

WINDOWING

PETR FELKEL

FEL CTU PRAGUE

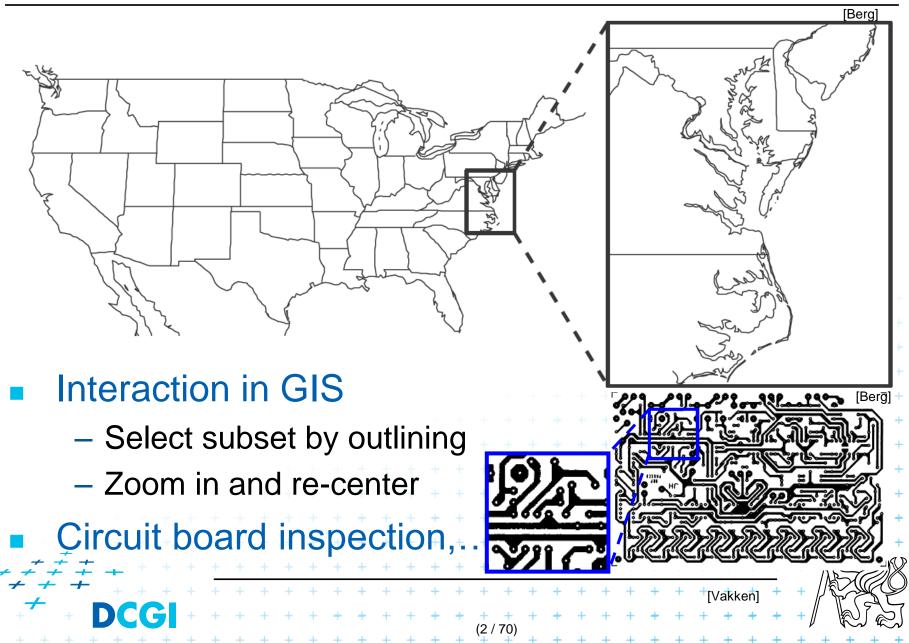
felkel@fel.cvut.cz

https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Mount]

Version from 30.11.2022

Windowing queries - examples



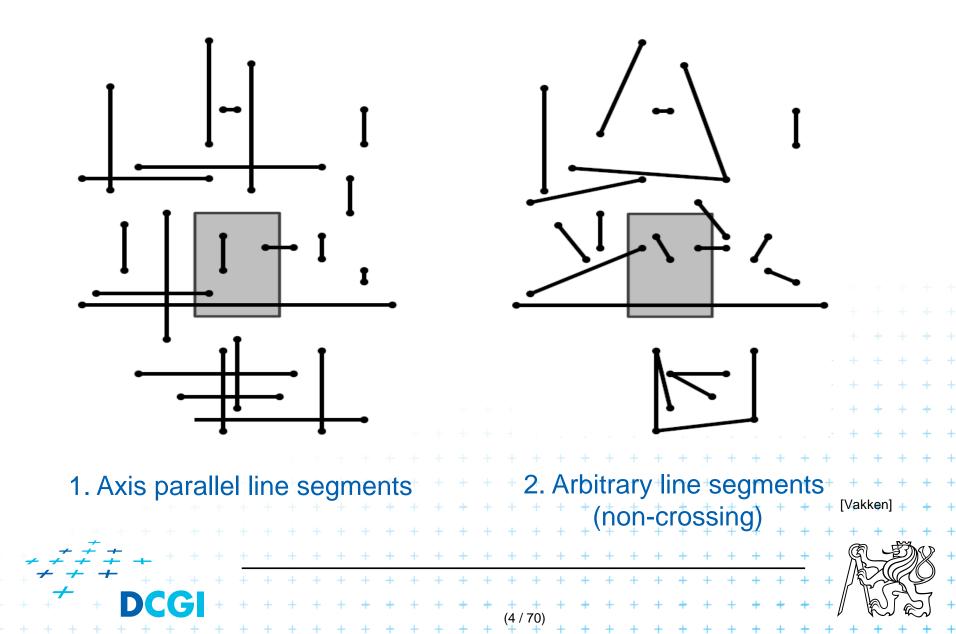
Windowing versus range queries

Range queries (see range trees in Lecture 03)

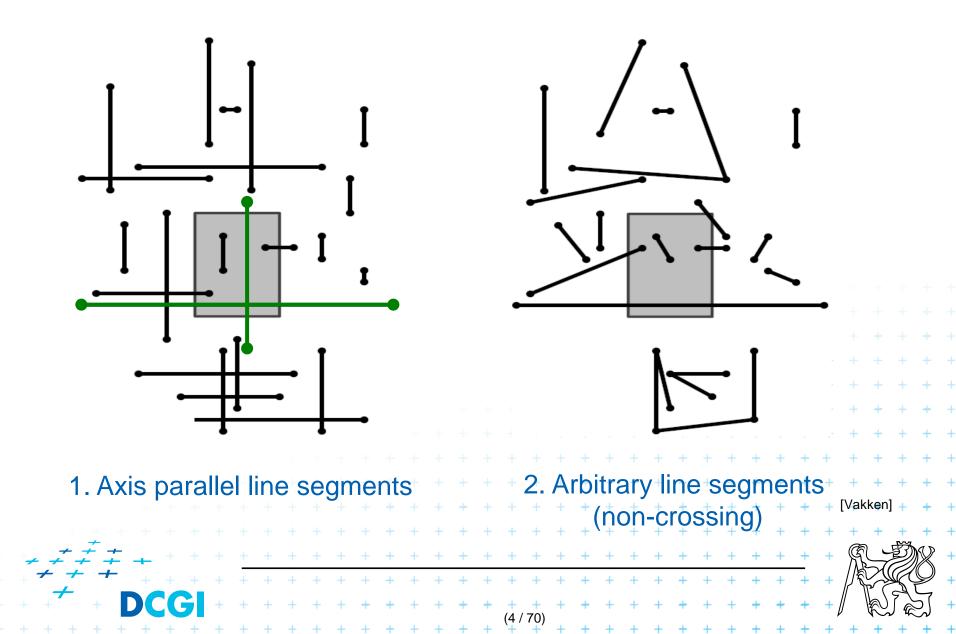
- Points
- Often in higher dimensions
- Windowing queries
 - Line segments, curves, ...
 - Usually in low dimension (2D, 3D)
- The goal for both: Preprocess the data into a data structure
 - so that the objects intersected by the query rectangle can be reported efficiently

+ + + + + + + + +

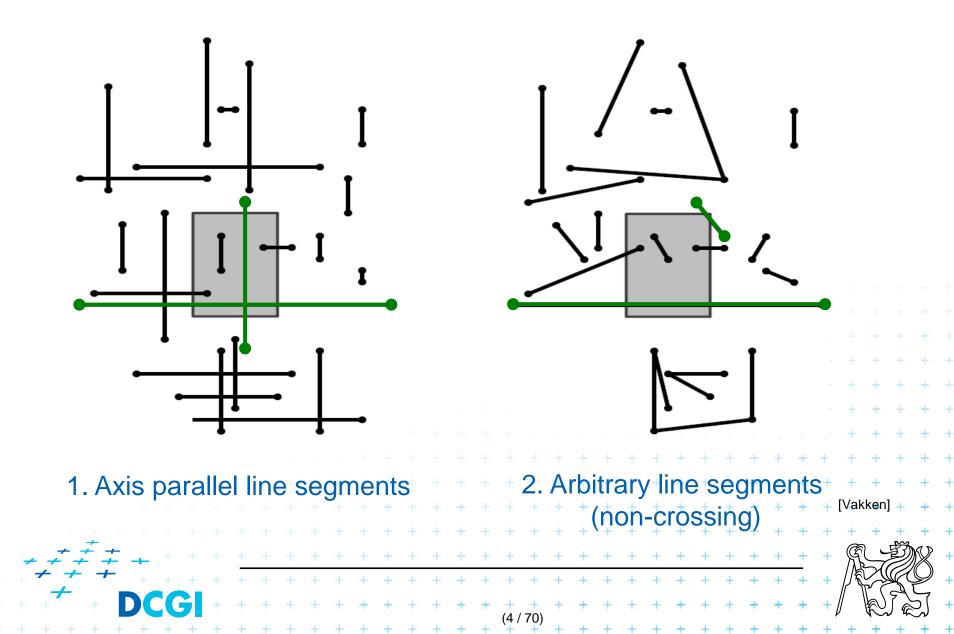
Windowing queries on line segments



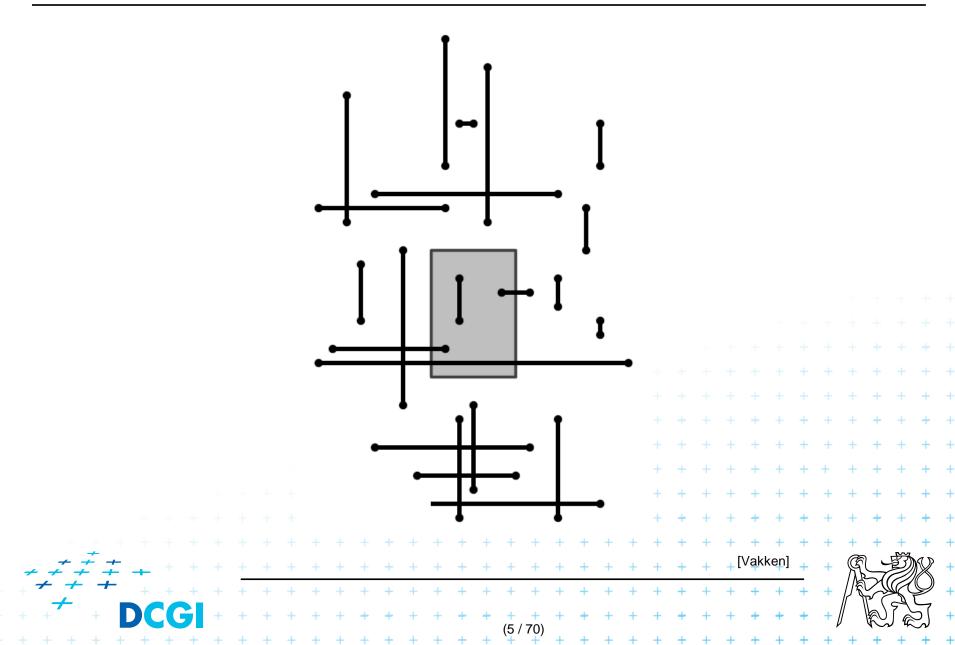
Windowing queries on line segments



Windowing queries on line segments



1. Windowing of axis parallel line segments

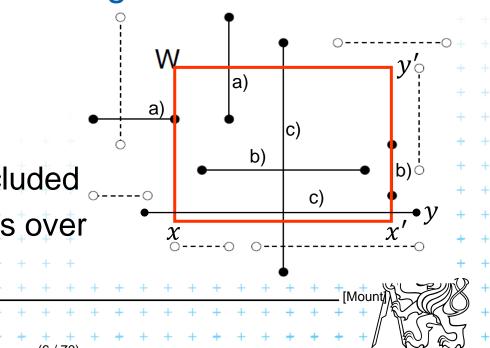


1. Windowing of axis parallel line segments

Window query

Given

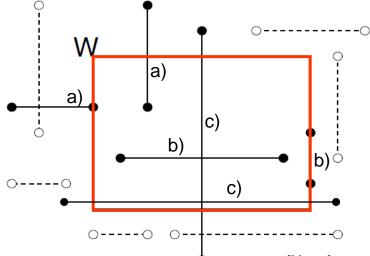
- a set of orthogonal line segments S (preprocessed),
- and orthogonal query rectangle $W = [x : x'] \times [y : y']$
- Count or report all the line segments of S that intersect W
- Such segments have
 - a) one endpoint in
 - b) two end points in included
 - c) no end point in cross over



(7 / 70)

a) one point inside

- Use a 2D range tree (lesson 3)
- $O(n \log n)$ storage
- $O(\log^2 n + k)$ query time or
- $O(\log n + k)$ with fractional cascading

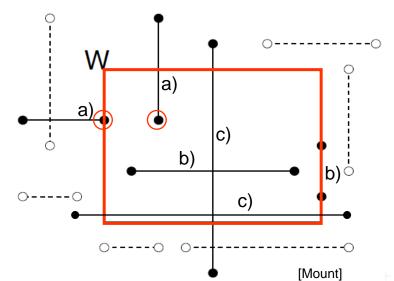


[Mount] +

(7 / 70)

a) one point inside

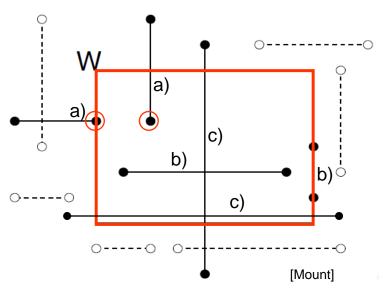
- Use a 2D range tree (lesson 3)
- $O(n \log n)$ storage
- $O(\log^2 n + k)$ query time or
- $O(\log n + k)$ with fractional cascading



a) one point inside

- Use a 2D range tree (lesson 3)
- $O(n \log n)$ storage
- $O(\log^2 n + k)$ query time or
- $O(\log n + k)$ with fractional cascading
- b) two points inside as a) one point inside
 - Avoid reporting twice:
 - → Mark segment when reported (clear after the query) and skip marked segments or

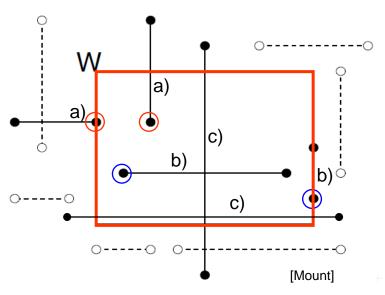
when end point found, check the other end-point and report only one of them (the leftmost or the bottom)



a) one point inside

- Use a 2D range tree (lesson 3)
- $O(n \log n)$ storage
- $O(\log^2 n + k)$ query time or
- $O(\log n + k)$ with fractional cascading
- b) two points inside as a) one point inside
 - Avoid reporting twice:
 - → Mark segment when reported (clear after the query) and skip marked segments or

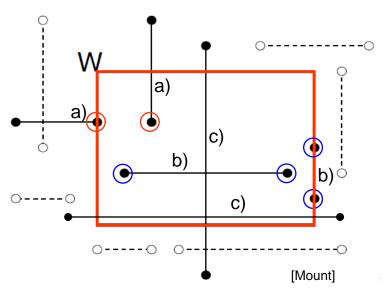
when end point found, check the other end-point and report only one of them (the leftmost or the bottom)



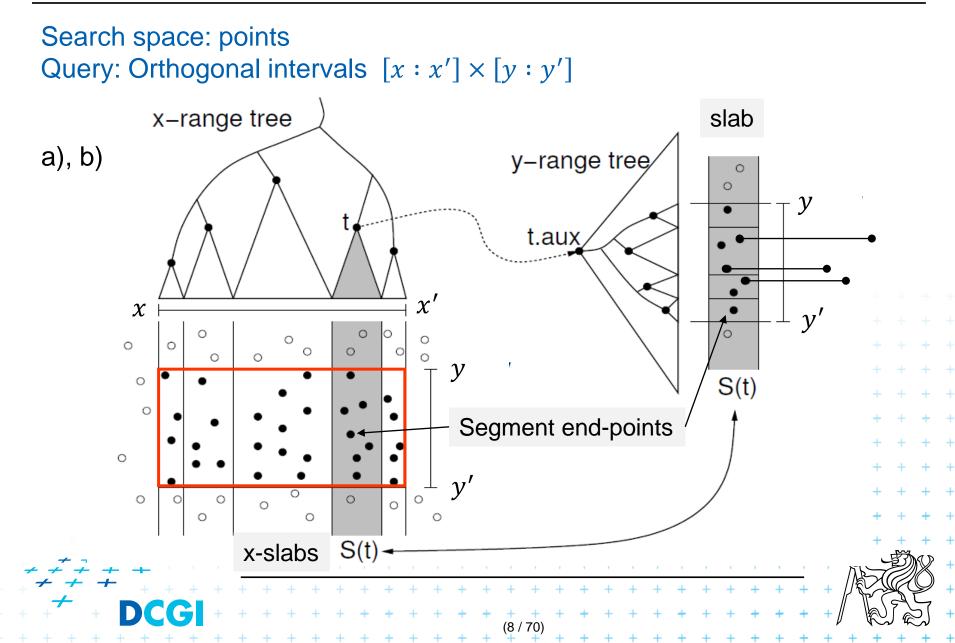
a) one point inside

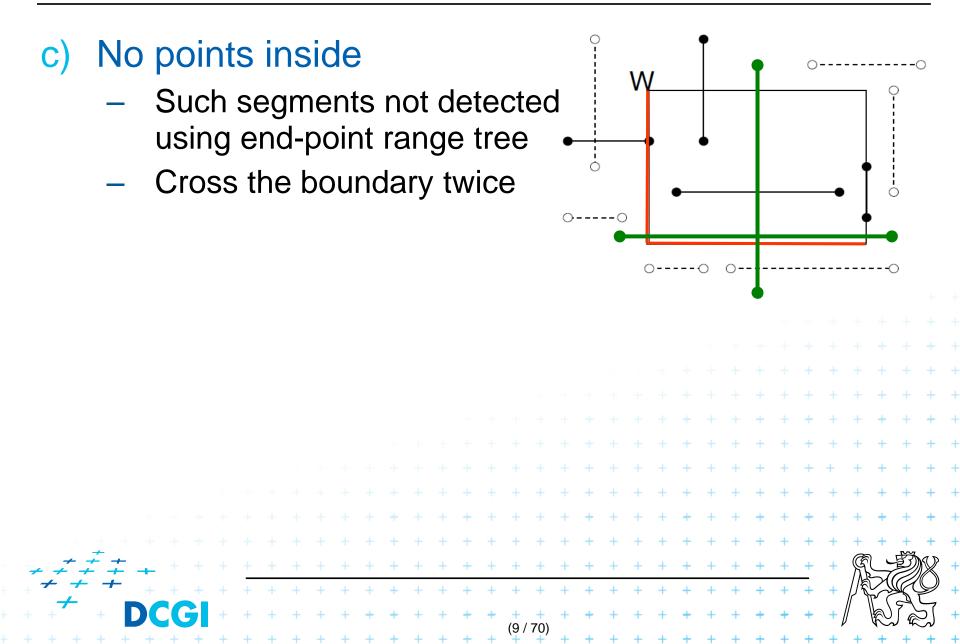
- Use a 2D range tree (lesson 3)
- $O(n \log n)$ storage
- $O(\log^2 n + k)$ query time or
- $O(\log n + k)$ with fractional cascading
- b) two points inside as a) one point inside
 - Avoid reporting twice:
 - → Mark segment when reported (clear after the query) and skip marked segments or

