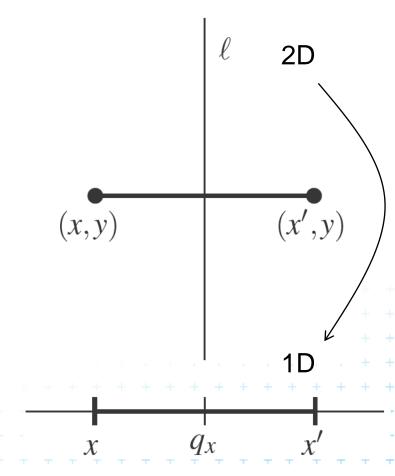
- 1. Windowing of axis parallel line segments in 2D
 - 3 variants of *interval tree IT in x-direction*
 - Differ in storage of segment end points M_L and M_R
- 1D i. Line stabbing (standard IT with sorted lists) lecture 9 intersections
- ii. Line segment stabbing (*IT* with *range trees*)
 - iii. Line segment stabbing (IT with priority search trees)
- 2. Windowing of line segments in general position
- 2D segment tree + BST

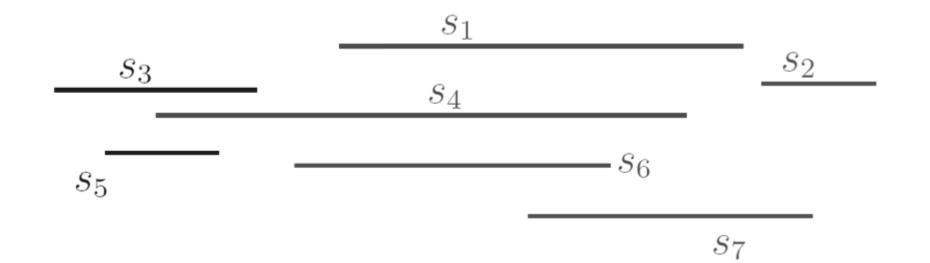
i. Segment intersected by vertical line

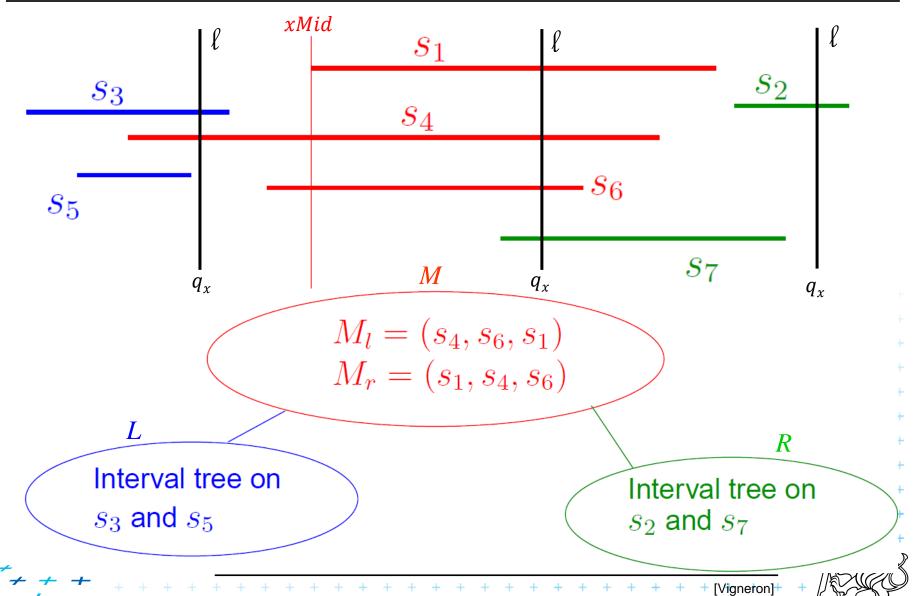
- Query line $\ell := (x = q_x)$
 - Report the segments stabbed by a vertical line
 - = 1 dimensional problem (ignore y coordinate)

 \Rightarrow Report the interval [x : x'] containing query point q_x

DS: Interval tree with sorted lists





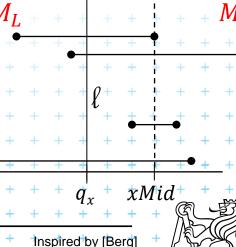


i. Segment intersected by vertical line

Principle

- Store input segments in static interval tree
- In each interval tree node
 - Check the segments in the set M
 - These segments contain node's xMid value
 - M_L are left end-points
 - M_R are right end-points
 - q_x is the query value
 - If $(q_x < xMid)$ Sweep M_L from left $p \in M_L$: if $p_x \le q_x \Rightarrow$ intersection
 - If $(q_x > xMid)$ Sweep M_R from right

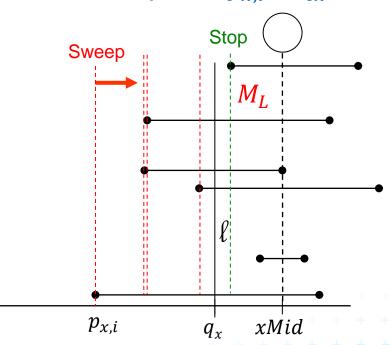
 $p \in M_R$: if $p_x \ge q_x \Rightarrow$ intersection

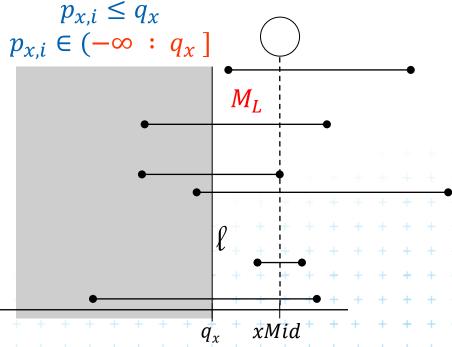


Segment intersection (left from xMid)

All line segments from M pass through xMid

- $\Rightarrow q_x$ must be between $p_{x,i}$ and xMid to intersect the line segment i
- \Rightarrow left endpoints $p_{x,i} \leq q_x \Rightarrow$ intersection





Intersection with line \(\ell \) means

Intersection with half space q

$$\ell \coloneqq q_x \times [-\infty : \infty]$$

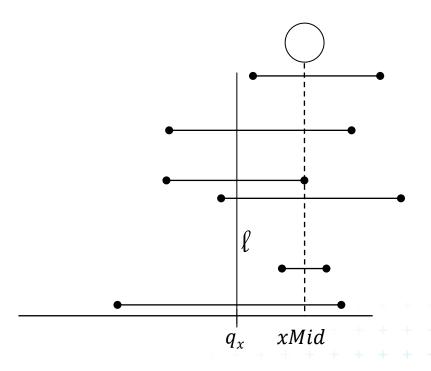
$$q \coloneqq (-\infty : q_{x}] \times [-\infty : \infty]$$