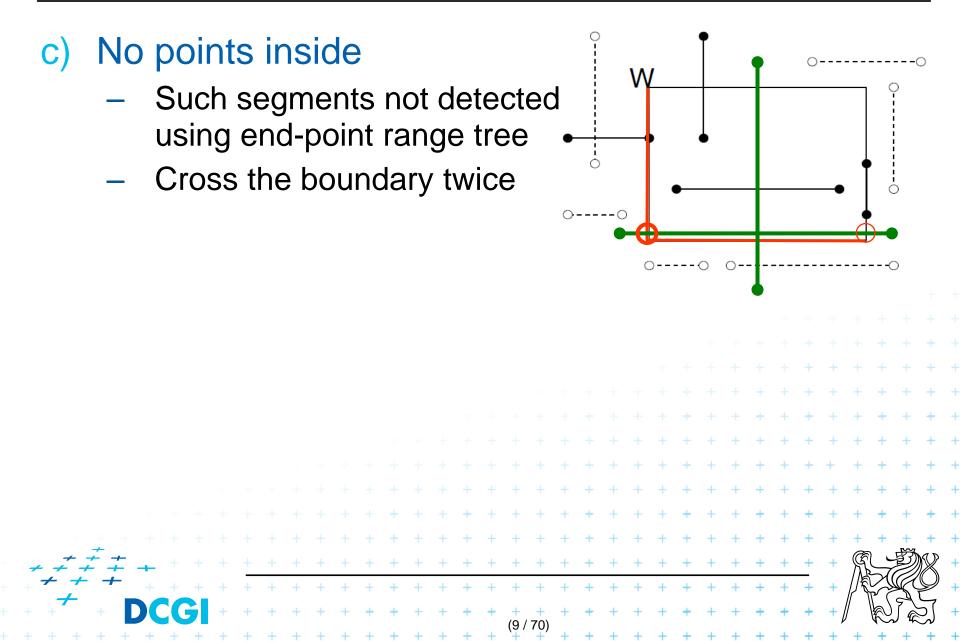
when end point found, check the other end-point and report only one of them (the leftmost or the bottom)

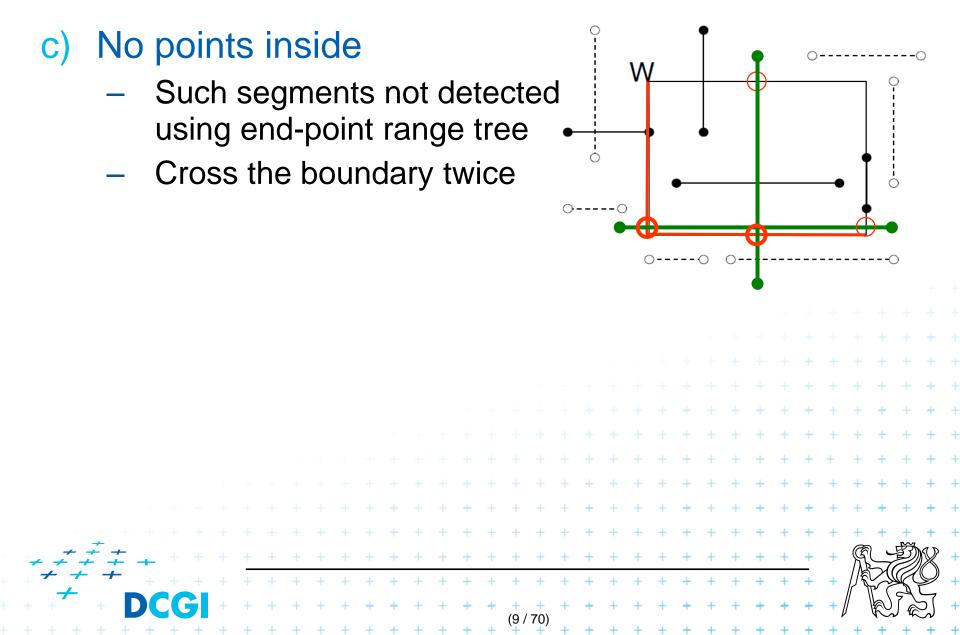


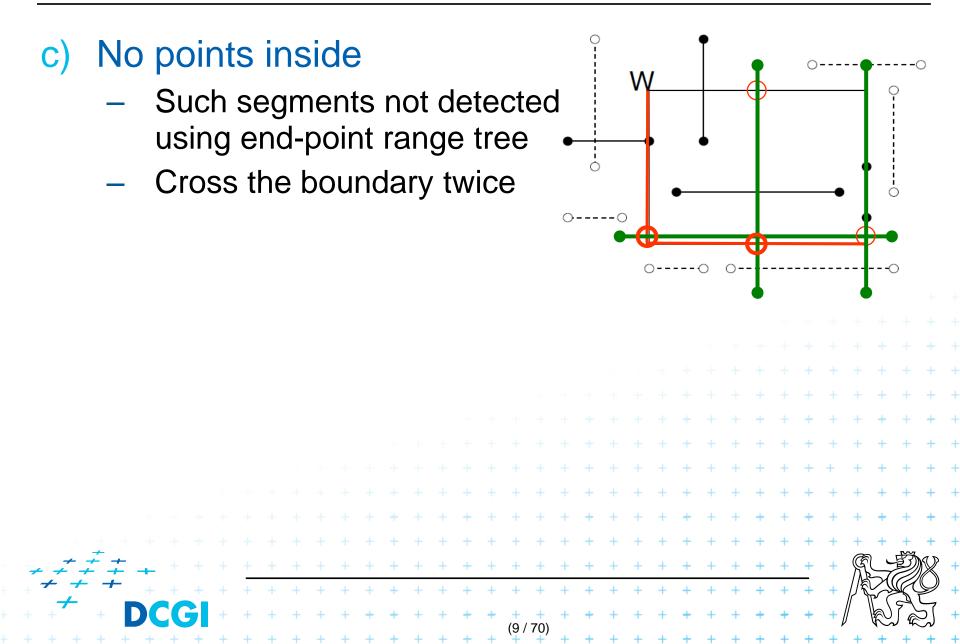
2D range tree (without fractional cascading-more in Lecture 3)

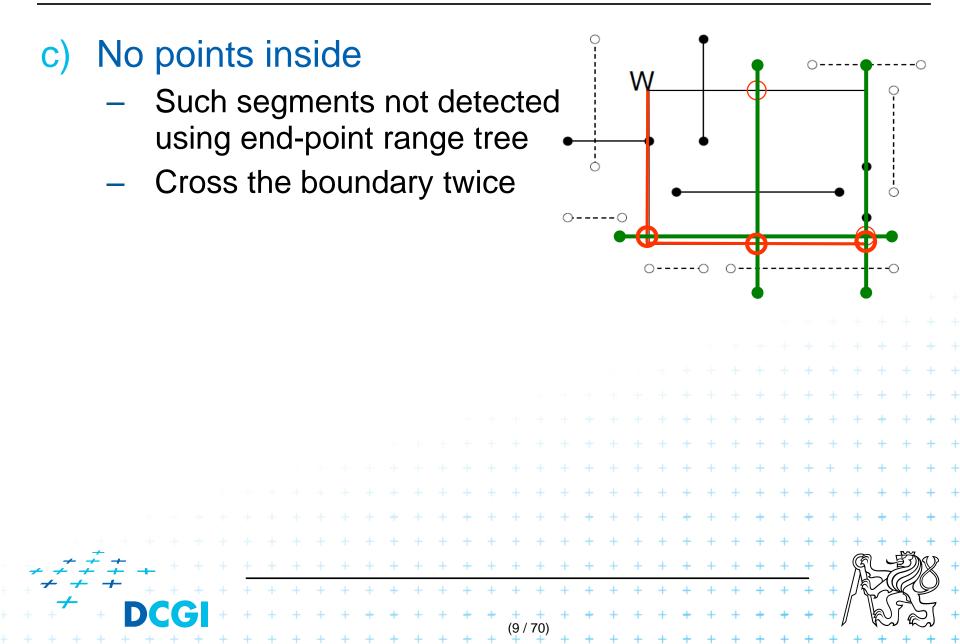


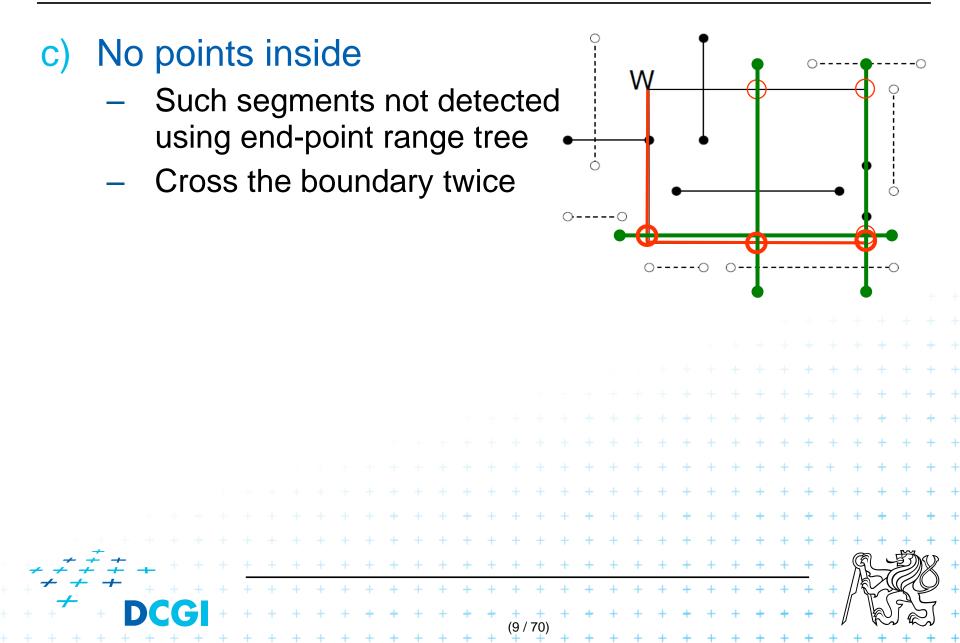


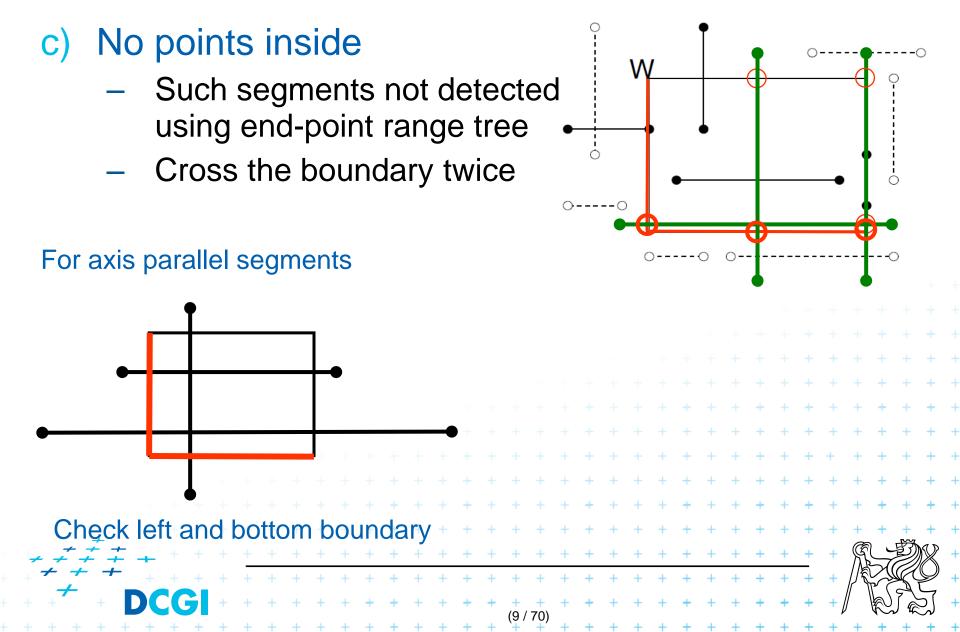


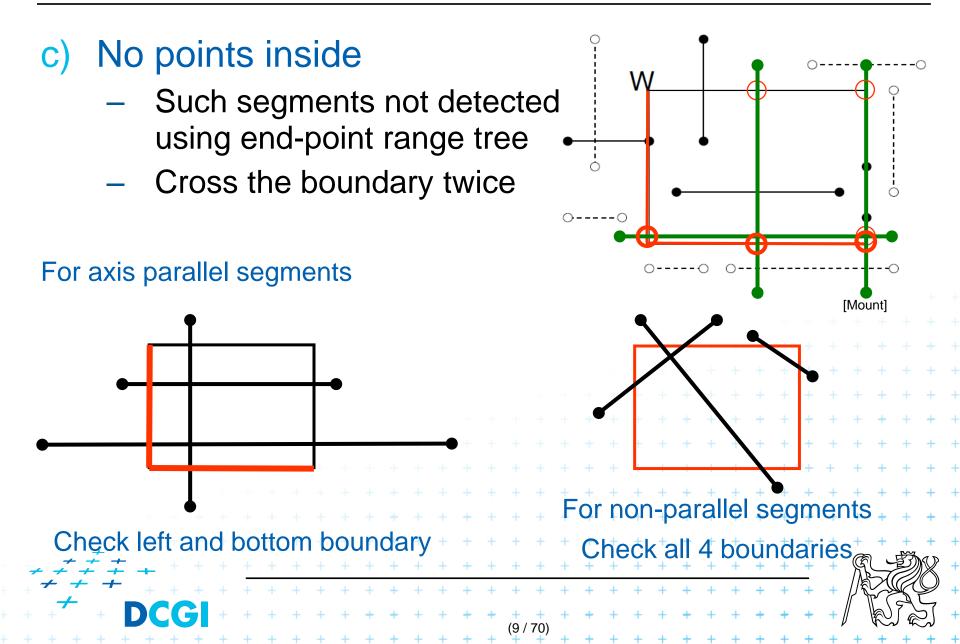










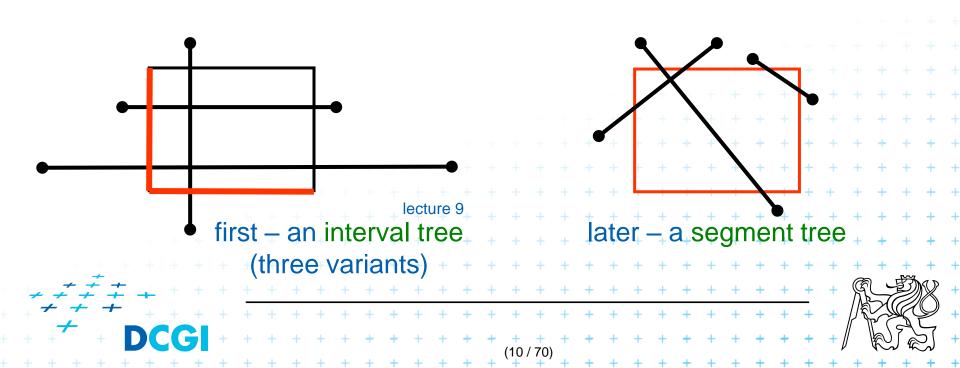


Windowing problem summary

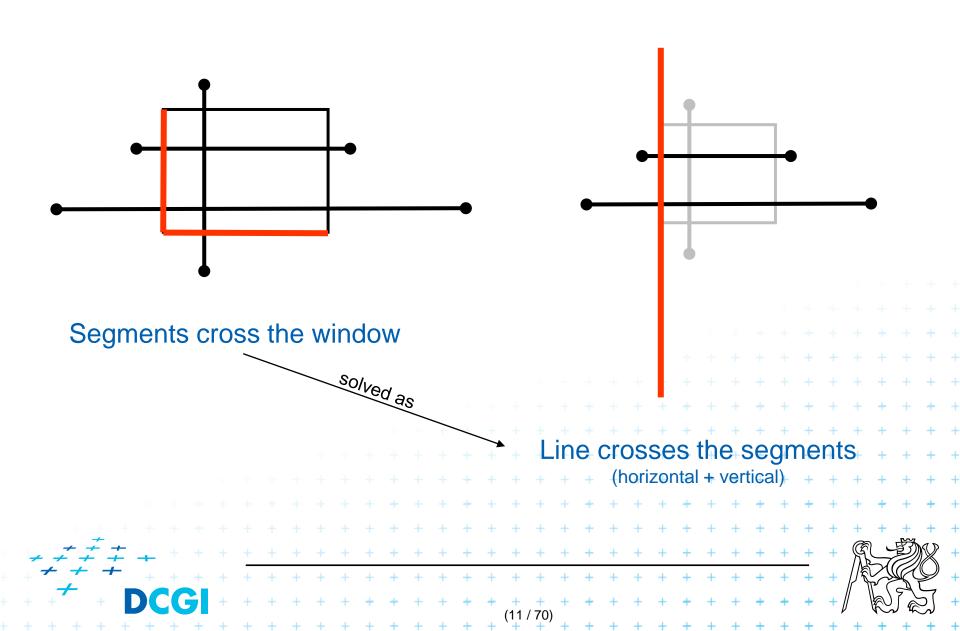
Cases a) and b)

- Segment end-point in the query rectangle (window)
- Solved by 2D range trees (see lecture 3, $O(n \log n)$ time & memory)
- We will discuss only case c)

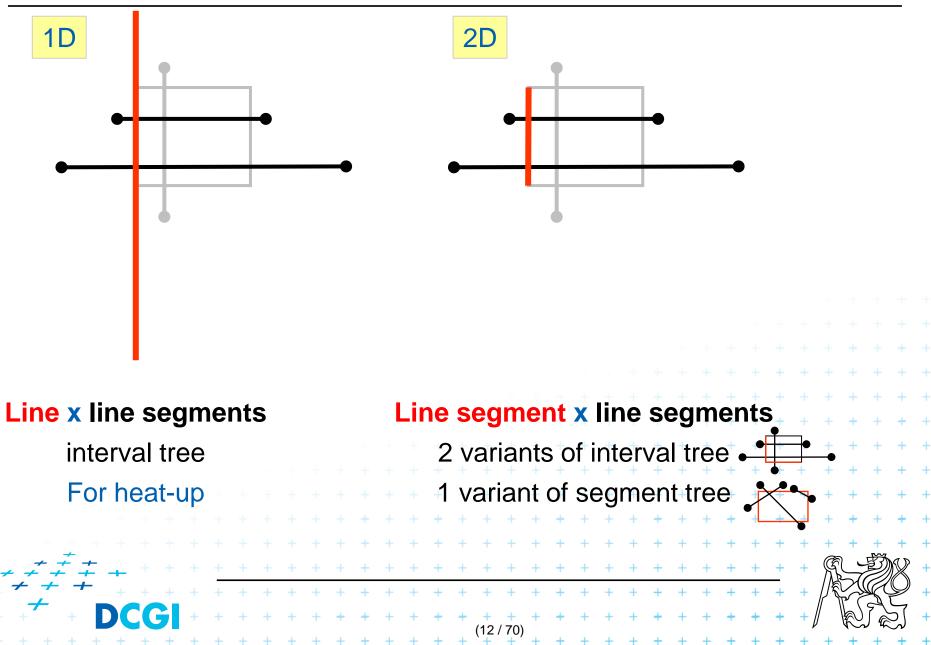
- Segment crosses the window

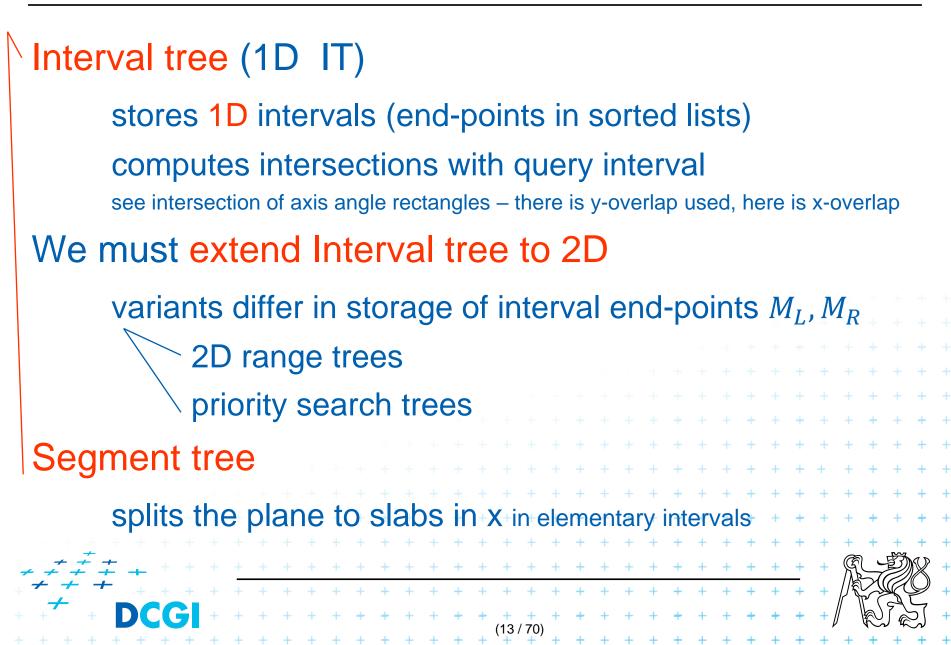


case c) principle

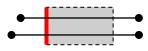


Talk Outline



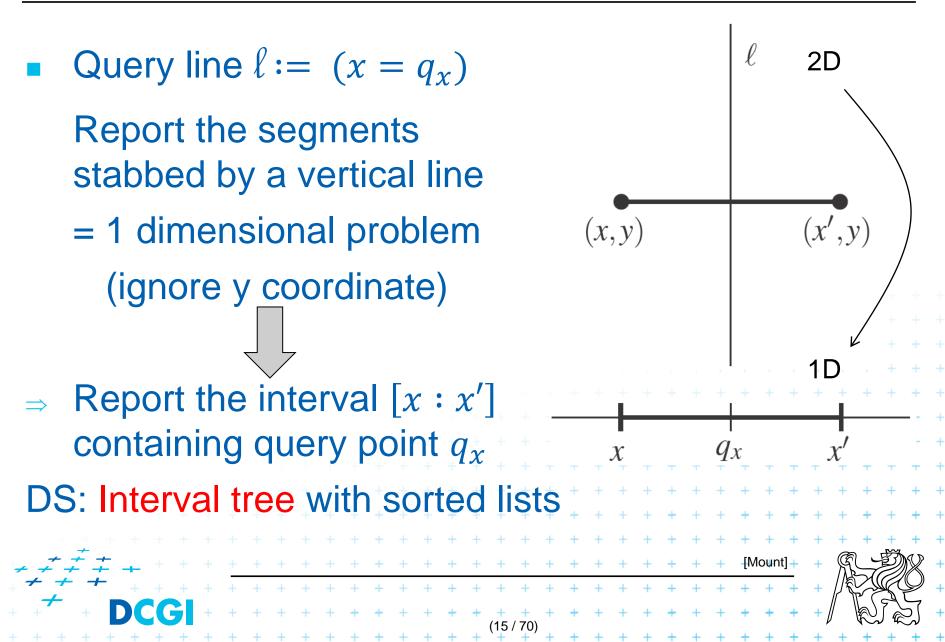


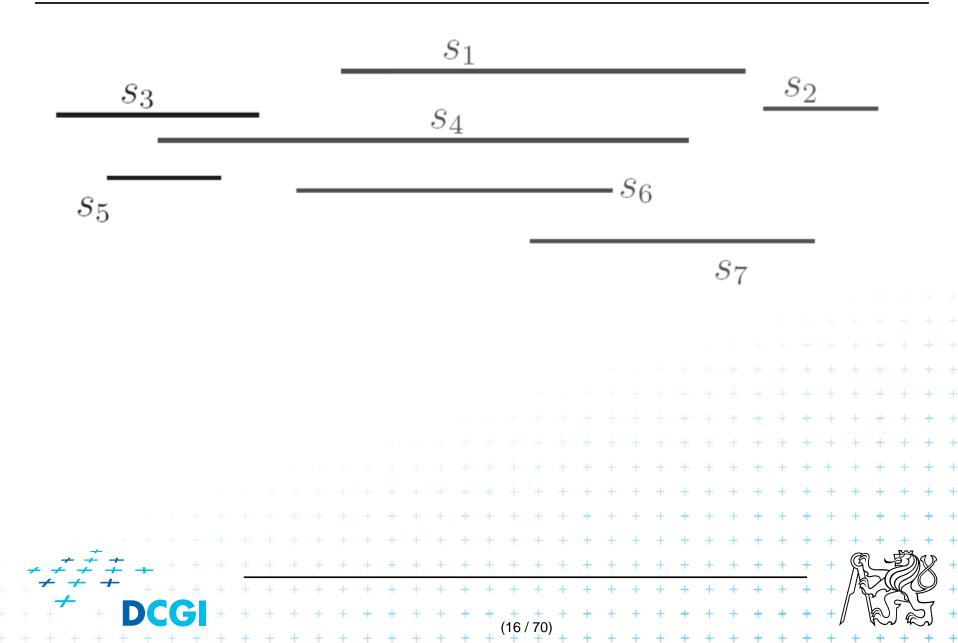
Talk overview

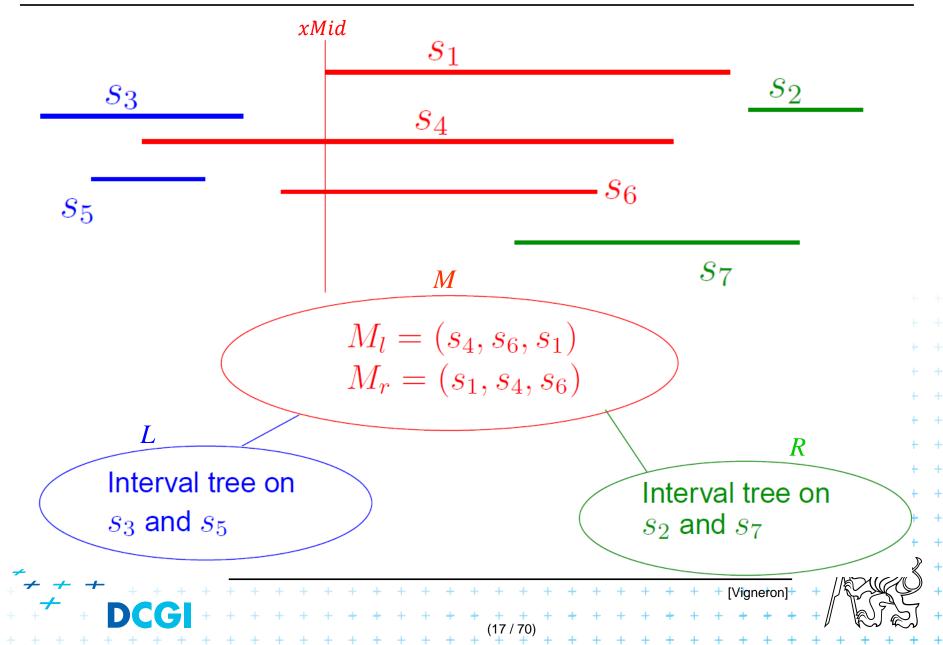


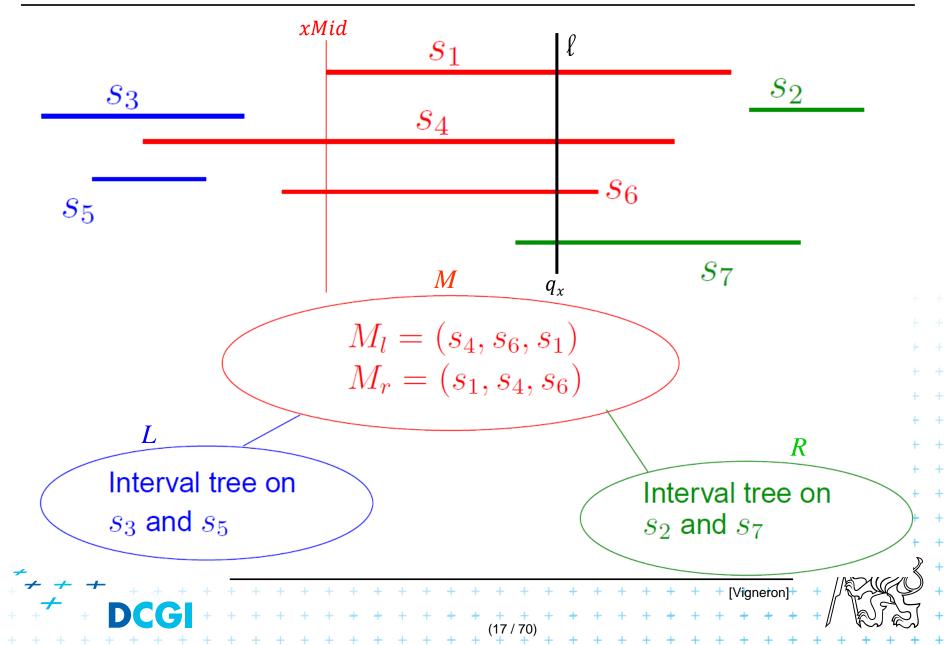
- 1. Windowing of axis parallel line segments in 2D
 - 3 variants of *interval tree IT* in *x*-direction
 - Differ in storage of segment end points M_L and M_R
- Line stabbing (standard IT with sorted lists) lecture 9 intersections 1D Line segment stabbing (*IT* with *range trees*) 2D Line segment stabbing (IT with priority search trees) 2. Windowing of line segments in general position - segment tree + BST 2D (14 / 70)