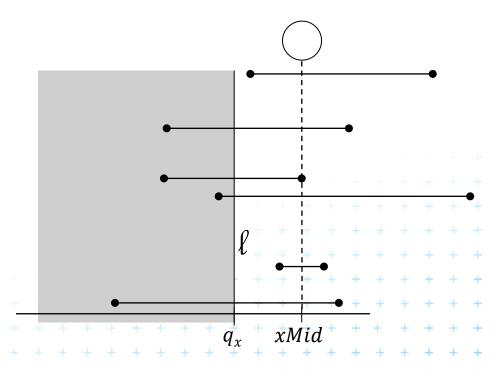
Inspired by [Berg]

Principle once more

Instead of intersecting edges by line

search points in half-space





i. Segment intersected by vertical line

- De facto a 1D problem Query line $\ell \coloneqq q_x \times [-\infty : \infty]$
- Horizontal segment of M stabs the query line ℓ left of xMid iff its (segment's)

left endpoint lies in half-space

$$q \coloneqq (-\infty : q_x] \times [-\infty : \infty]$$

In IT node with stored median xMid

report all segments from M

 M_L : whose left point lies in

 $(-\infty:q_x]$

if ℓ lies left from xMid

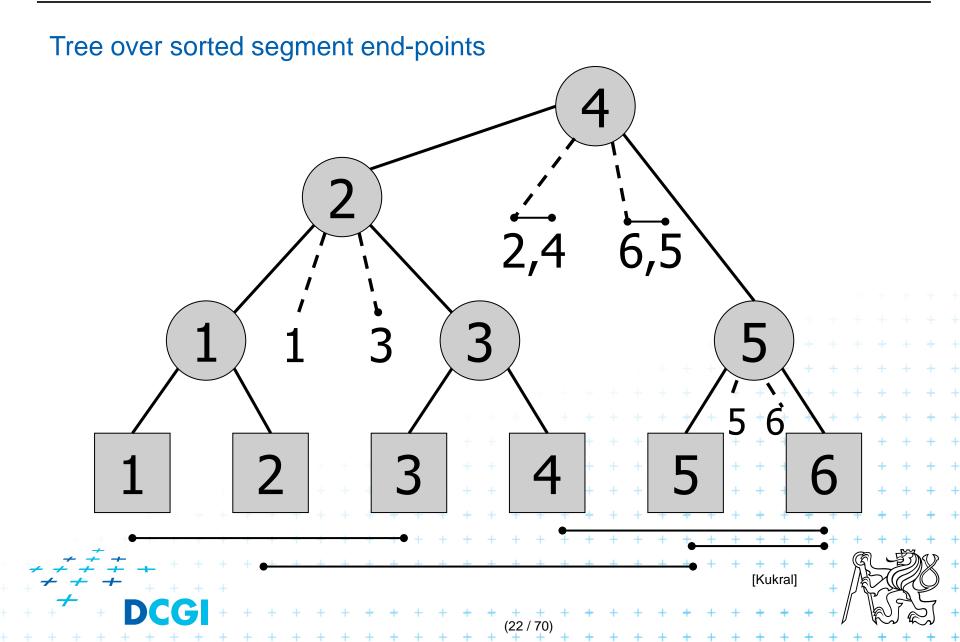
 M_R : whose right point lies in

 $[q_x:+\infty)$

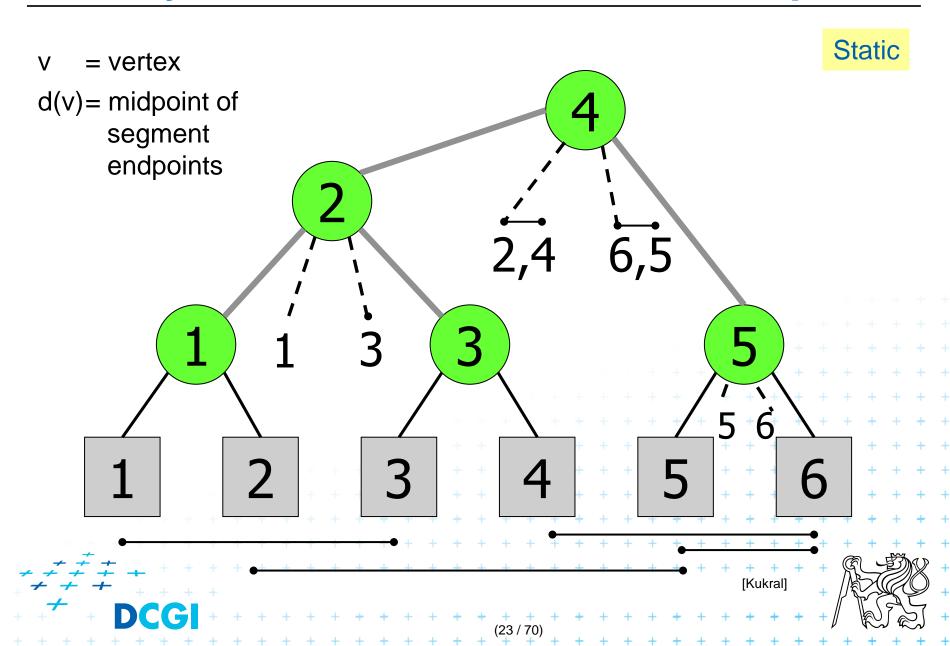
if ℓ lies right from xMid

Inspired by (Bera)

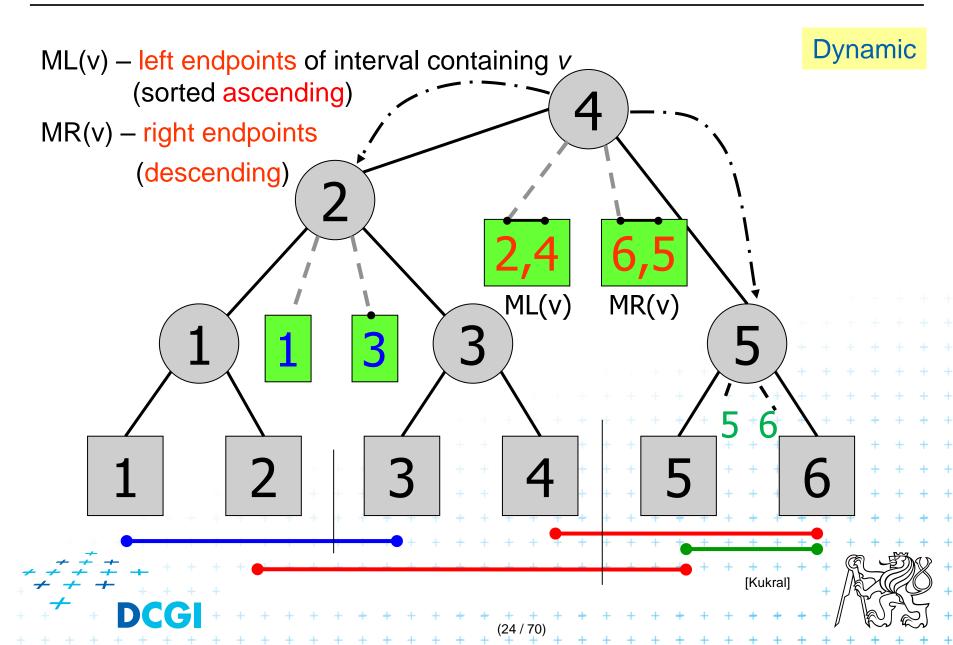
Static interval tree [Edelsbrunner80]