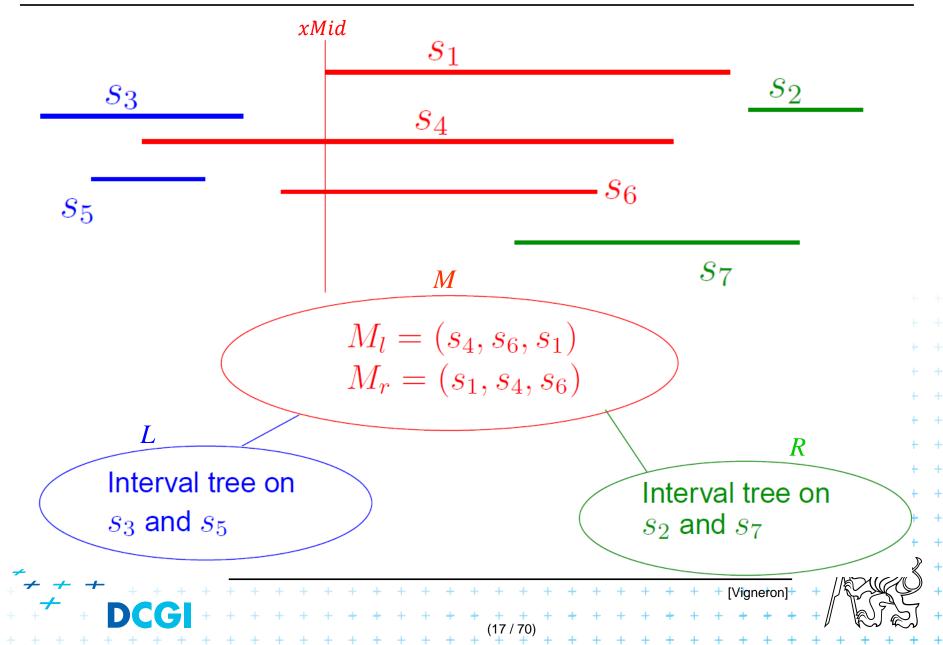
i. Segment intersected by vertical line

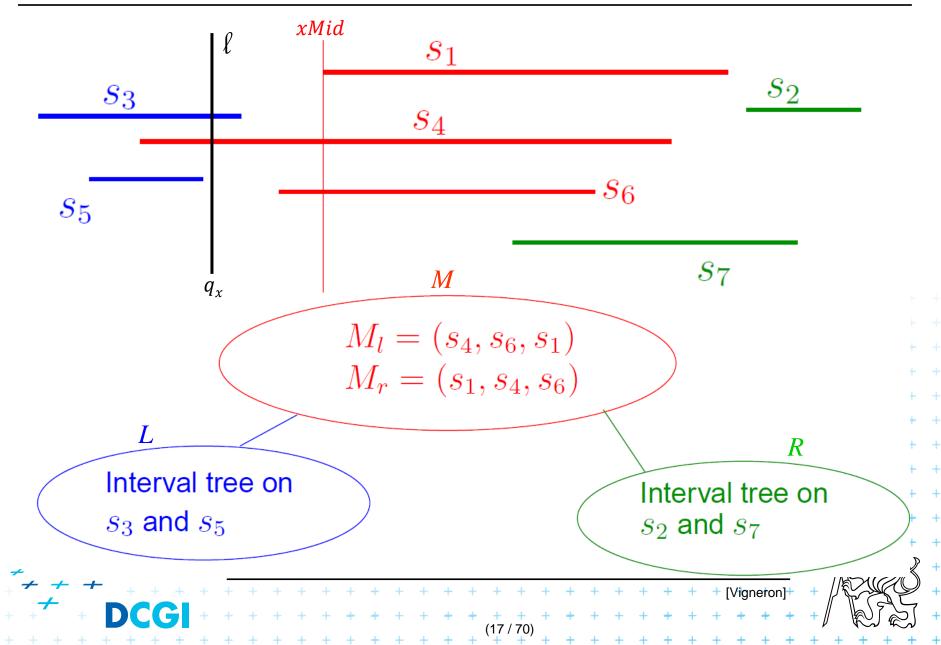


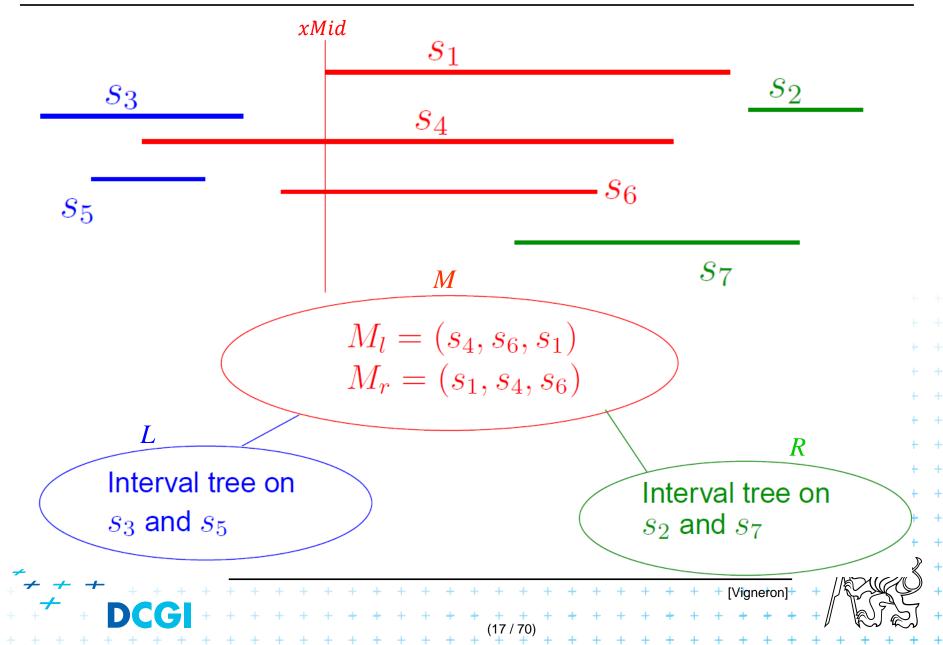


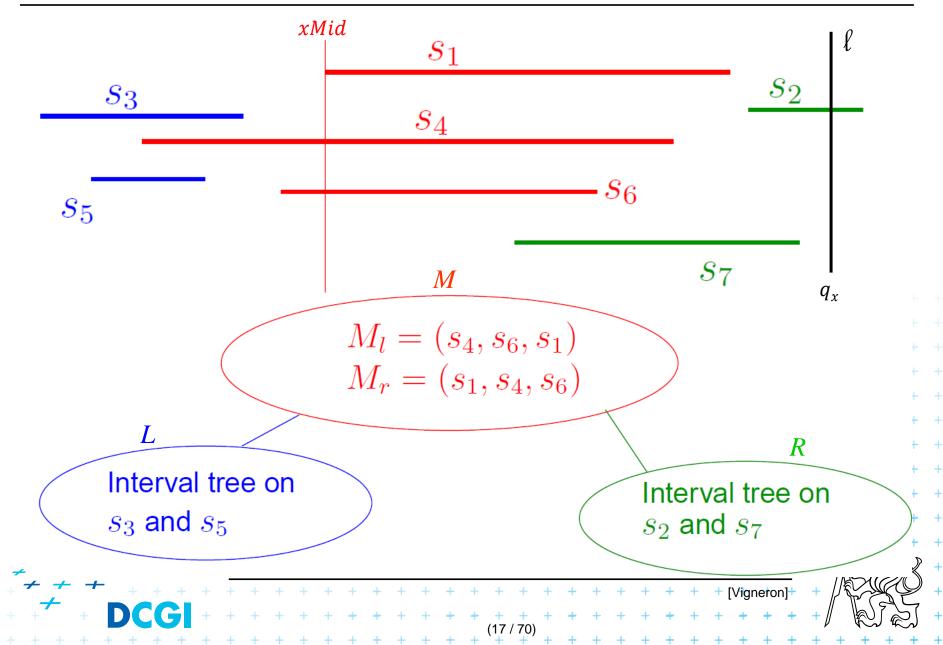










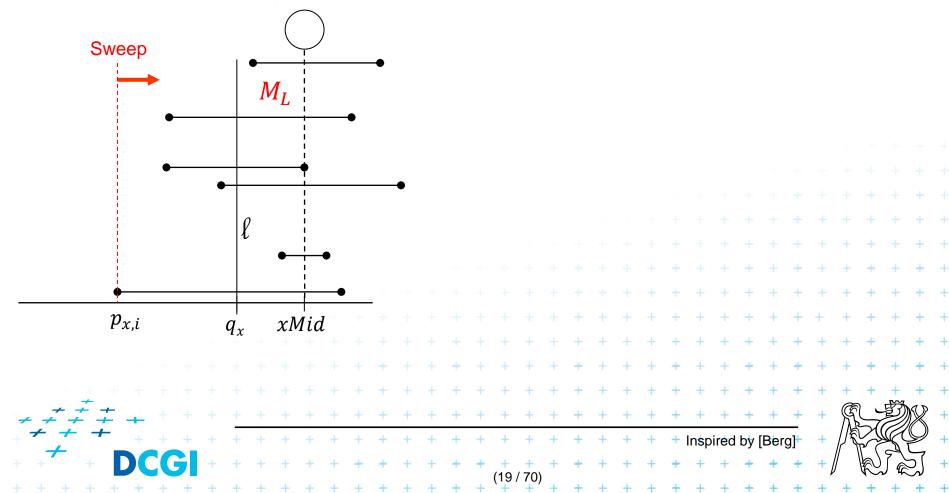


i. Segment intersected by vertical line

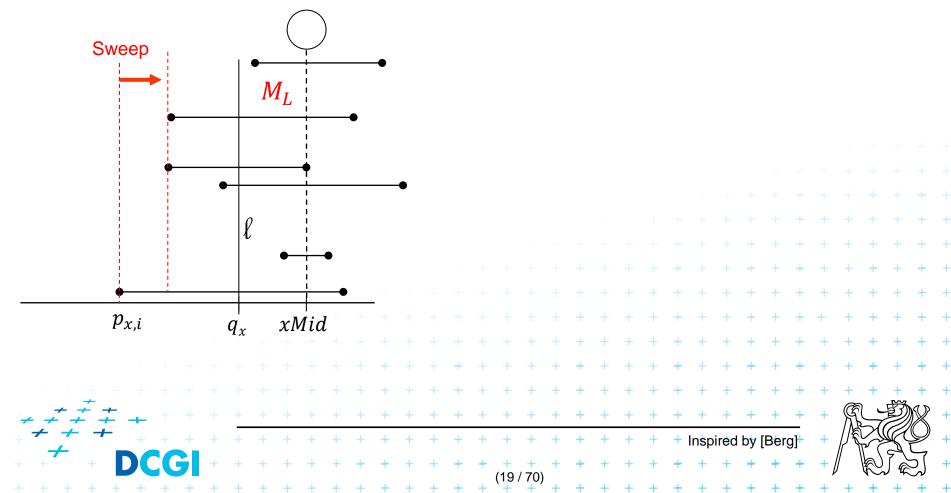
Principle

- Store input segments in static interval tree
- In each interval tree node
 - Check the segments in the set M
 - These segments contain node's *xMid* value
 - M_L are left end-points
 - M_R are right end-points
 - q_x is the query value
 - If $(q_x < xMid)$ Sweep M_L from left
 - $p \in M_L$: if $p_x \le q_x \Rightarrow$ intersection
 - If $(q_x > xMid)$ Sweep M_R from right $p \in M_R$: if $p_x \ge q_x \Rightarrow$ intersection

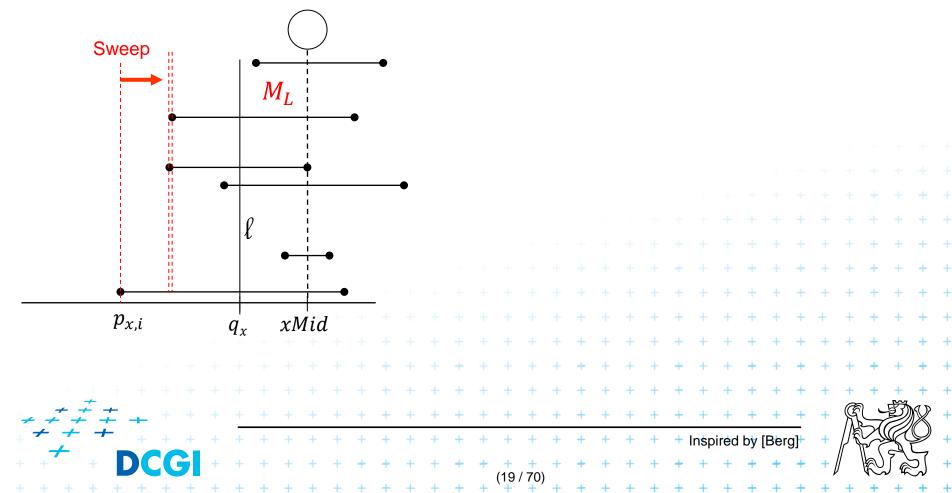
- \Rightarrow q_x must be between $p_{x,i}$ and xMid to intersect the line segment i
- \Rightarrow left endpoints $p_{x,i} \leq q_x \Rightarrow$ intersection



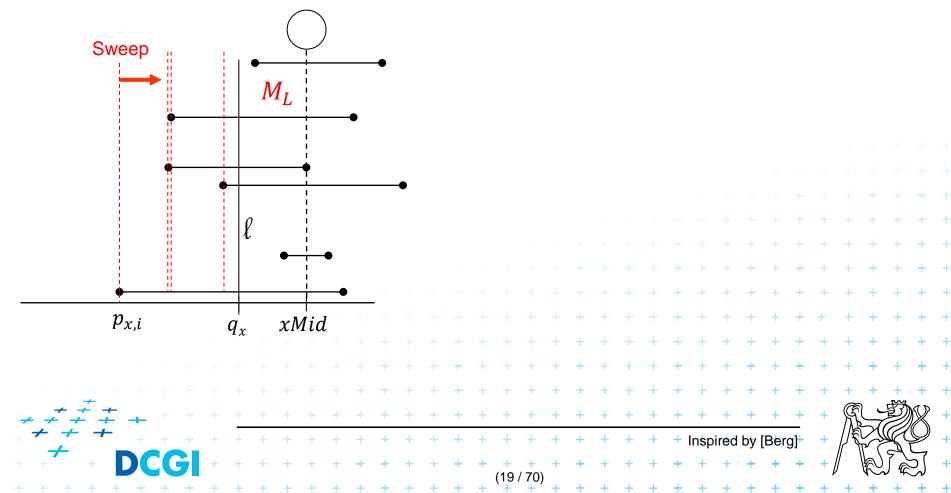
- \Rightarrow q_x must be between $p_{x,i}$ and xMid to intersect the line segment i
- \Rightarrow left endpoints $p_{x,i} \leq q_x \Rightarrow$ intersection



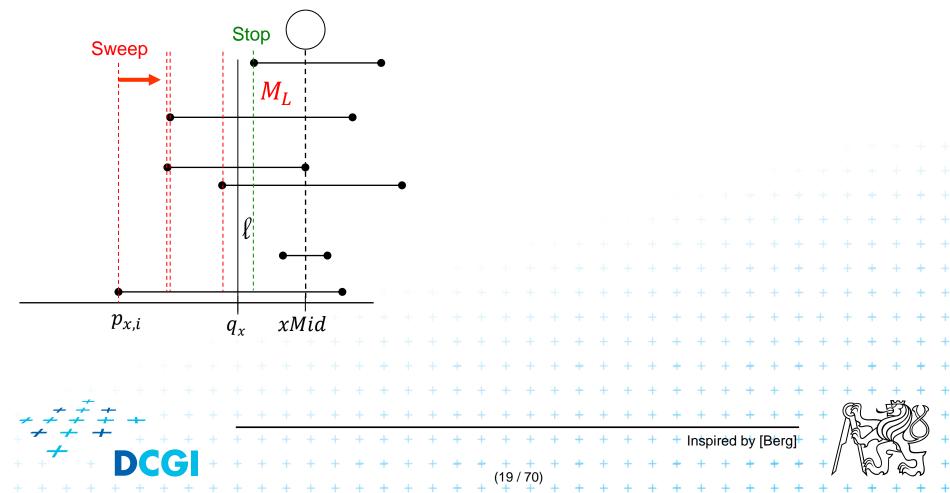
- \Rightarrow q_x must be between $p_{x,i}$ and xMid to intersect the line segment i
- \Rightarrow left endpoints $p_{x,i} \leq q_x \Rightarrow$ intersection



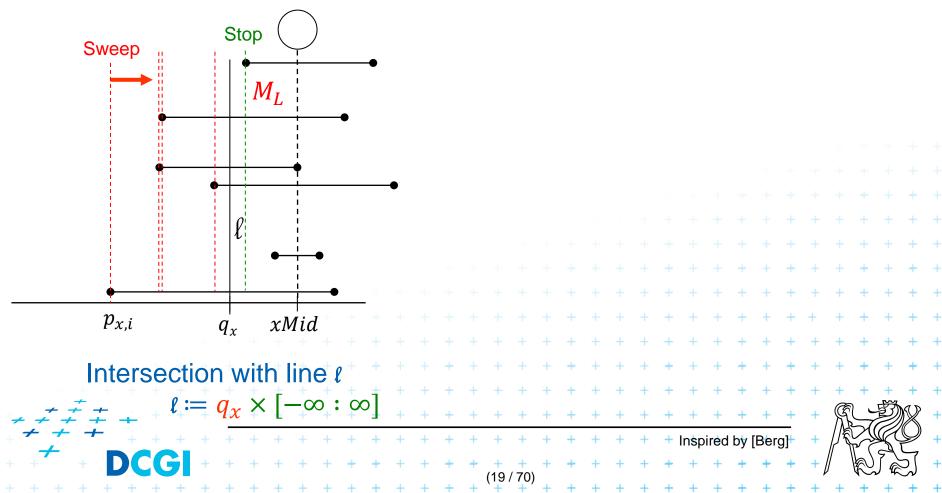
- \Rightarrow q_x must be between $p_{x,i}$ and xMid to intersect the line segment i
- \Rightarrow left endpoints $p_{x,i} \leq q_x \Rightarrow$ intersection



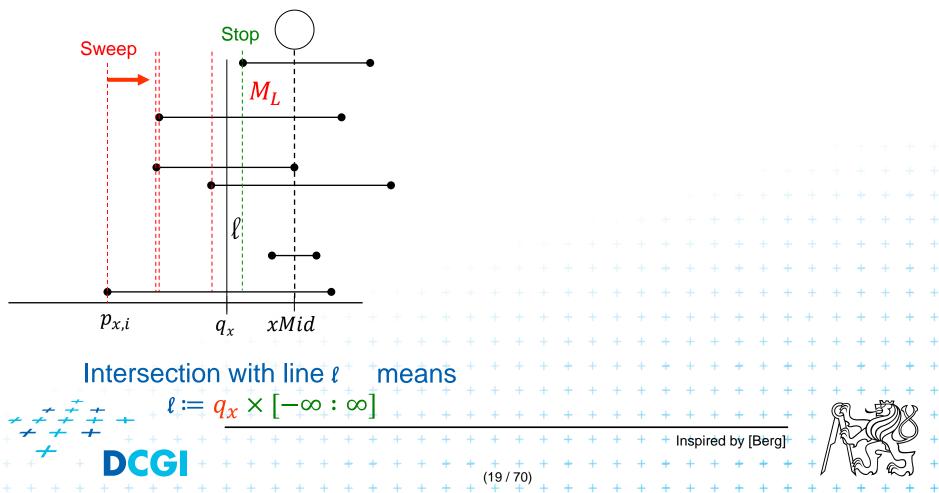
- \Rightarrow q_x must be between $p_{x,i}$ and xMid to intersect the line segment i
- \Rightarrow left endpoints $p_{x,i} \leq q_x \Rightarrow$ intersection



- \Rightarrow q_x must be between $p_{x,i}$ and xMid to intersect the line segment i
- \Rightarrow left endpoints $p_{x,i} \leq q_x \Rightarrow$ intersection

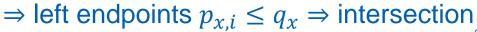


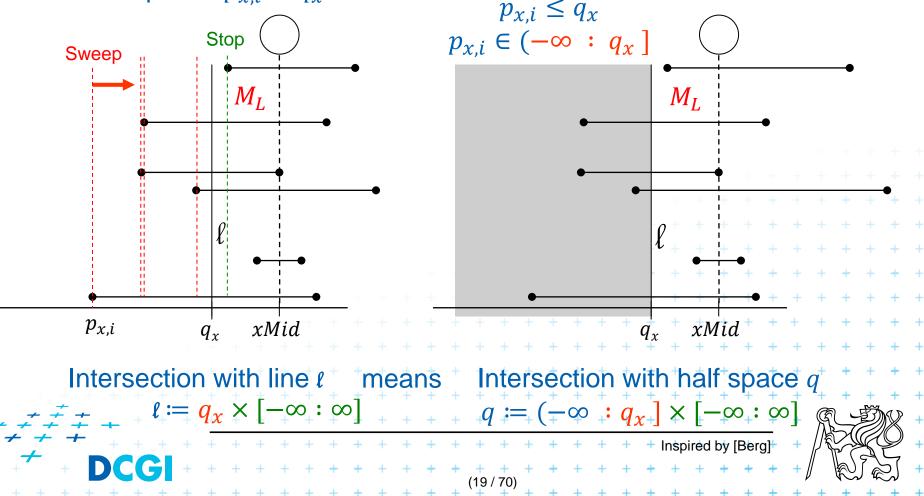
- \Rightarrow q_x must be between $p_{x,i}$ and xMid to intersect the line segment i
- \Rightarrow left endpoints $p_{x,i} \leq q_x \Rightarrow$ intersection



All line segments from *M* pass through *xMid*

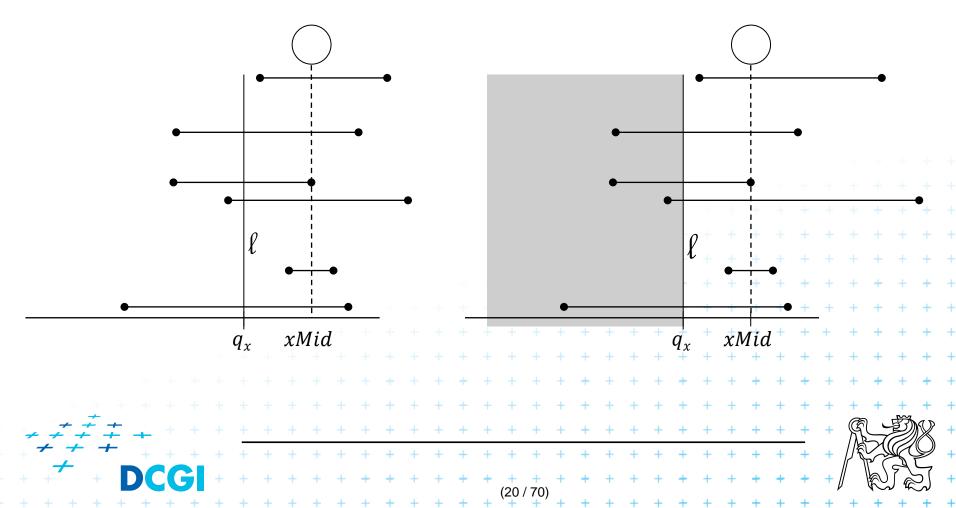
 $\Rightarrow q_x$ must be between $p_{x,i}$ and xMid to intersect the line segment i



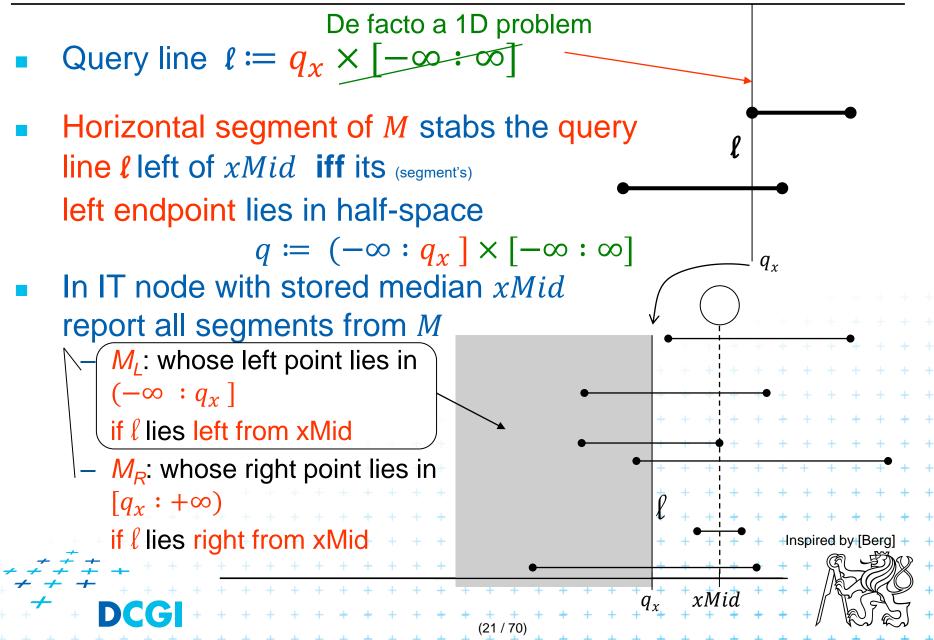


Instead of intersecting edges by line

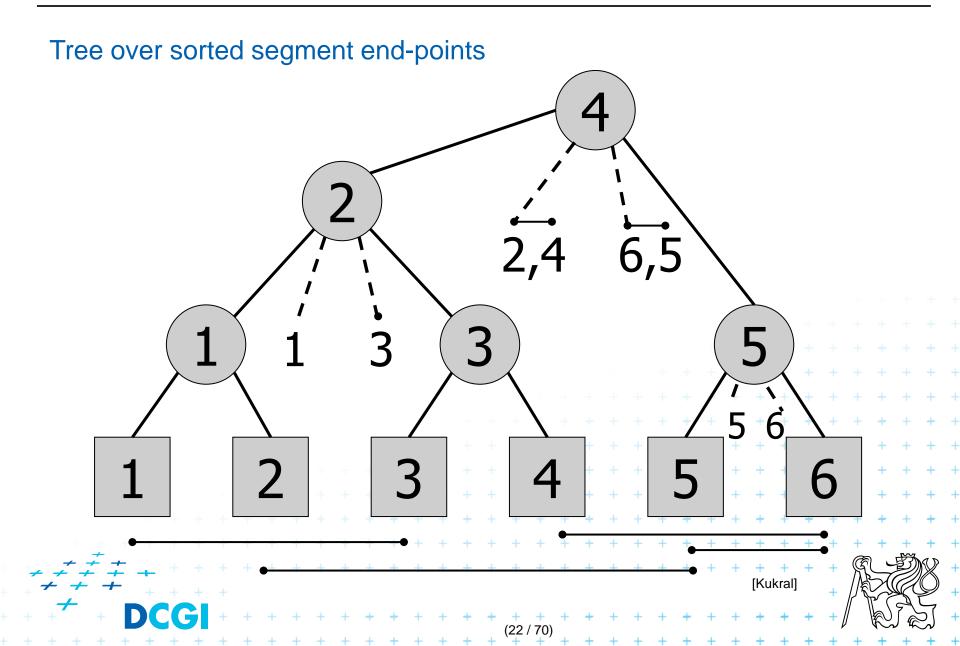
search points in half-space



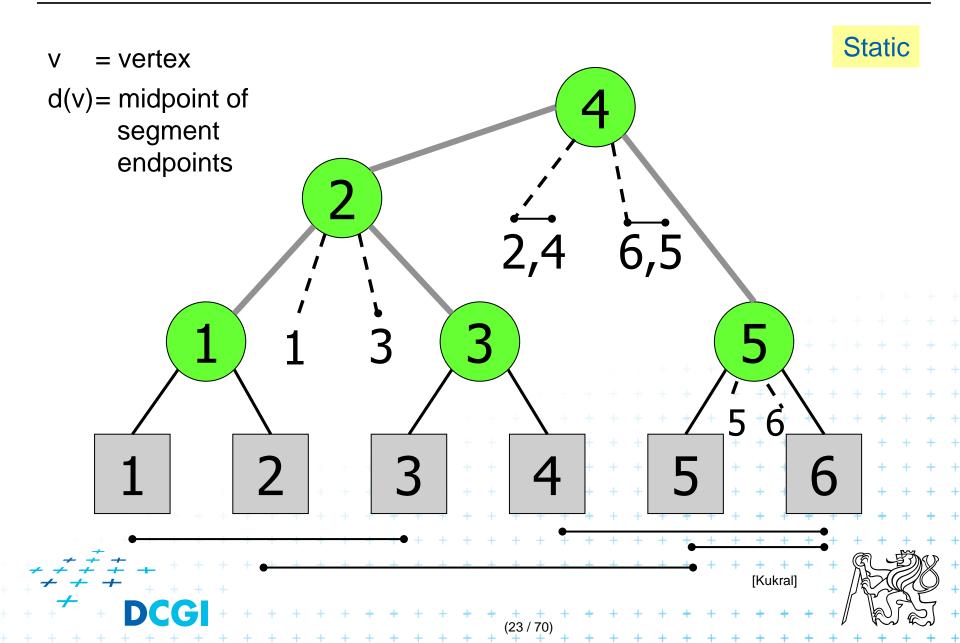
i. Segment intersected by vertical line



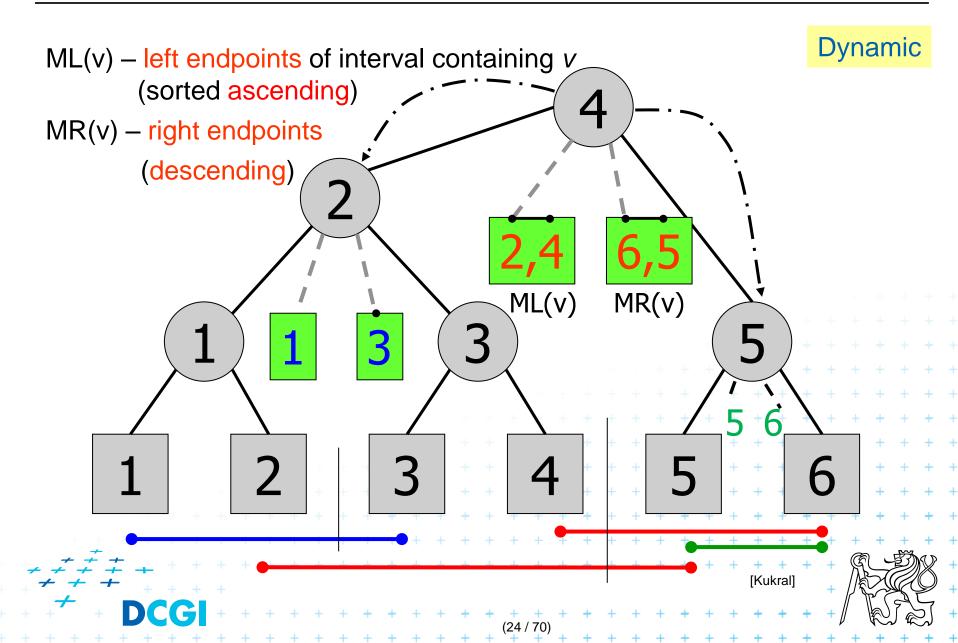
Static interval tree [Edelsbrunner80]



Primary structure – static tree for endpoints



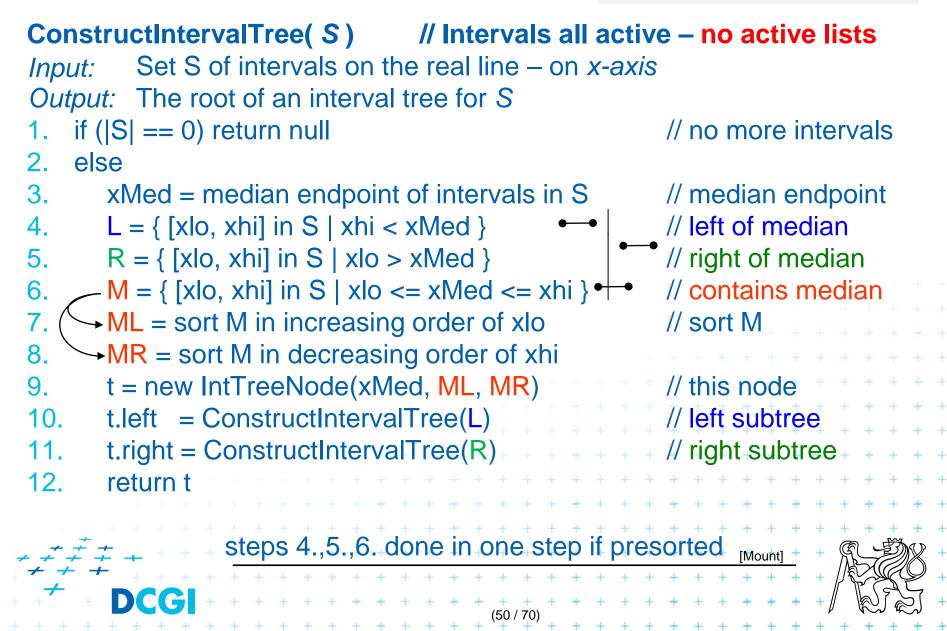
Secondary lists of incident interval end-pts.



Interval tree construction

Merged procedures from in lecture 09

- PrimaryTree(S) on slide 33
- InsertInterval (b, e, T) on slide 35



Line stabbing query for an interval tree

```
Less effective variant of QueryInterval (b, e, T)
Stab(t, qx)
                                                      on slide 34 in lecture 09
Input: IntTreeNode t, Scalar qx
                                                      with merged parts: fork and search right
Output: prints the intersected intervals
   if (t == null) return
                                                        // no leaf: fell out of the tree
1.
    if (qx < t.xMed)
                                                        // left of median?
2.
        for (i = 0; i < t.ML.length; i++)
3.
                                                        // traverse M_L left end-points
                if (t.ML[i].lo \le qx) print (t.ML[i])
                                                        // .. report if in range
4.
5.
                else break
                                                        // ..else done
        Stab (t.left, qx)
                                                        // recurse on left subtre
6.
    else // (qx \geq t.xMed)
7.
                                                        // right of or equal to median
        for (i = 0; i < t.MR.length; i++) {
8.
                                                        // traverse M_R right end-points
                if (t.MR[i].hi \ge qx) print (t.MR[i])
                                                       // .. report if in range
9.
                else break
                                                       // ..else done
10.
                                               + + + + // recurse on right subtree
11.
        Stab (t.right, qx)
    Note: Small inefficiency for qx == t.xMed - recurse on right
                                                                        [Mount]
                                      + + + + + + + + +
                                               (51 / 70)
```

Complexity of line stabbing via interval tree

with sorted lists

Construction - $O(n \log n)$ time

- Each step divides at maximum into two halves or less (minus elements of M) => tree of height $h = O(\log n)$
- If presorted endpoints in three lists L,R, and M then median in O(1) and copy to new L,R,M in O(n)

Vertical line stabbing query - $O(k + \log n)$ time

- One node processed in O(1 + k'), k'reported intervals
- v visited nodes in O(v + k), k total reported intervals

+ + + + + + + + + + + +

+ (27 / 70)

 $-v = h = \text{tree height} = O(\log n)$ $k = \Sigma k'$

Storage - O(n)

- Tree has O(n) nodes, each segment stored twice 🛫 (two endpoints) –

Talk overview

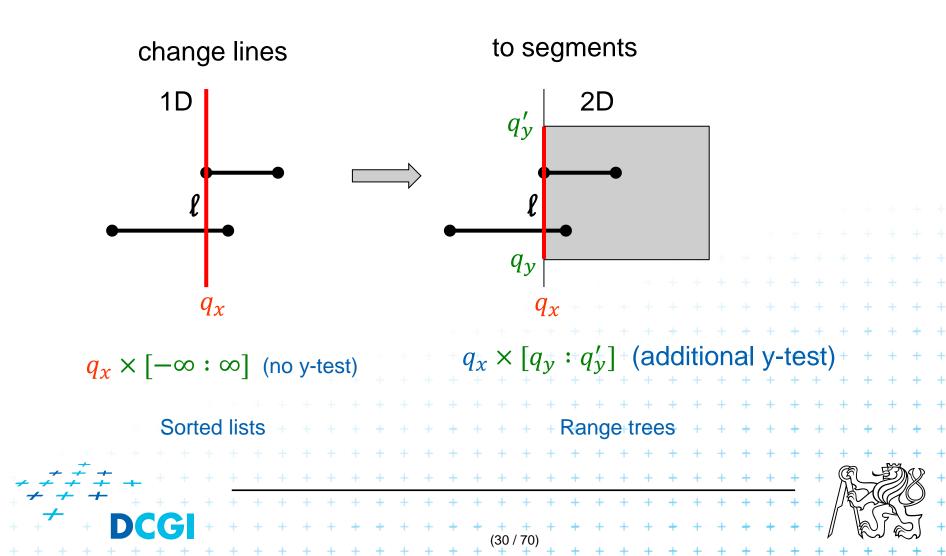
- 1. Windowing of axis parallel line segments in 2D
 - 3 variants of *interval tree* IT in x-direction
 - Differ in storage of segment end points M_L and M_R
- 1D i. Line stabbing (standard *IT* with sorted lists) lecture 9 intersections
 ii. Line segment stabbing (*IT* with range trees)
 - iii. Line segment stabbing (IT with priority search trees)

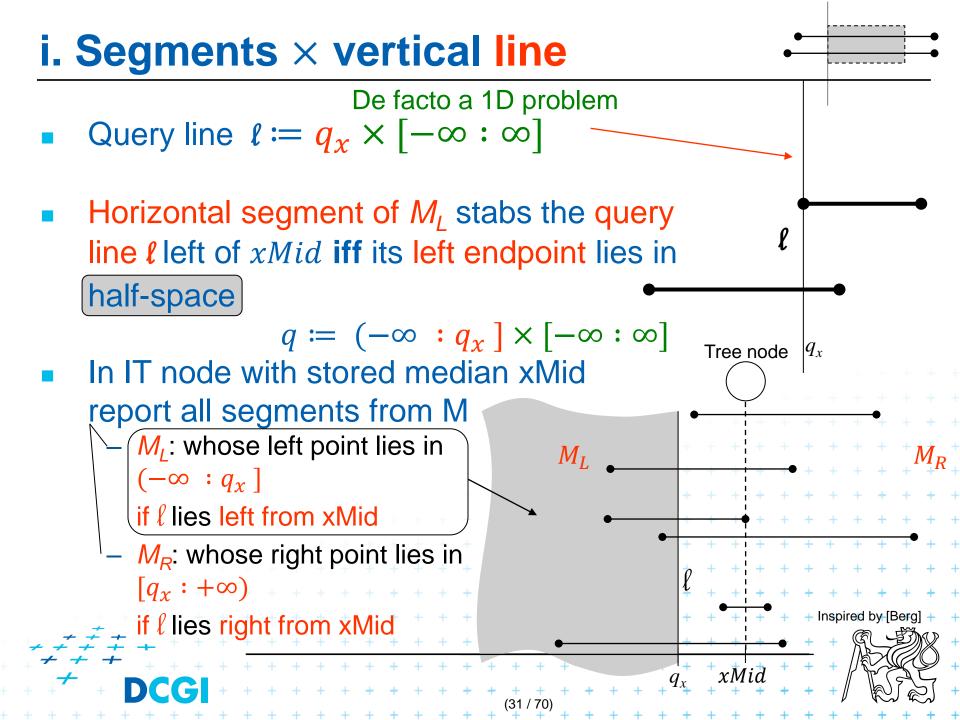
(28 / 70)

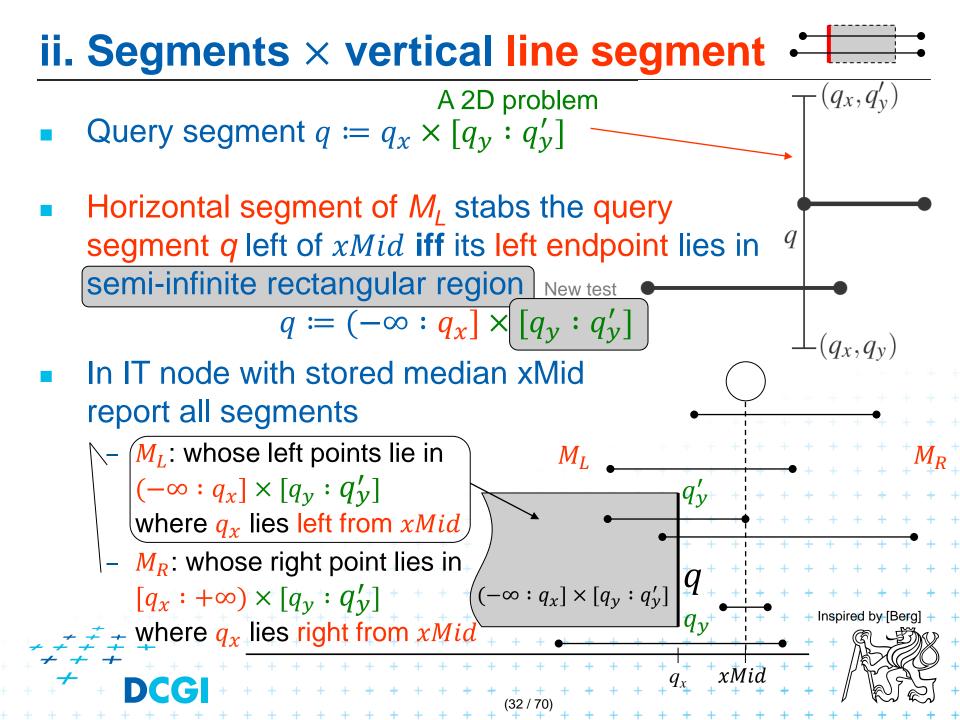
- 2. Windowing of line segments in general position
- 2D segment tree + BST

Line segment stabbing (IT with range trees)

Enhance 1D interval trees to 2D







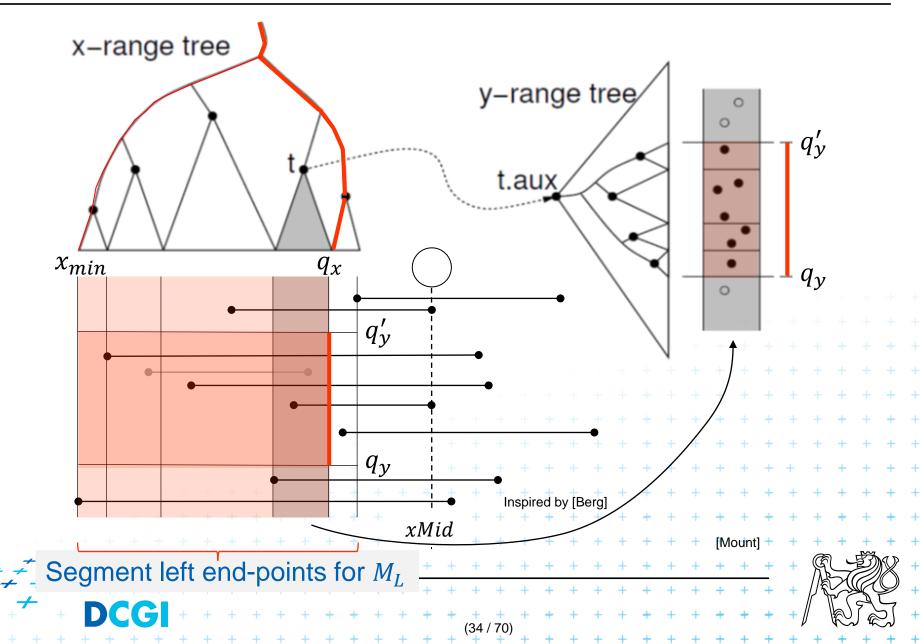
Data structure for endpoints

• Storage of M_L and M_R

- 1D Sorted lists is not enough for line segments
- We need to test in y too
- Use 2D range trees (one for M_L and one for M_R in each node)
- Instead O(n) sequential search in M_L and M_R perform $O(\log n)$ search in range tree with fractional cascading

(33 / 70)

2D range tree (without fractional cascading-more in Lecture 3)



Complexity of range tree line segment stabbing

- Construction $O(n \log n)$ time
 - Each step divides at maximum into two halves L,R or less (minus elements of M) => int. tree height $O(\log n)$
 - If the range trees are efficiently build in O(n) after points sorted
- Vertical line segment stab. q. $O(k + \log^2 n)$ time - One node processed in $O(\log n + k')$, k' reported segm.