Primary structure – static tree for endpoints



Secondary lists of incident interval end-pts.



Merged procedures from in lecture 09

- PrimaryTree(S) on slide 33
- InsertInterval (b, e, T) on slide 35

```
ConstructIntervalTree(S) // Intervals all active – no active lists
          Set S of intervals on the real line – on x-axis
Output: The root of an interval tree for S
    if (|S| == 0) return null
                                                            // no more intervals
    else
       xMed = median endpoint of intervals in S
                                                            // median endpoint
3.
       L = \{ [xlo, xhi] in S | xhi < xMed \}
                                                            // left of median
                                                            // right of median
       R = \{ [xlo, xhi] \text{ in } S \mid xlo > xMed \} 
5.
       M = \{ [xlo, xhi] \text{ in } S \mid xlo \le xMed \le xhi \} \bullet + \bullet
                                                            // contains median
6.
      → ML = sort M in increasing order of xlo
                                                            // sort M
      →MR = sort M in decreasing order of xhi
8.
       t = new IntTreeNode(xMed, ML, MR)
9.
                                                            // this node
       t.left = ConstructIntervalTree(L)
10.
                                                            // left subtree
       t.right = ConstructIntervalTree(R)+
11.
                                                            // right subtree
12.
       return t
```

steps 4.,5.,6. done in one step if presorted

Line stabbing query for an interval tree

```
Less effective variant of QueryInterval (b, e, T)
Stab(t, qx)
                                                       on slide 34 in lecture 09
Input: IntTreeNode t, Scalar qx
                                                       with merged parts: fork and search right
Output: prints the intersected intervals
   if (t == null) return
                                                        // no leaf: fell out of the tree
    if (qx < t.xMed)
                                                        // left of median?
        for (i = 0; i < t.ML.length; i++)
3.
                                                        /\!/ traverse M_L left end-points
                if (t.ML[i].lo \le qx) print (t.ML[i])
                                                        // ..report if in range
5.
                else break
                                                        // ..else done
        Stab (t.left, qx)
                                                        // recurse on left subtre
    else // (qx \ge t.xMed)
                                                        // right of or equal to median
        for (i = 0; i < t.MR.length; i++) {
8.
                                                        // traverse M_R right end-points
                if (t.MR[i].hi \ge qx) print (t.MR[i])
                                                       // ..report if in range
                else break
                                                       // ..else done
10.
                                                + + + + // recurse on right-subtree
11.
        Stab (t.right, qx)
```

Note: Small inefficiency for qx == t.xMed - recurse on right

Complexity of line stabbing via interval tree

with sorted lists

- Construction $O(n \log n)$ time
 - Each step divides at maximum into two halves or less (minus elements of M) => tree of height $h = O(\log n)$
 - If presorted endpoints in three lists L,R, and M then median in O(1) and copy to new L,R,M in O(n)
- Vertical line stabbing query $O(k + \log n)$ time
 - One node processed in O(1 + k'), k'reported intervals
 - v visited nodes in O(v + k), k total reported intervals
 - $-v = h = \text{tree height} = O(\log n)$ $k = \sum k'$
- Storage O(n)
 - Tree has O(n) nodes, each segment stored twice \neq (two endpoints)

Talk overview

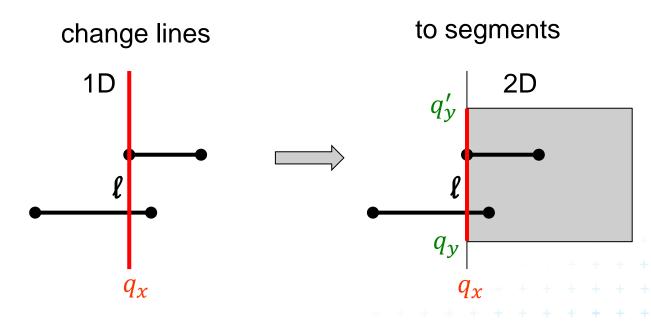


- 1. Windowing of axis parallel line segments in 2D
 - 3 variants of interval tree IT in x-direction
 - Differ in storage of segment end points M_L and M_R
- i. Line stabbing (standard IT with sorted lists) lecture 9 intersections
 - ii. Line segment stabbing (IT with range trees)
 - iii. Line segment stabbing (IT with priority search trees)
- 2. Windowing of line segments in general position
- 2D segment tree + BST

2D

Line segment stabbing (IT with range trees)

Enhance 1D interval trees to 2D



$$q_x \times [-\infty : \infty]$$
 (no y-test)

$$q_x \times [q_y : q_y']$$
 (additional y-test)

Sorted lists

Range trees

i. Segments × vertical line

- De facto a 1D problem
- Query line $\ell \coloneqq q_x \times [-\infty : \infty]$
- Horizontal segment of M_L stabs the query line ℓ left of xMid iff its left endpoint lies in

half-space

$$q \coloneqq (-\infty : q_x] \times [-\infty : \infty]$$

In IT node with stored median xMid

report all segments from M

M_L: whose left point lies in

 $(-\infty:q_x]$

if ℓ lies left from xMid

 M_R : whose right point lies in

 $[q_x:+\infty)$

if ℓ lies right from xMid

DCGI

 M_L

Tree node

ii. Segments × vertical line segment

 $(q_{\scriptscriptstyle X},q'_{\scriptscriptstyle Y})$

 (q_x, q_y)

- A 2D problem Query segment $q \coloneqq q_x \times [q_y : q_y']$
- Horizontal segment of M_L stabs the query segment q left of xMid iff its left endpoint lies in semi-infinite rectangular region $p_{\text{New test}}$ $q := (-\infty: q_x] \times [q_y: q_y']$
- In IT node with stored median xMid report all segments
 - M_L : whose left points lie in $(-\infty: q_x] \times [q_y: q_y']$ where q_x lies left from xMid
 - M_R: whose right point lies in