 - v-visited nodes in $O(v \log n + k)$, k total reported segm.
 - -v = interval tree height = O(log n)
 - $O(k + \log^2 n)$ time range tree with fractional cascading
 - $-O(k + \log^3 n)$ time range tree without fractional casc.
- Storage $O(n \log n)$ Dominated by the range trees

 $\mathbf{k} = \sum k'$

Complexity of range tree line segment stabbing

- Construction $O(n \log n)$ time
 - Each step divides at maximum into two halves L,R
 or less (minus elements of M) => int. tree height O(log n)
 - If the range trees are efficiently build in O(n) after points sorted
- Vertical line segment stab. q. $O(k + \log^2 n)$ time - One node processed in $O(\log n + k')$, k' reported segm.
 - v-visited nodes in $O(v \log n + k)$, k total reported segm.
 - -v = interval tree height = O(log n)
 - $O(k + \log^2 n)$ time range tree with fractional cascading
 - $O(k + \log^3 n)$ time range tree without fractional casc.
- Storage O(n log n)
 Can be done better?
 ### Dominated by the range trees

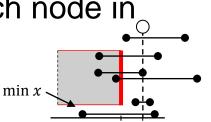
 $\mathbf{k} = \Sigma k'$

Talk overview

- 1. Windowing of axis parallel line segments in 2D
 - 3 variants of *interval tree* IT in x-direction
 - Differ in storage of segment end points M_L and M_R
- 1D i. Line stabbing (standard *IT* with *sorted lists*) lecture 9 intersections
 2D ii. Line segment stabbing (*IT* with *range trees*)
 iii. Line segment stabbing (*IT* with *priority search trees*)

iii. Priority search trees

- [McCreight85]
- Another variant for case c) on slide 9
 - Exploit the fact that query rectangle in each node in interval tree is unbounded (in x direction)
- Priority search trees



- as secondary data structure for both left and right endpoints (M_L and M_R) of segments in nodes of interval tree – one for ML, one for MR
- Improve the storage to O(n) for horizontal segment intersection with left window edge (2D range tree has $O(n \log n)$)
- For cases a) and b) $O(n \log n)$ storage remains
 - we need range trees for windowing segment endpoints

Rectangular range queries variants

- Let P = { p₁, p₂, ..., p_n } is set of points in plane
 Goal: rectangular range queries of the form
 - $(-\infty: q_x] \times [q_y: q'_y] -$ unbounded (in x direction)
- In 1D: search for nodes v with $v_x \in (-\infty : q_x]$
 - range tree $O(\log n + k)$ time (search the end, report left)- ordered listO(1 + k) time1 is for possibly fail test of the first(start in the leftmost, stop on v with $v_x > q_x$)

(39 / 70)

- use heap O(1 + k) time !

(traverse all children, stop when $v_x > q_x$)

In $2^{\circ}D$ – use heap for points with $x \in (-\infty; q_x]^+$

+ integrate information about y-coordinate

Rectangular range queries variants

- Let P = { p₁, p₂, ..., p_n } is set of points in plane
 Goal: rectangular range queries of the form
 - $(-\infty: q_x] \times [q_y: q'_y] -$ unbounded (in x direction)
- In 1D: search for nodes v with $v_x \in (-\infty : q_x]$
 - range tree $O(\log n + k)$ time (search the end, report left)
 - ordered list O(1 + k) time 1 is for possibly fail test of the first

(start in the leftmost, stop on v with $v_x > q_x$)

- use heap O(1 + k) time !

(traverse all children, stop when $v_x > q_x$)

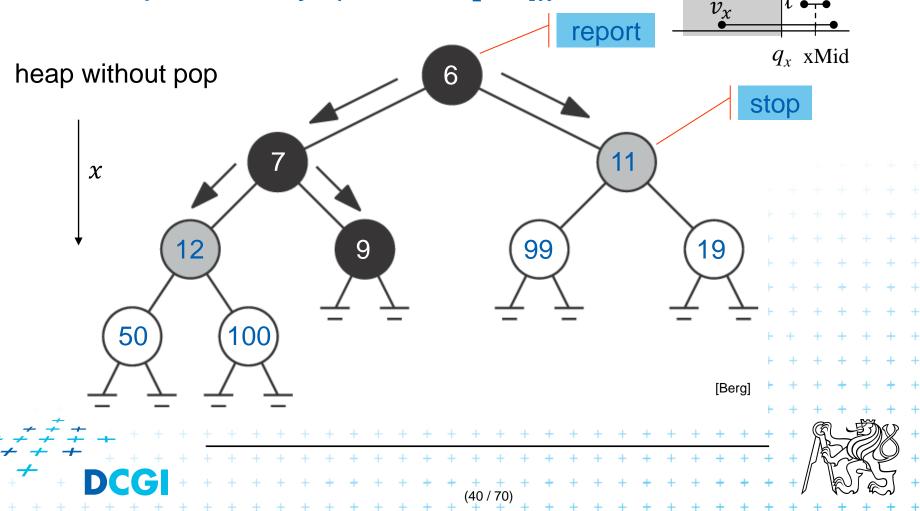
In $2^{\prime}D$ – use heap for points with $x \in (-\infty; q_x]^+$

+ integrate information about y-coordinate

+ + (39 / 70)

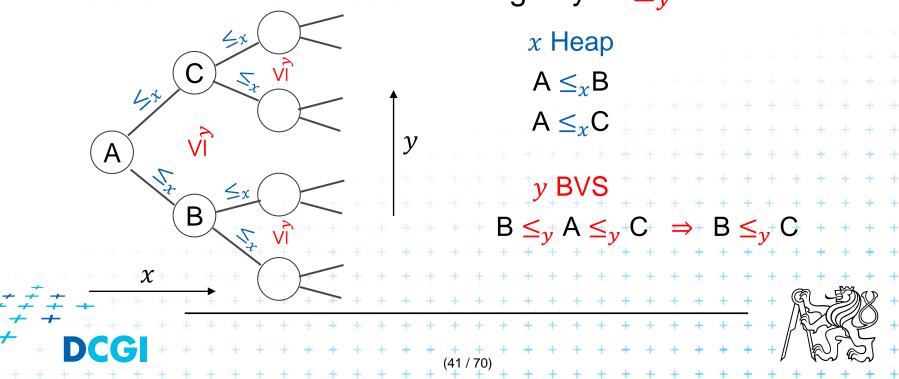
Heap for 1D unbounded range queries

- Traverse all children, stop if $v_x > q_x$
- Example: Query $(-\infty:10]$, $q_x = 10$



Principle of priority search tree

- Heap \leq_{χ}
 - relation between parent and its child nodes only
 - no relation between the child nodes themselves
- Priority search tree
 - relate the child nodes according to y \leq_y



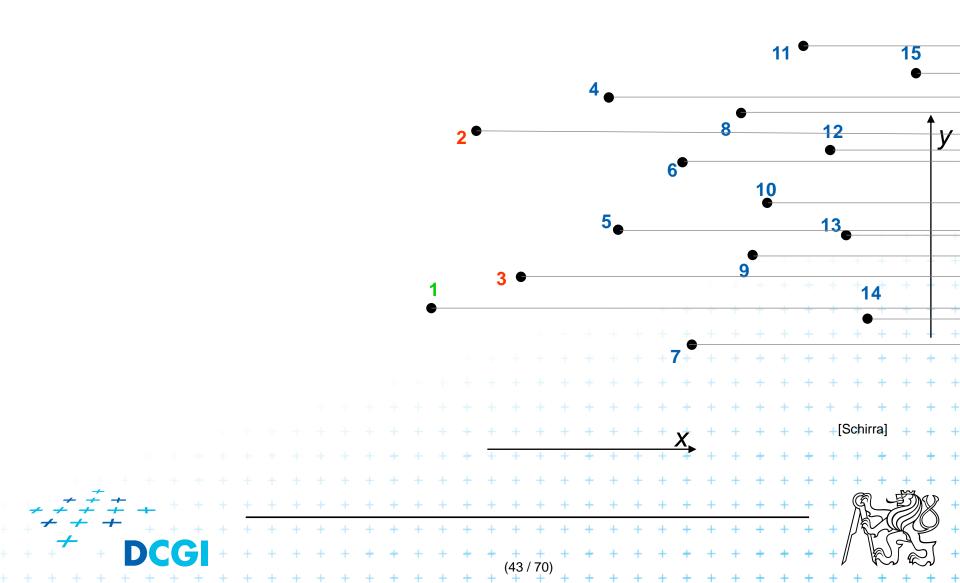
Priority search tree (PST)

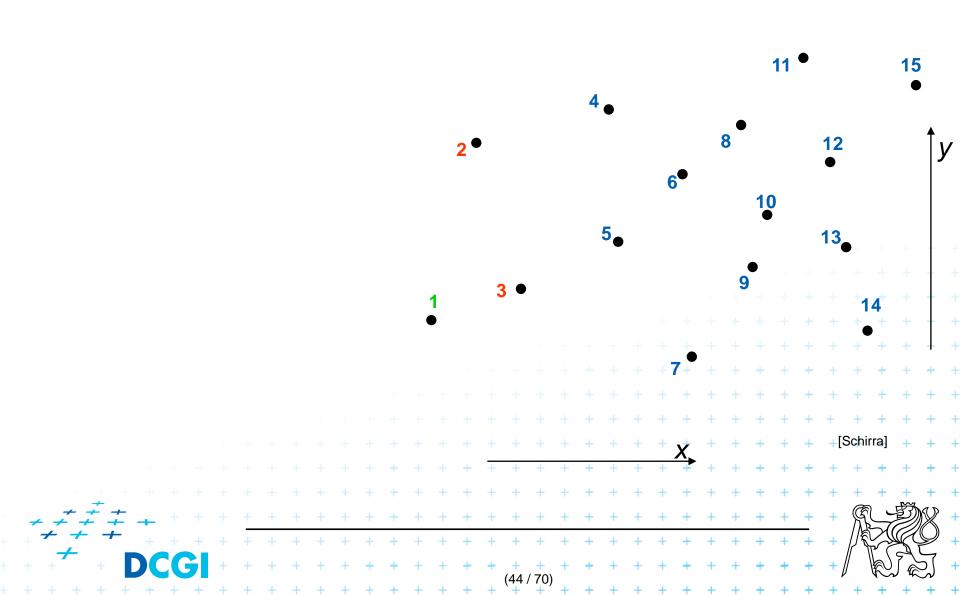
- = Heap in 2D that can incorporate info about both x, y
 - BST on y-coordinate (horizontal slabs) ~ 1D range tree
 - Heap on x-coordinate (minimum x from slab along x)
- If P is empty, PST is empty leaf
- else
 - p_{min} = point with smallest *x*-coordinate in *P* a heap root

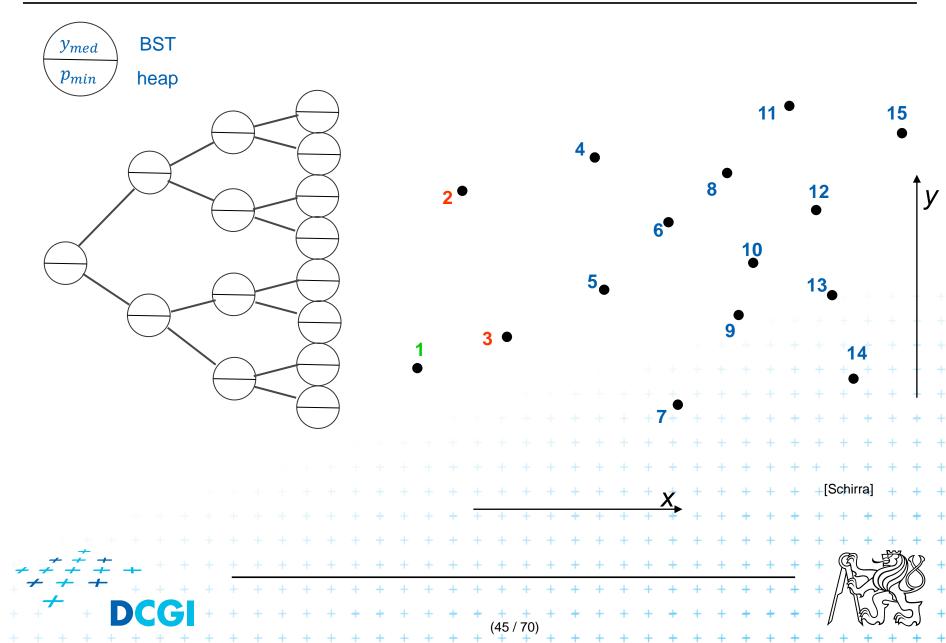
+ + + + + + + + +

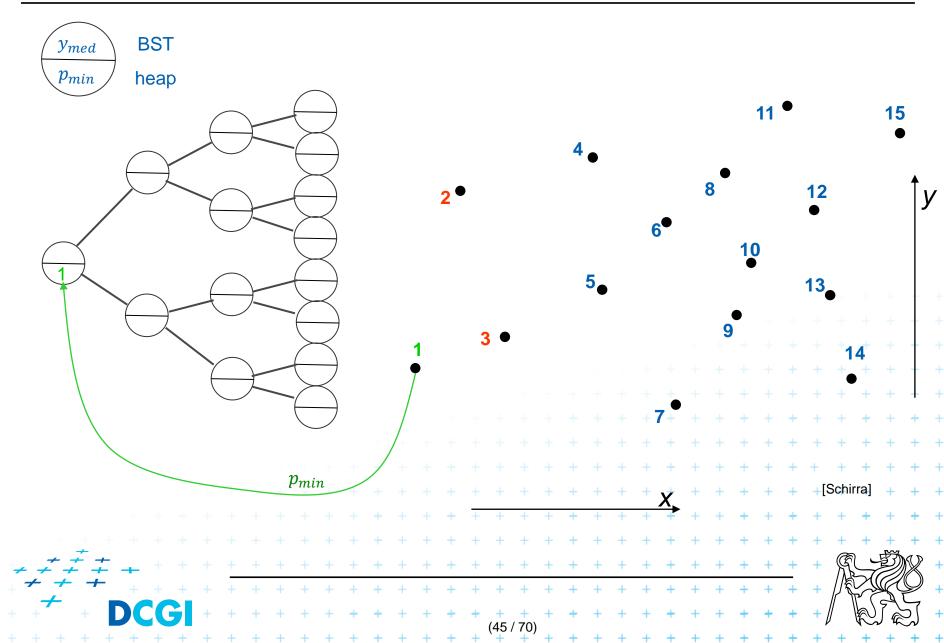
(42 / 70)

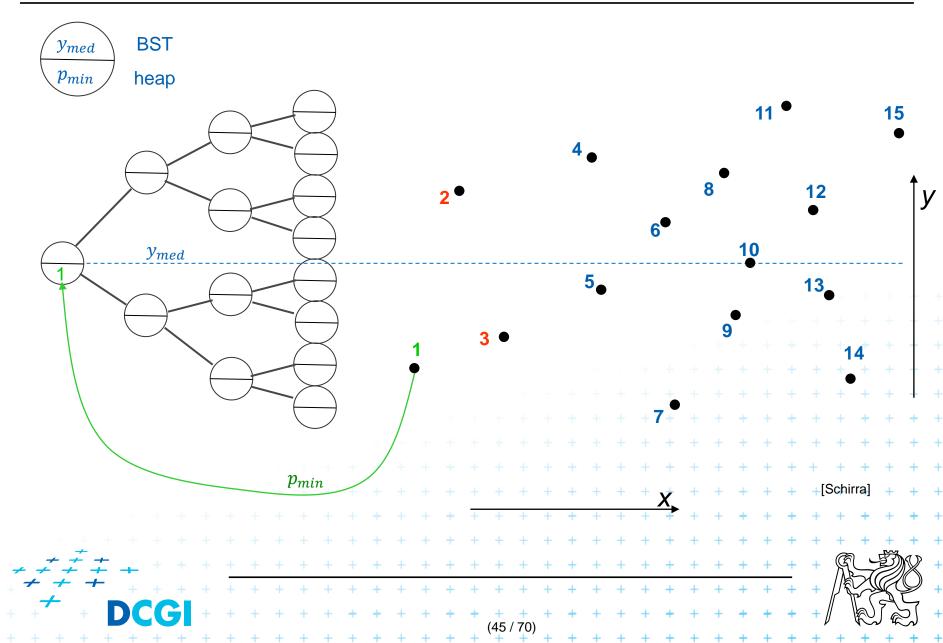
- $y_{med} = y$ -coord. median of points $P \setminus \{p_{min}\}$ -BST root
- $P_{below} \coloneqq \{ p \in P \setminus \{p_{min}\} : p_y \le y_{med} \}$
- $P_{above} \coloneqq \{ p \in P \setminus \{p_{min}\} : p_y > y_{med} \}$
- Point p_{min} and scalar y_{med} are stored in the PST root
- The left subtree is PST of *P*_{below}
- The right subtree is PST of *P*_{above}

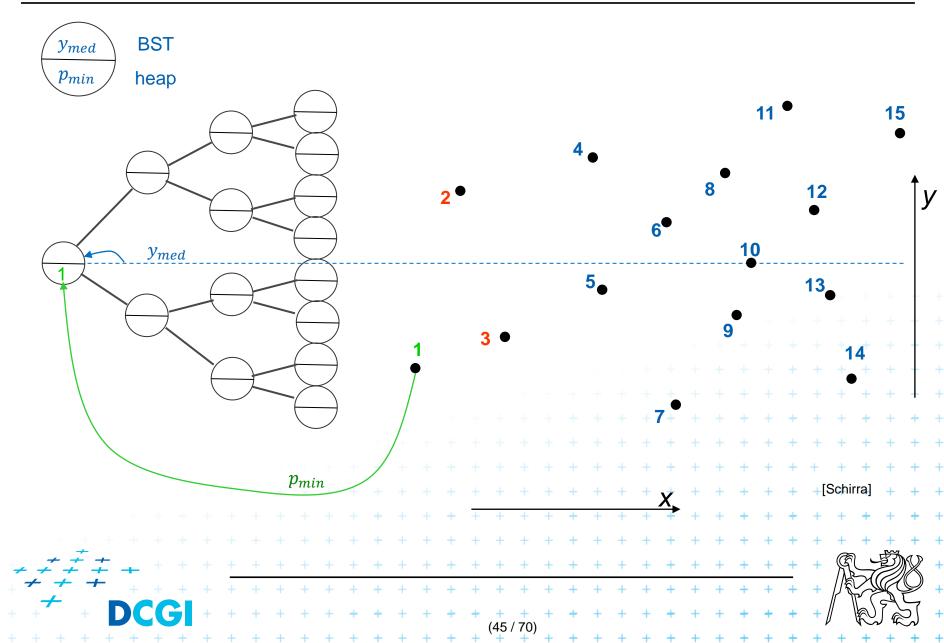


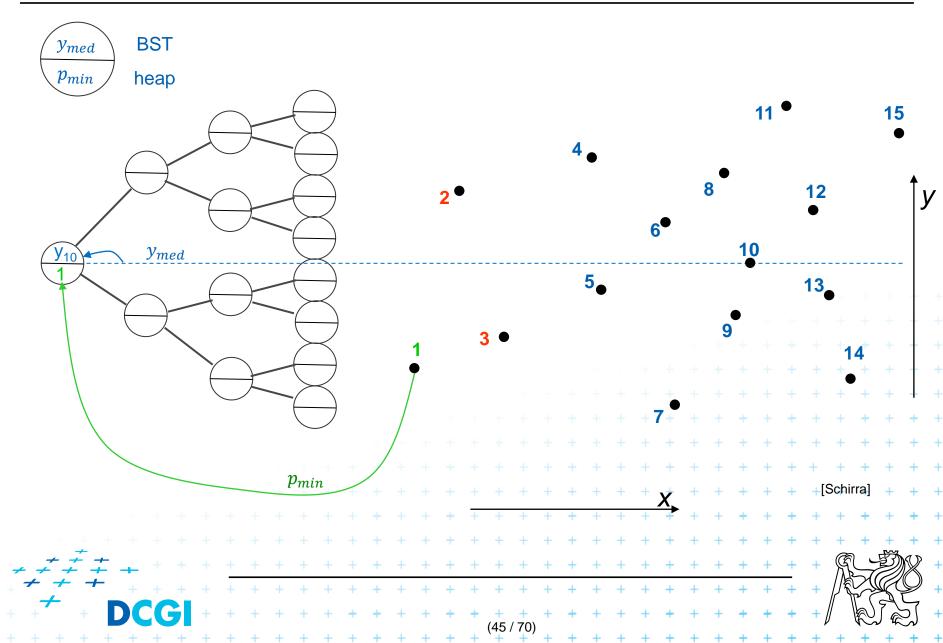


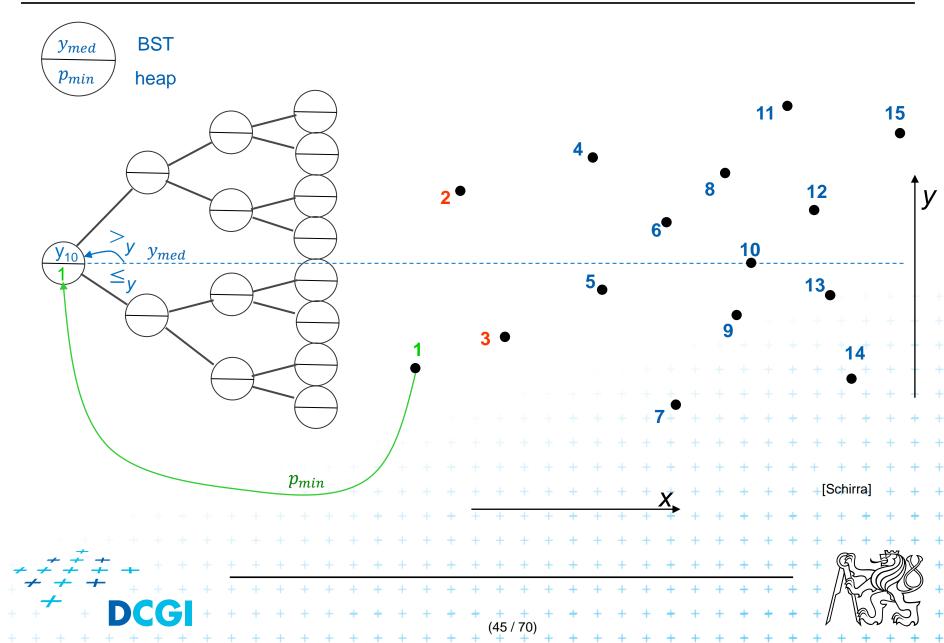


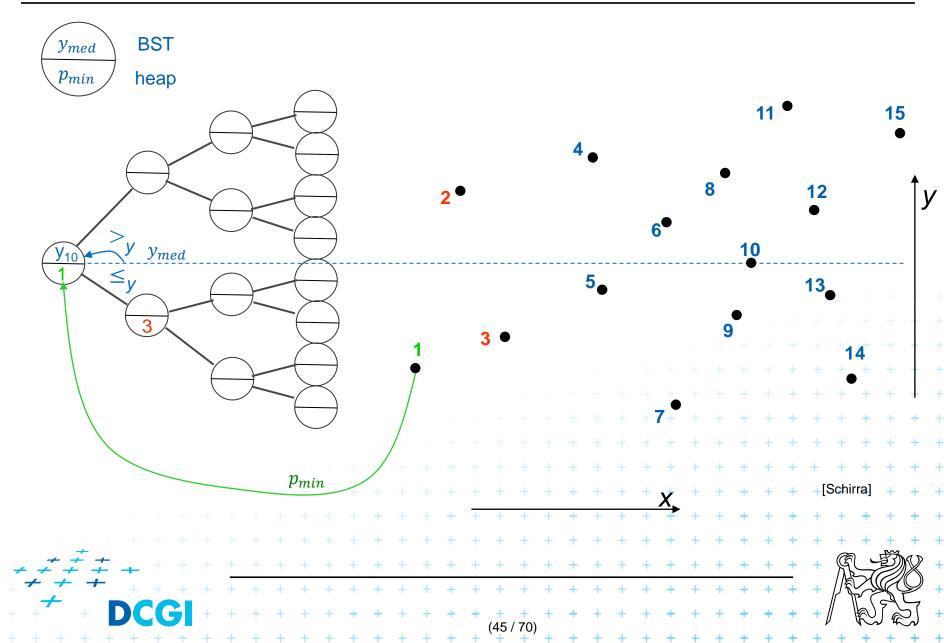


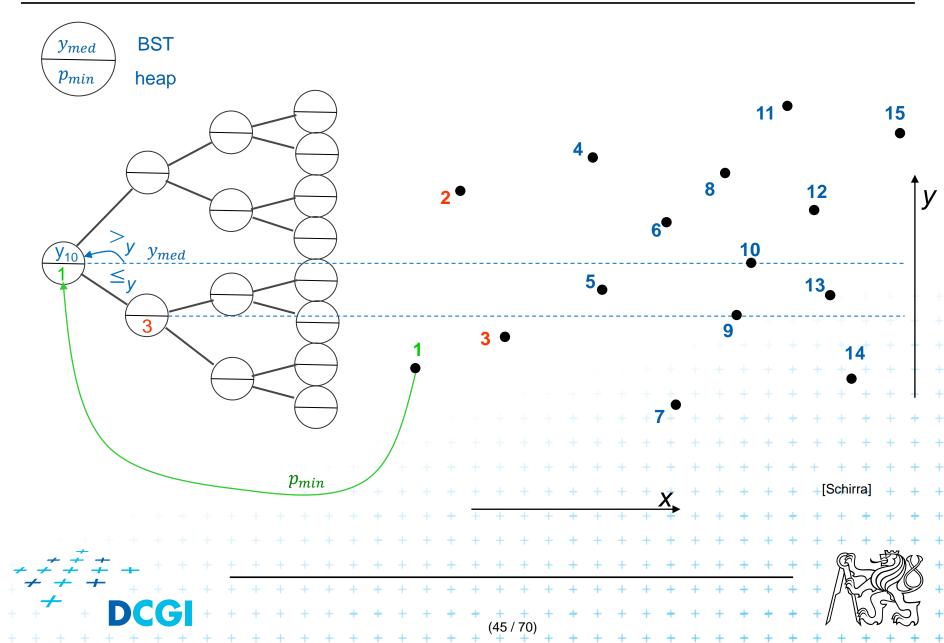


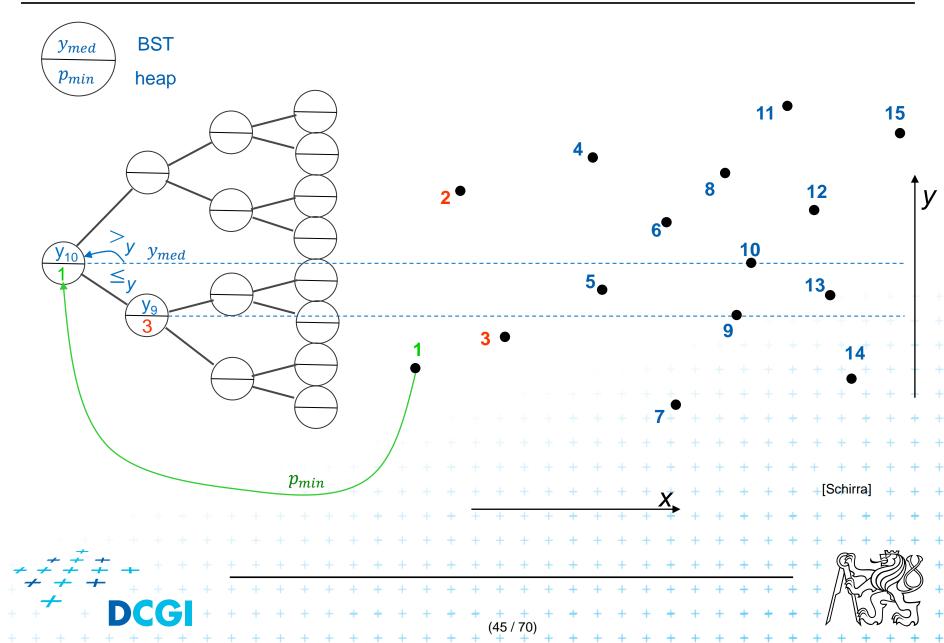


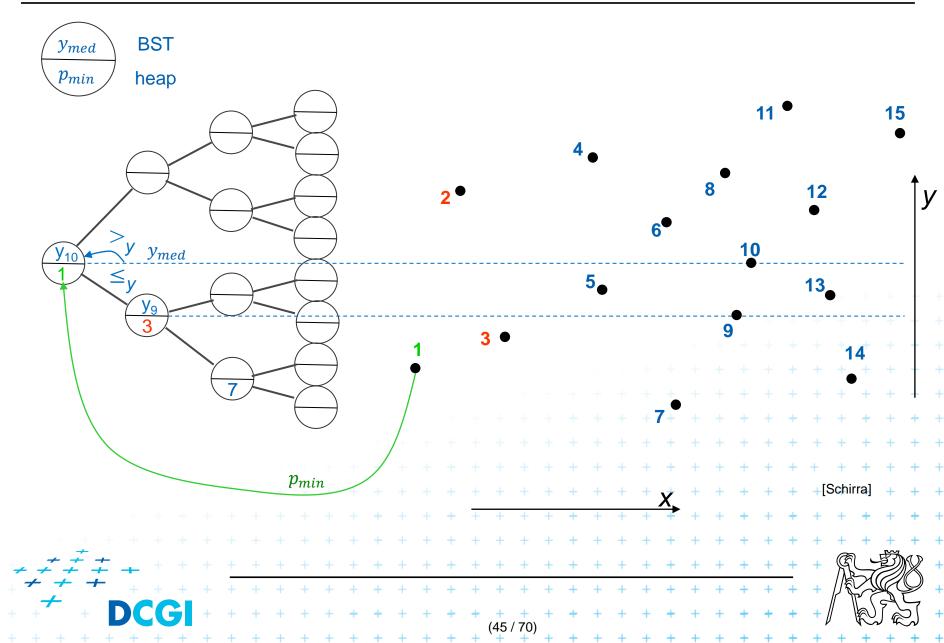


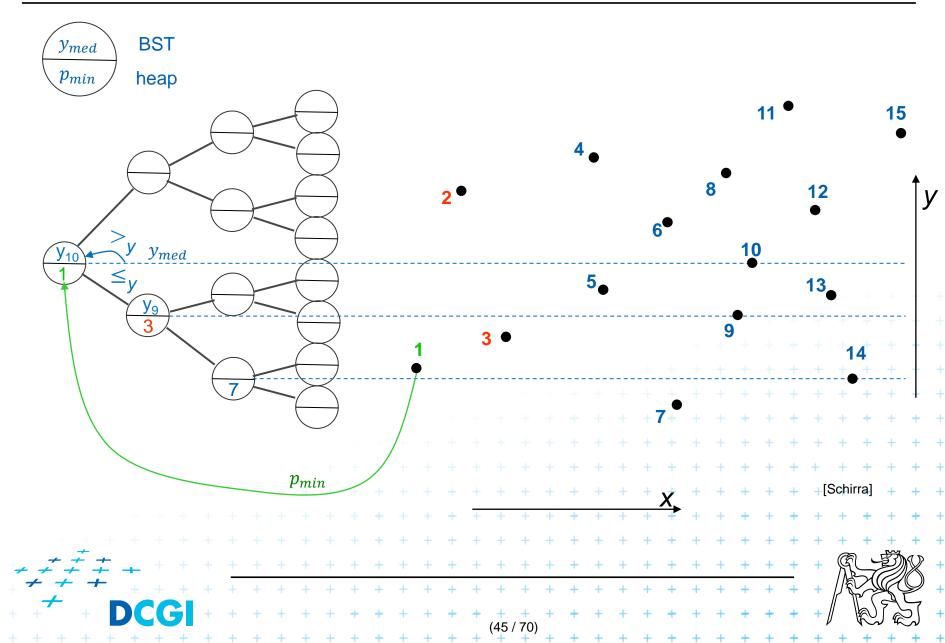


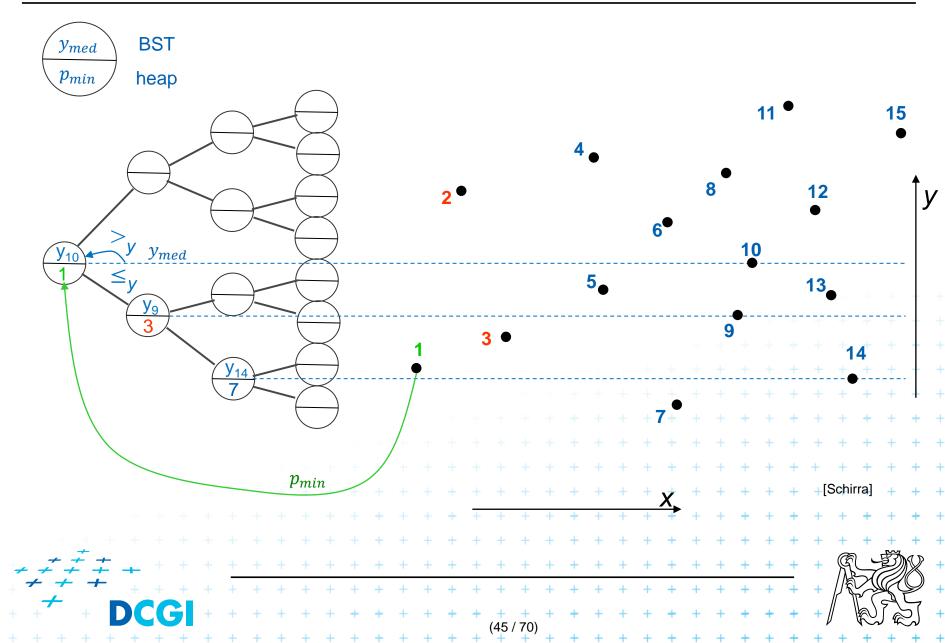