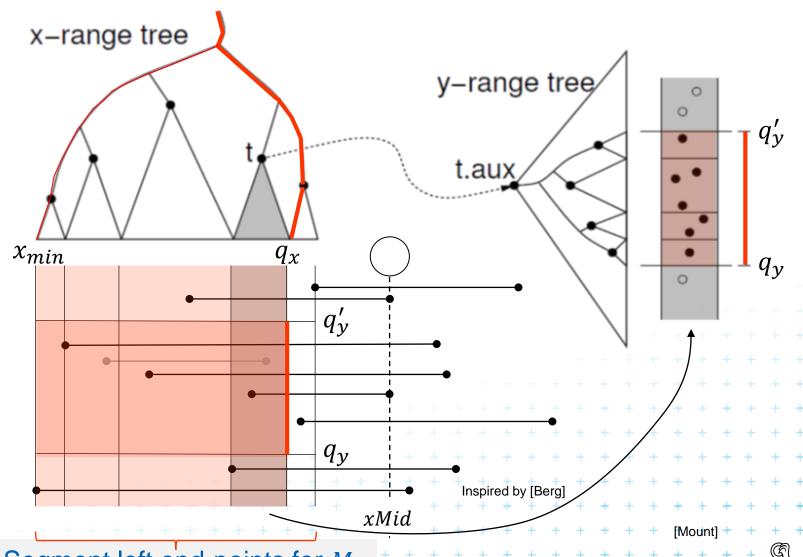
 $[q_x:+\infty)\times[q_y:q_y']$

where q_x lies right from xMid

Data structure for endpoints

- Storage of M_L and M_R
 - 1D Sorted lists is not enough for line segments
 - We need to test in y too
 - Use 2D range trees (one for M_L and one for M_R in each node)
- Instead O(n) sequential search in M_L and M_R perform $O(\log n)$ search in range tree with fractional cascading

2D range tree (without fractional cascading-more in Lecture 3)



 \mathcal{L} Segment left end-points for M_L

DCGI

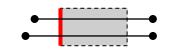
Complexity of range tree line segment stabbing

- Construction $O(n \log n)$ time
 - Each step divides at maximum into two halves L,R or less (minus elements of M) => int. tree height $O(\log n)$
 - If the range trees are efficiently build in O(n) after points sorted
- Vertical line segment stab. q. $O(k + \log^2 n)$ time
 - One node processed in $O(\log n + k')$, k' reported segm.
 - v-visited nodes in $O(v \log n + k)$, k total reported segm.
 - -v = interval tree height = O(log n) $k = \sum k'$
 - $O(k + \log^2 n)$ time range tree with fractional cascading
 - $O(k + \log^3 n)$ time range tree without fractional casc.
- Storage $O(n \log n)$ +

+ + + Can be done better?

Dominated by the range trees

Talk overview



- 1. Windowing of axis parallel line segments in 2D
 - 3 variants of interval tree IT in x-direction
 - Differ in storage of segment end points M_L and M_R
- 1D i. Line stabbing (standard IT with sorted lists) lecture 9 intersections
 - ii. Line segment stabbing (IT with range trees)
 - iii. Line segment stabbing (IT with priority search trees)
- 2. Windowing of line segments in general position
- 2D segment tree + BST

 $\min x$

Another variant for case c) on slide 9

- Exploit the fact that query rectangle in each node in interval tree is unbounded (in x direction)
- Priority search trees
 - as secondary data structure for both left and right endpoints (M_L and M_R) of segments in nodes of interval tree one for ML, one for MR
 - Improve the storage to O(n) for horizontal segment intersection with left window edge (2D range tree has $O(n \log n)$)
- For cases a) and b) $O(n \log n)$ storage remains
 - we need range trees for windowing segment endpoints

Rectangular range queries variants

- Let $P = \{p_1, p_2, ..., p_n\}$ is set of points in plane
- Goal: rectangular range queries of the form $(-\infty: q_x] \times [q_y: q_y']$ - unbounded (in *x* direction)
- In 1D: search for nodes v with $v_x \in (-\infty : q_x]$
 - range tree $O(\log n + k)$ time (search the end, report left)
 - ordered list O(1 + k) time 1 is for possibly fail test of the first

(start in the leftmost, stop on v with $v_x > q_x$)

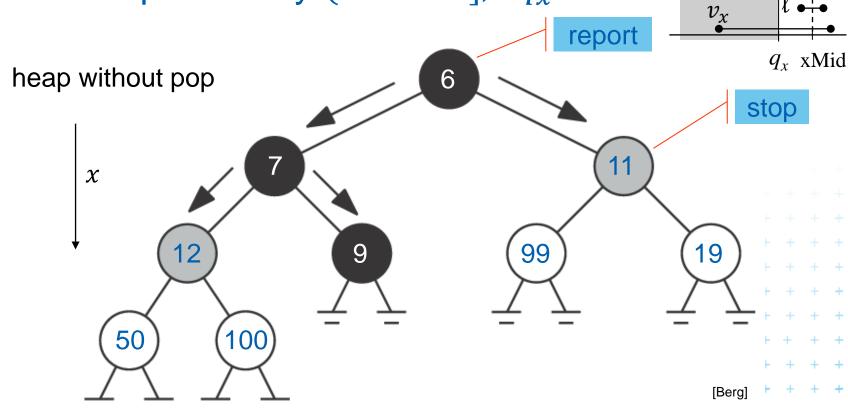
use heap O(1+k) time!

(traverse all children, stop when $v_x > q_x$)

- In 2D use heap for points with $x \in (-\infty; q_x]$
 - + integrate information about y-coordinate

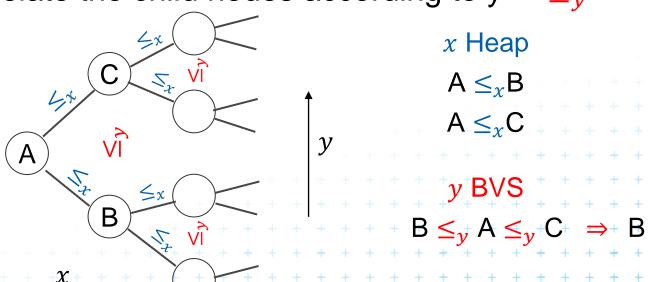
Heap for 1D unbounded range queries

- Traverse all children, stop if $v_x > q_x$
- Example: Query $(-\infty:10]$, $q_x=10$



Principle of priority search tree

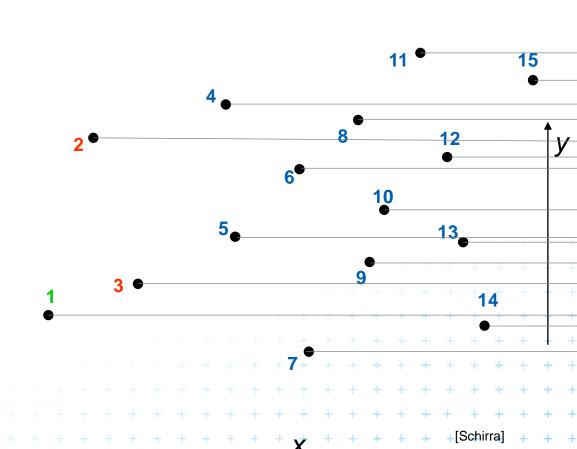
- Heap \leq_{x}
 - relation between parent and its child nodes only
 - no relation between the child nodes themselves
- Priority search tree
 - relate the child nodes according to y \leq_{ν}



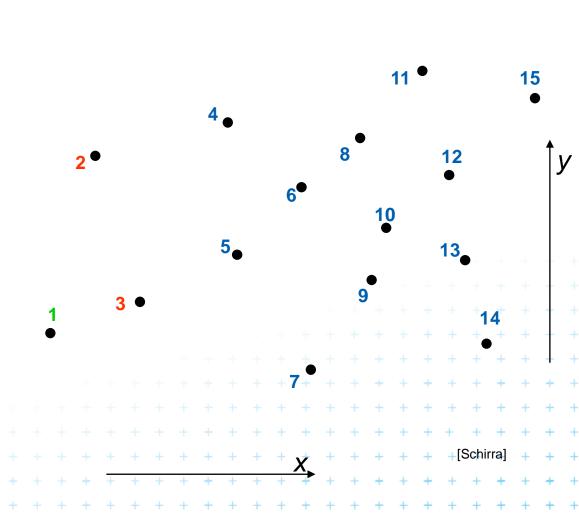
Priority search tree (PST)

- = Heap in 2D that can incorporate info about both x, y
 - BST on y-coordinate (horizontal slabs) ~ 1D range tree
 - Heap on x-coordinate (minimum x from slab along x)
- If P is empty, PST is empty leaf
- else
 - $-p_{min}$ = point with smallest x-coordinate in P a heap root
 - y_{med} = y-coord. median of points $P \setminus \{p_{min}\}$ BST root
 - $P_{below} := \{ p \in P \setminus \{p_{min}\} : p_y \le y_{med} \}$
 - $P_{above} := \{ p \in P \setminus \{p_{min}\} : p_y > y_{med} \}$
- Point p_{min} and scalar y_{med} are stored in the PST root
- The left subtree is PST of P_{below}
- The right subtree is PST of P_{above}

Priority search tree construction example

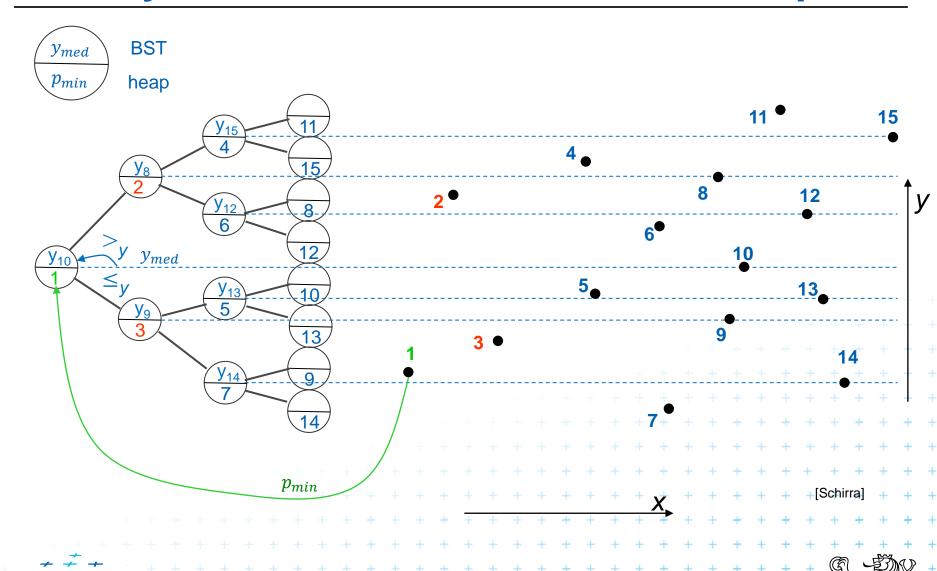


Priority search tree construction example



(44 / 70)

Priority search tree construction example



Priority search tree construction

```
PrioritySearchTree( P )
Input: set P of points in plane
Output: priority search tree T
1. if P = \emptyset then PST is an empty leaf
    else
              = point with smallest x-coordinate in P // heap on x root
3.
       p_{min}
              = y-coord. median of points P \setminus \{p_{min}\} // BST on y root
       y_{med}
       Split points P \setminus \{p_{min}\} into two subsets – according to y_{med}
5.
              P_{below} := \{ p \in P \setminus \{p_{min}\} : p_{v} \le y_{med} \}
6.
              P_{above} := \{ p \in P \setminus \{p_{min}\} : p_{v} > y_{med} \}
7.
       T = newTreeNode()
8.
                                            ... Notation on the next slide:
       T.p = p_{min} // point [x, y] ....p(v), v = \text{tree-node}
     10.
11.
       T.rigft = PrioritySearchTree(P_{above}) + \dots + r(v)
12.
```

13. $Q(n \log n)$, but O(n) if presorted on y-coordinate and bottom up

Query Priority Search Tree

- QueryPrioritySearchTree(T, $(-\infty:q_x] \times [q_y:q_y']$)
- *Input:* A priority search tree and a range, unbounded to the left
- Output: All points lying in the range
- 1. Search with q_y and q'_y in T // BST on y-coordinate select y range Let v_{split} be the node where the two search paths split (split node)
- 2. for each node ν on the search path of q_{ν} or q'_{ν} // points along the paths
- 3. if $p(v) \in (-\infty : q_x] \times [q_y : q_y']$ then Report p(v) // starting in tree root
- 4. for each node ν on the path of q_y in the left subtree of ν_{split} // inner trees
- 5. if the search path goes left at ν
- 6. ReportInSubtree(r(v), q_x) // report right subtree
- 7. for each node ν on the path of q_y' in right subtree of ν_{split}
- 8. if the search path goes right at ν + +
- 9. \downarrow ReportInSubtree(l(v), q_x) // rep. left subtree

Reporting of subtrees between the y-paths

ReportInSubtree(v, q_x)

Input: The root ν of a subtree of a priority search tree and a value q_{χ} .

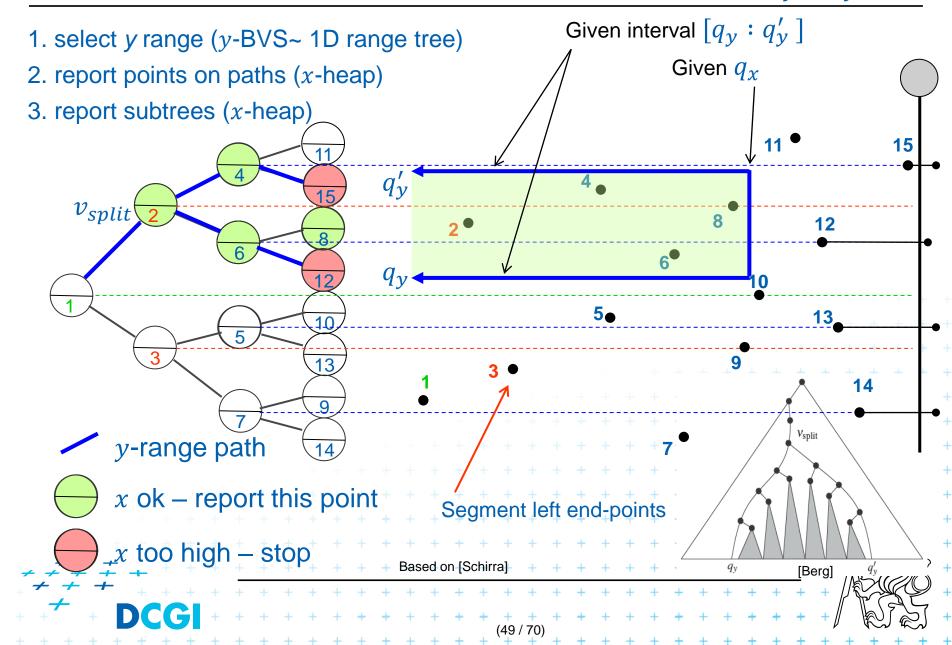
Output: All points p in the subtree with x-coordinate at most q_x .

```
1. if x(p(v)) \le q_x   //x \in (-\infty : q_x] -- heap condition
```

- 2. Report point p(v).
- 3. if ν is not a leaf
- 4. ReportInSubtree($l(\nu)$, q_x)
- 5. ReportInSubtree(r(v), q_x)

Search according to *x* in the heap

Priority search tree query $(-\infty: q_x] \times [q_y: q_y']$

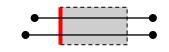


Priority search tree complexity

For set of n points in the plane

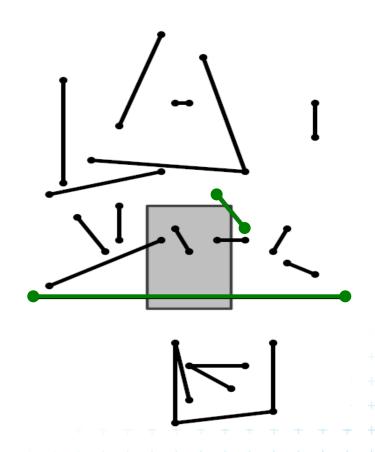
- Build $O(n \log n)$
- Storage O(n)
- Query $O(k + \log n)$
 - points in query range $(-\infty: q_x] \times [q_y: q_y']$
 - k is number of reported points
- Use Priority search tree as associated data structure for interval trees for storage of set M (one for M_L , one for M_R)

Talk overview



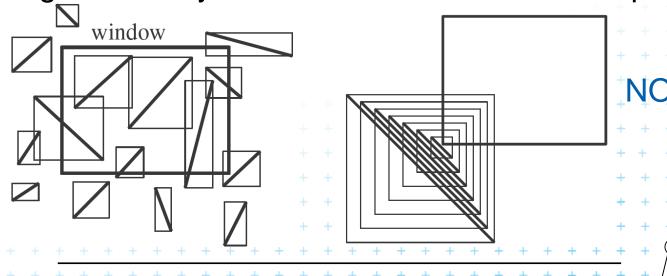
- 1. Windowing of axis parallel line segments in 2D
 - 3 variants of interval tree IT in x-direction
 - Differ in storage of segment end points M_L and M_R
- 1D i. Line stabbing (standard IT with sorted lists) lecture 9 intersections
- ii. Line segment stabbing (*IT* with *range trees*)
 - iii. Line segment stabbing (IT with priority search trees)
- 2. Windowing of line segments in general position
- 2D segment tree + BST

2. Windowing of line segments in general position



Windowing of arbitrary oriented line segments

- Two cases of intersection
 - a,b) Endpoint inside the query window => range tree
 - c) Segment intersects side of query window => ???
- Intersection with BBOX (segment bounding box)?
 - Intersection with 4n sides of the segment BBOX?
 - But segments may not intersect the window -> query y



Talk overview

- 1. Windowing of axis parallel line segments in 2D (variants of *interval tree IT*)
- i. Line stabbing (IT with sorted lists)
- ii. Line segment stabbing (IT with range trees)
 - iii. Line segment stabbing (IT with priority search trees)
- 2. Windowing of line segments in general position
- 2D segment tree

Note: segment = interval it consists of elementary intervals

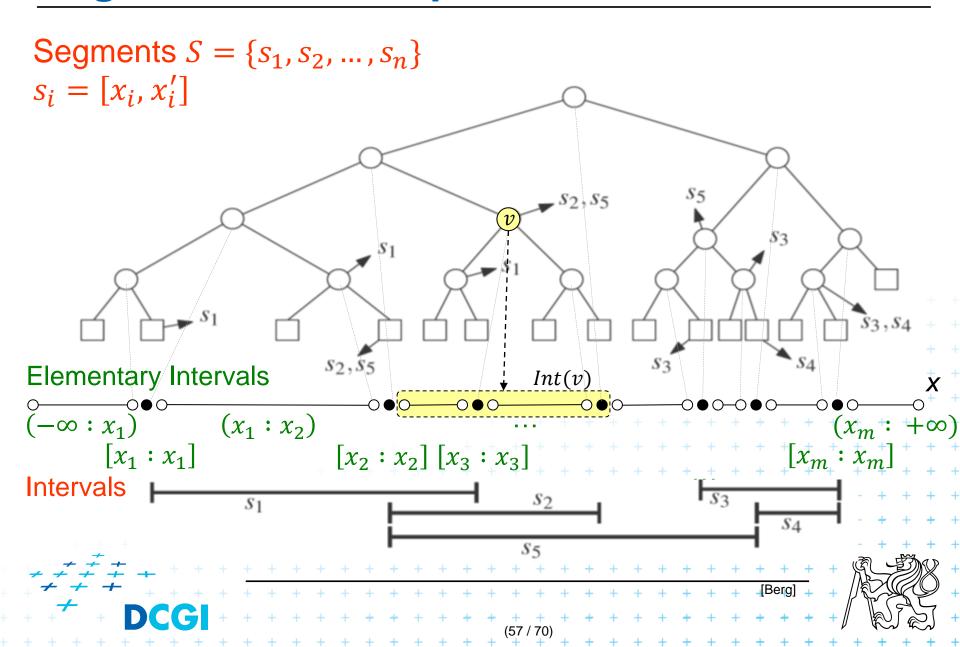
- Exploits locus approach
 - Partition parameter space into regions of same answer
 - Localization of such region = knowing the answer
- For given set S of n intervals (segments) on real line
 - Finds m elementary intervals (induced by interval end-points)
 - Partitions 1D parameter space into these elementary

```
intervals -\infty x_1 x_2 x_3 x_4 x_m + \infty (-\infty: x_1), [x_1: x_1], (x_1: x_2), [x_2: x_2], ..., (x_{m-1}: x_m), [x_m: x_m], (x_m: +\infty)
```

- Stores line segments s_i with the elementary intervals
- Reports the segments s_i containing query point q_x .

Plain is partitioned into vertical slabs

Segment tree example



Number of elementary intervals for n segments

$$n=0$$
 \longrightarrow $\#=1$

$$n = 1$$
 $0 \longrightarrow 0$ $0 \longrightarrow$

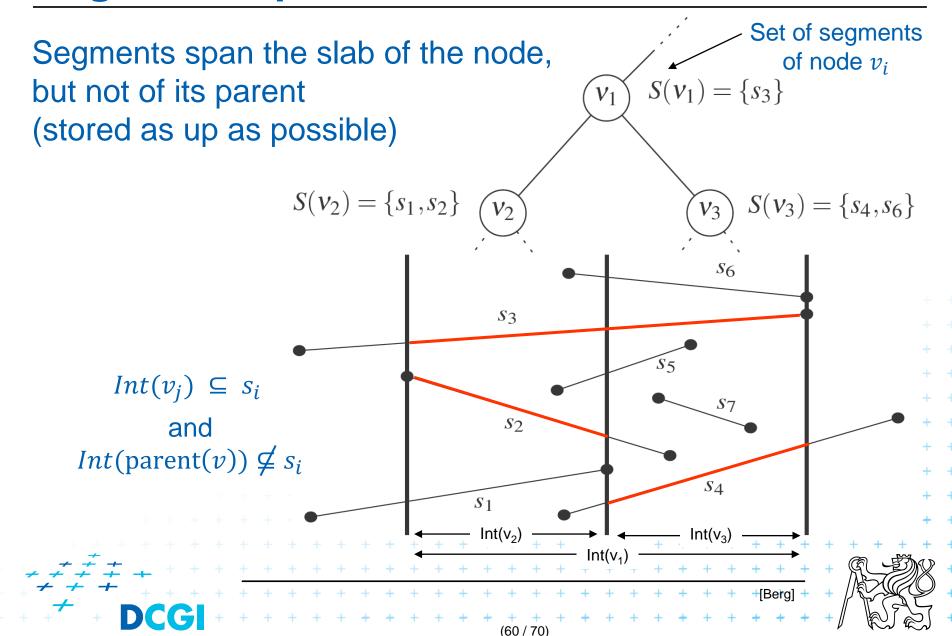
Each end-point adds two elementary intervals + + # = 4n + 1nEach segment four...

Segment tree definition

Segment tree

- Skeleton is a balanced binary tree T
- Leaves ~ elementary intervals
- Internal nodes v
 - ~ union of elementary intervals of its children
 - Store: 1. interval Int(v) = union of elementary intervals of its children segments s_i
 - 2. canonical set S(v) of segments $[x_i : x_i'] \in S$
 - Holds $Int(v) \subseteq [x_i : x_i']$ and $Int(parent(v)) \not\subseteq [x_i : x_i']$ (node interval is not larger than the segment)
 - Segments $[x_i:x_i']$ are stored as high as possible, such that Int(v) is completely contained in the segment

Segments span the slab



Query segment tree – stabbing query (1D)

```
QuerySegmentTree(v, q_x)
Input: The root of a (subtree of a) segment tree and a query point q_x
Output: All intervals (=segments) in the tree containing q_x.

1. Report all the intervals s_i in S(v). // covered by the current node
2. if v is not a leaf // root covers "all"(-\infty, +\infty)
3. if q_x \in \text{Int}(l(v)) // go left
4. QuerySegmentTree(l(v), q_x)
5. else // or go right
6. QuerySegmentTree(r(v), q_x)
```

```
Query time O(\log n + k), where k is the number of reported intervals O(1+k_v) for one node Height O(\log n)
```


Segment tree construction

ConstructSegmentTree(S)

Input: Set of intervals (segments) *S*

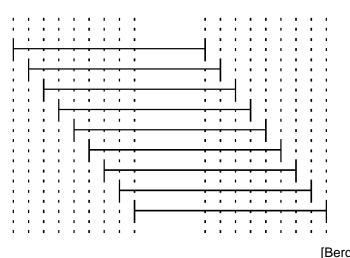
Output: segment tree

- 1. Sort endpoints of segments in S, get elementary intervals ... $O(n \log n)$
- 2. Construct a binary search tree T on elementary intervals ... O(n) (bottom up) and determine the interval Int(v) it represents
- 3. Compute the canonical subsets for the nodes (lists of their segments s_i):
- 4. v = root(T)
- 5. for all segments $s_i = [x_i : x'_i] \in S$
- 6. InsertSegmentTree(v, [$x_i : x_i'$])

Segment tree construction – interval insertion

```
InsertSegmentTree(v, [x : x'])
Input: The root of (a sub-tree of) a segment tree and an interval.
Output: The interval will be stored in the sub-tree.
1. if Int(v) \subseteq [x : x']
                                      // Int(v) contains s_i = [x : x']
      store s_i = [x : x'] at \nu
   else if Int(l(v)) \cap [x : x'] \neq \emptyset // part of s_i to the left
          InsertSegmentTree( l(v), [x : x'] )
        if Int(r(v)) \cap [x : x'] \neq \emptyset // part of s_i to the right
5.
          InsertSegmentTree( r(v), [x : x'])
6.
One interval is stored at most twice in one level =>
   Single interval insert O(\log n), insert n intervals O(2n \log n)
   Construction total O(n \log n)
Storage O(n \log n)
   Tree height O(\log n), name stored max 2x in one level.
```


Space complexity - notes



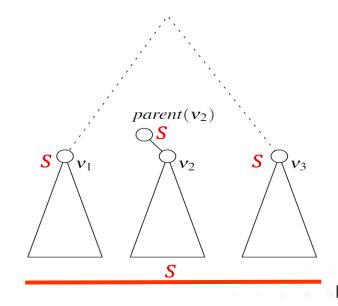
Worst case $-O(n^2)$ segments in leafs

But

Store segments as high, as possible

Segment max 2 times in one level \Leftarrow - $\max 4n + 1$ elementary intervals (leaves) $\Rightarrow O(n)$ space for the tree

 $\Rightarrow O(n \log n)$ space for interval names



s covered by v_1 and v_3

 $\Rightarrow v_2$ covered, $Int(v_2) \in s$

As v_2 lies between v_1 and v_3

 $\Rightarrow Int(parent(v_2)) \in s \Rightarrow$ segment s will not be
stored in v_2

Segment tree complexity

A segment tree for set S of n intervals in the plane,

- Build $O(n \log n)$
- Storage $O(n \log n)$
- Query $O(k + \log n)$
 - Report all intervals that contain a query point
 - k is number of reported intervals

Segment tree versus Interval tree

Segment tree

- $O(n \log n)$ storage versus O(n) of Interval tree
- But returns exactly the intersected segments s_i , interval tree must search the lists M_L and/or M_R

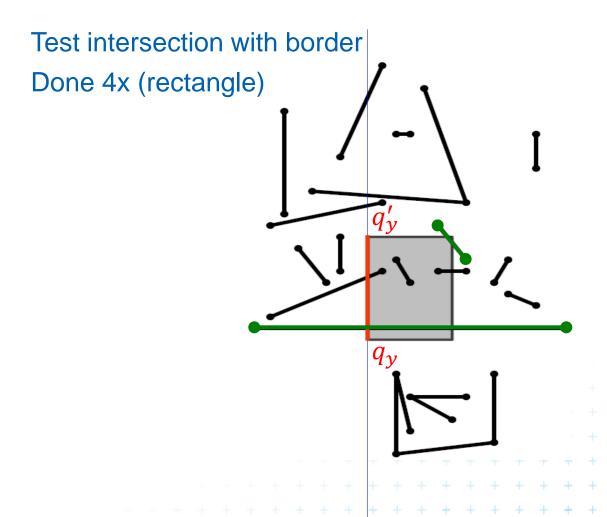
Good for

- 1. extensions (allows different structuring of intervals)
- 2. stabbing counting queries
 - store number of intersected intervals in nodes
 - -O(n) storage and $O(\log n)$ query time = optimal
- 3. higher dimensions multilevel segment trees (Interval and priority search trees do not exist in ^dims)

Talk overview

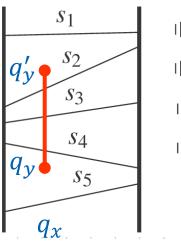
- 1. Windowing of axis parallel line segments in 2D (variants of *interval tree IT*)
- i. Line stabbing (standard *IT* with sorted lists)
- ii. Line segment stabbing (IT with range trees)
 - iii. Line segment stabbing (*IT* with *priority search trees*)
- 2. Windowing of line segments in general position
- 2D segment tree
 - the windowing algorithm

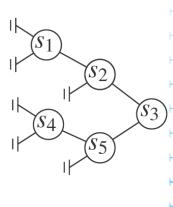
2. Windowing of line segments in general position



Windowing of arbitrary oriented line segments

- Let S be a set of arbitrarily oriented line segments in the plane.
- Report the segments intersecting a vertical query segment $q := q_x \times [q_y : q'_y]$ window border
- Segment tree T on x intervals of segments in S
 - node v of T corresponds to vertical slab $Int(v) \times (-\infty : \infty)$
 - segments span the slab of the node, but not of its parent
 - segments do not intersect
 - => segments in the slab (node) can be vertically ordered BST



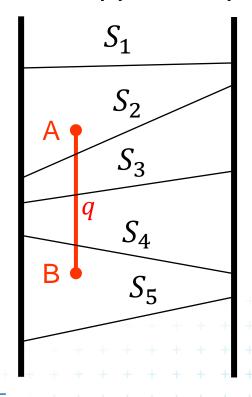


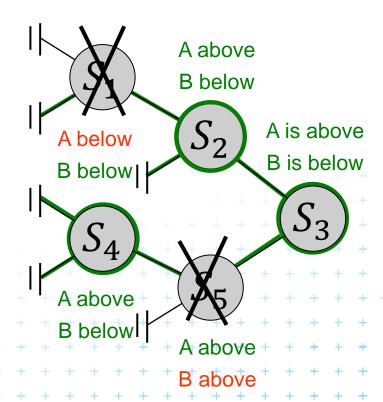
DCG

Segments between vertical segment endpoints

Segment s is intersected by vert.query segment q iff

- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s





Segments between vertical segment endpoints

- Segments (in the slab) do not mutually intersect
 - => segments can be vertically ordered and stored in BST
 - Each node v of the x segment tree (vertical slab) has an associated y-BST
 - BST T(v) of node v stores the canonical subset S(v) according to the vertical order
 - Intersected segments can be found by searching T(v) in $O(k_v + \log n)$, k_v is the number of intersected segments

Windowing of arbitrary oriented line segments complexity

Structure associated to node (BST) uses storage linear in the size of S(v)

- Build $O(n \log n)$
- Storage $O(n \log n)$
- **Query** $O(k + \log^2 n)$... $O(\log n)$ segm tree $+O(\log n)$ BST
 - Report all segments that contain a query point
 - k is number of reported segments

Windowing of line segments in 2D - conclusions

Construction: all interval tree variants $O(n \log n)$

- 1. Axis parallel
 - i. Line (sorted lists)

- Search Memory
- $O(k + \log n)$ O(n)
- ii. Segment (range trees) $O(k + \log^2 n)$ $O(n \log n)$
- iii. Segment (priority s. tr.) $O(k + \log n) = O(n)$
- 2. In general position
- $segment tree + BST O(k + \log^2 n) O(n \log n)$

References

- [Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapters 3 and 9, http://www.cs.uu.nl/geobook/
- [Mount] Mount, D.: Computational Geometry Lecture Notes for Fall 2016, University of Maryland, Lecture 33.

 http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf
- [Rourke] Joseph O'Rourke: Computational Geometry in C, Cambridge University Press, 1993, ISBN 0-521- 44592-2 http://maven.smith.edu/~orourke/books/compgeom.html
- [Vigneron] Segment trees and interval trees, presentation, INRA, France, http://w3.jouy.inra.fr/unites/miaj/public/vigneron/cs4235/slides.html