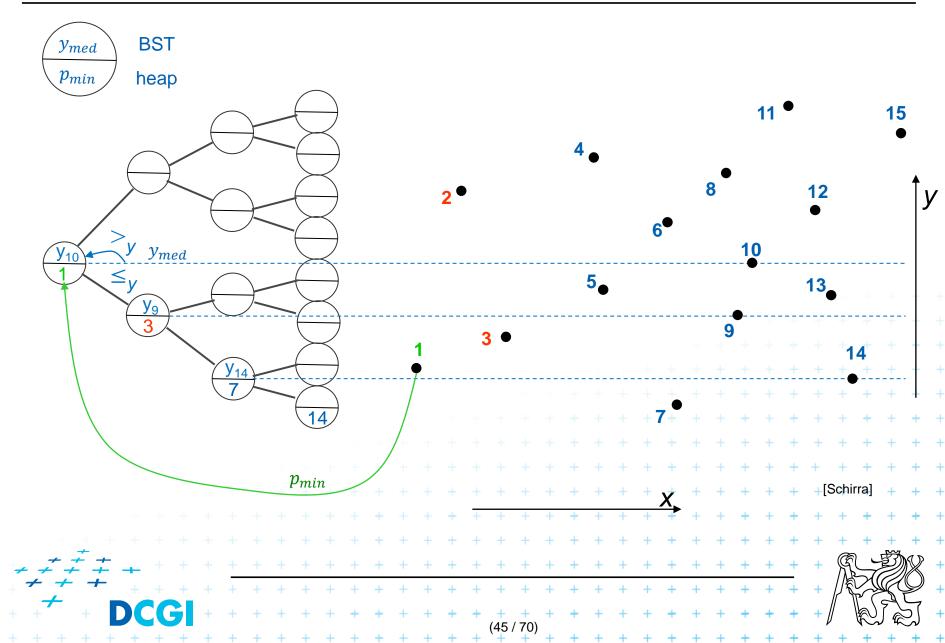


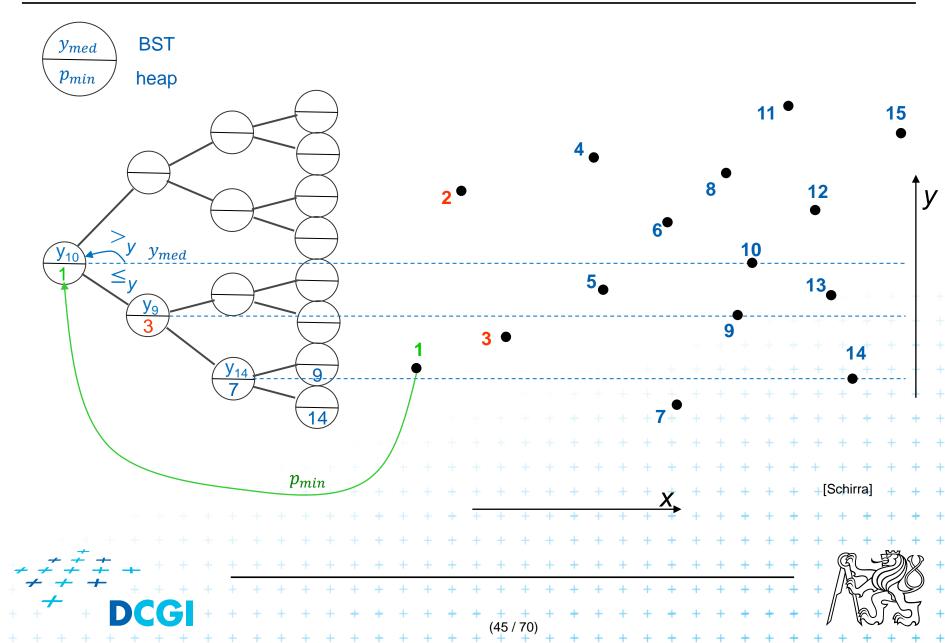


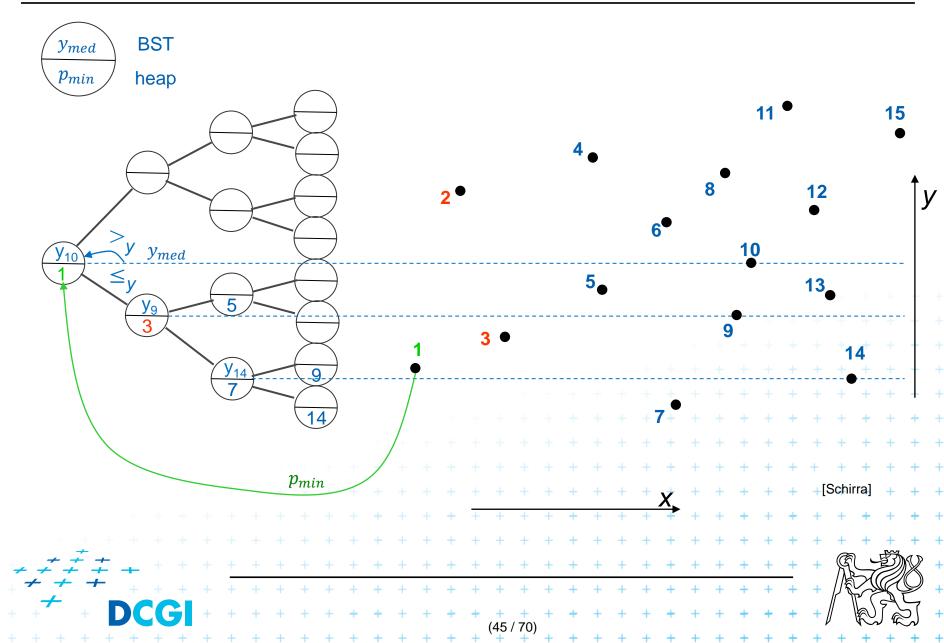


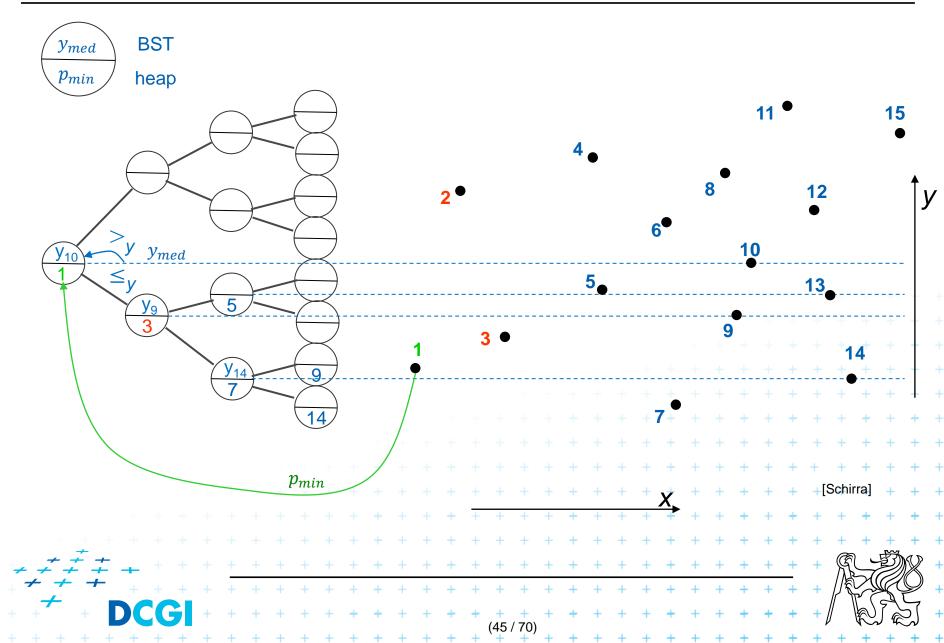


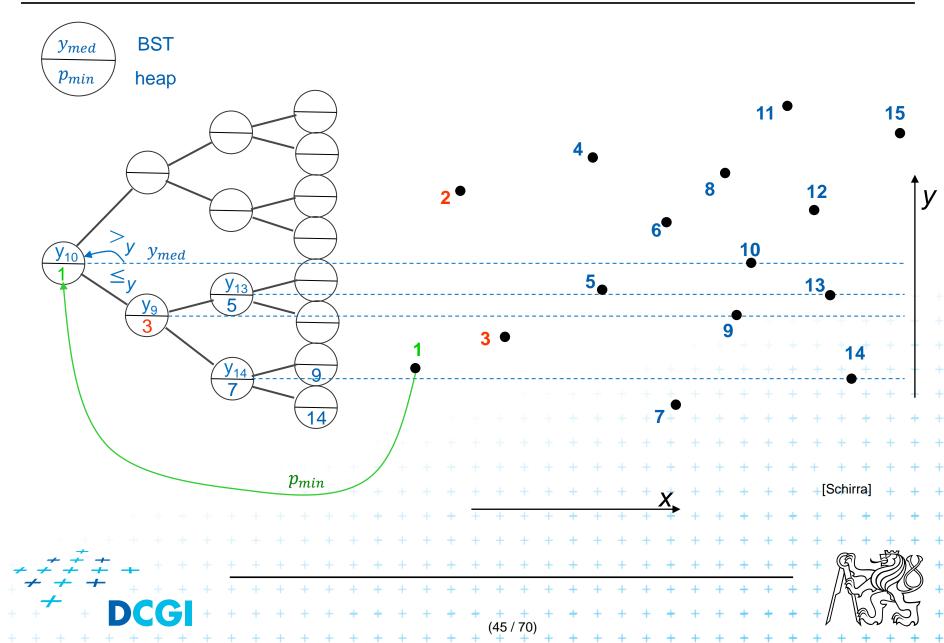


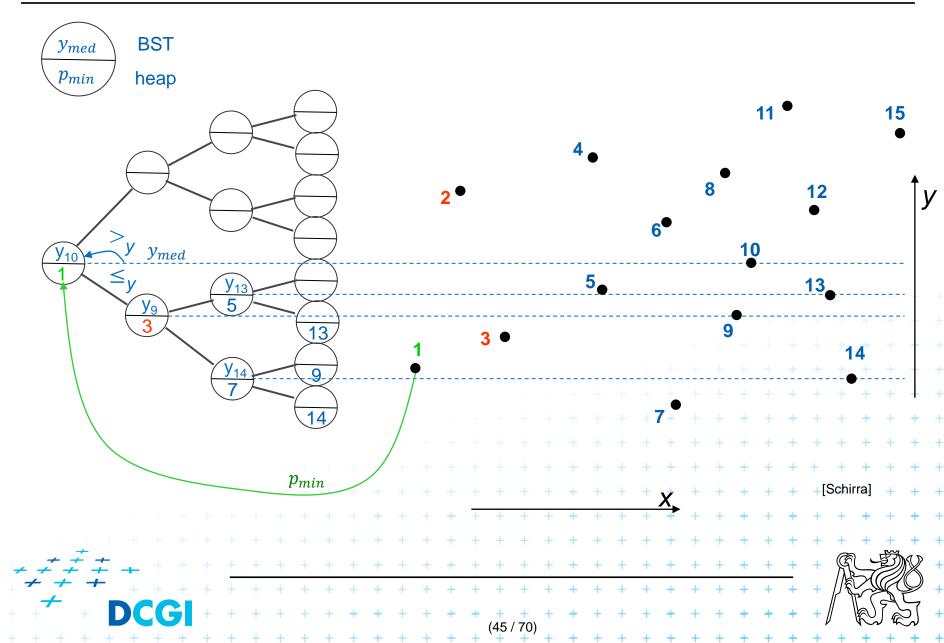


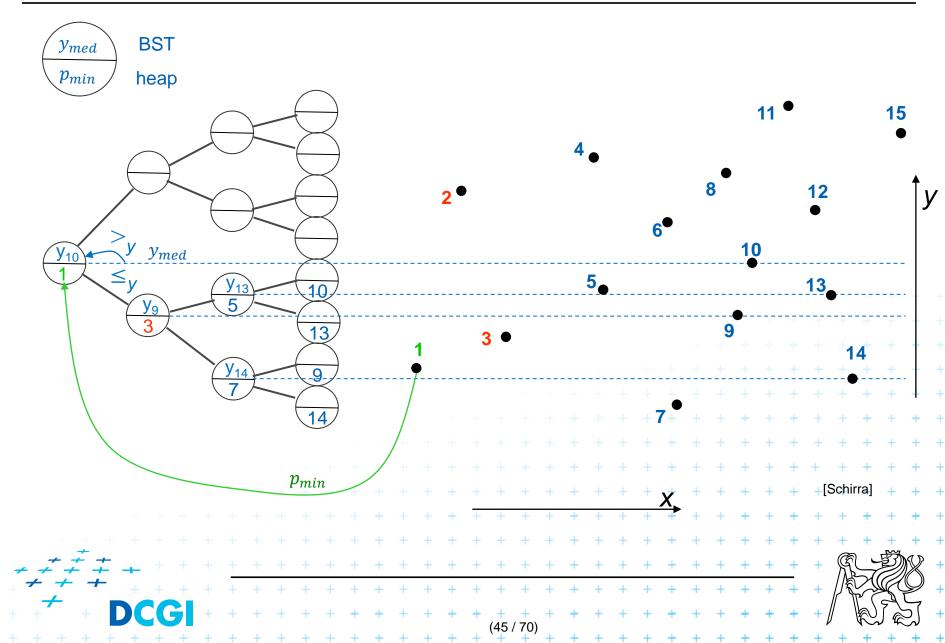


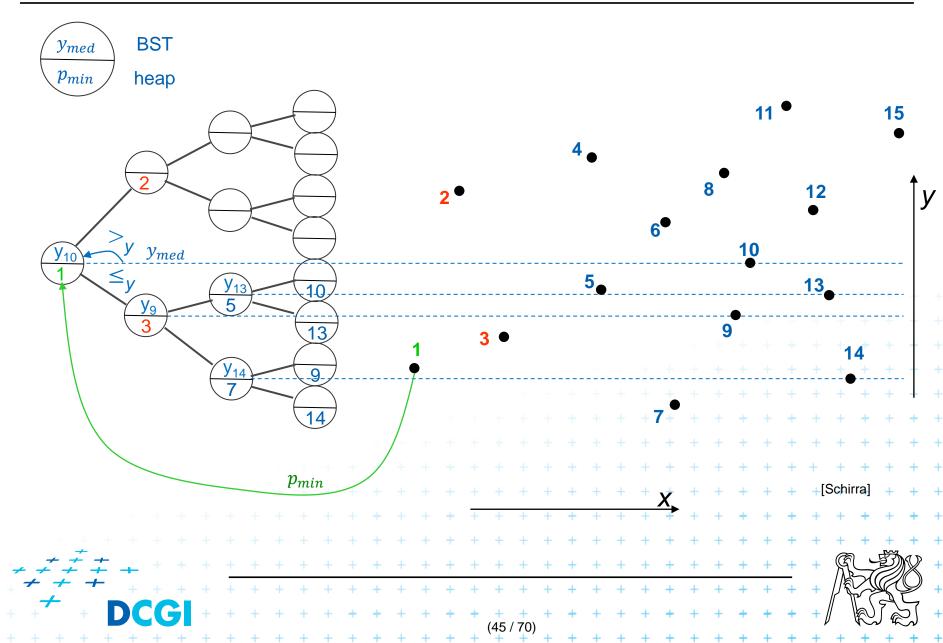


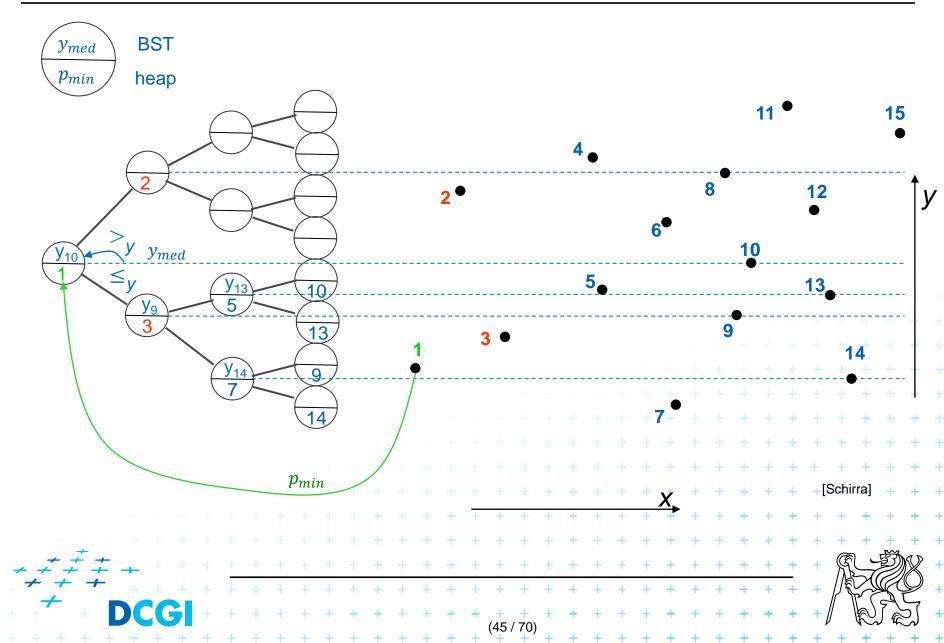


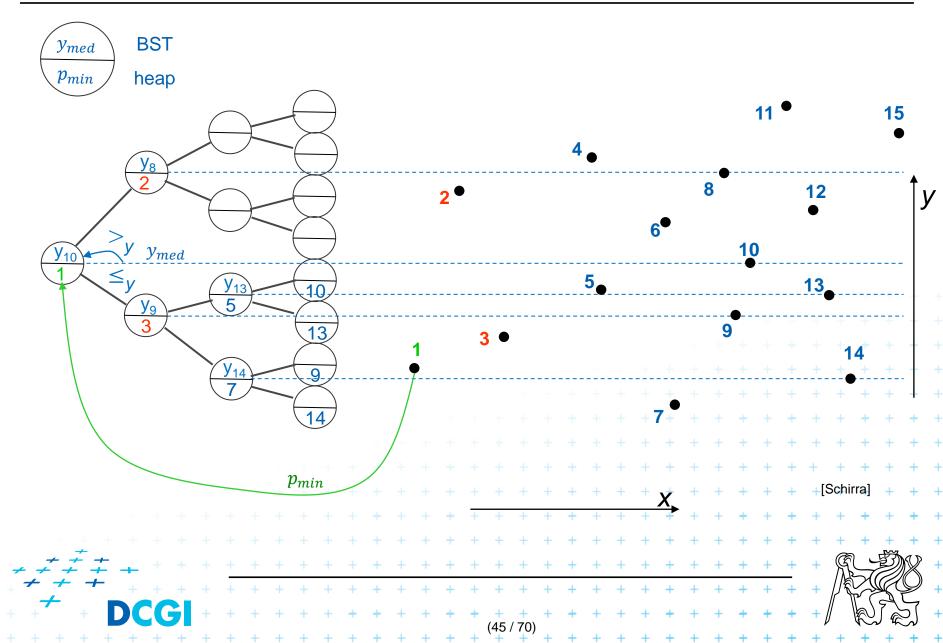


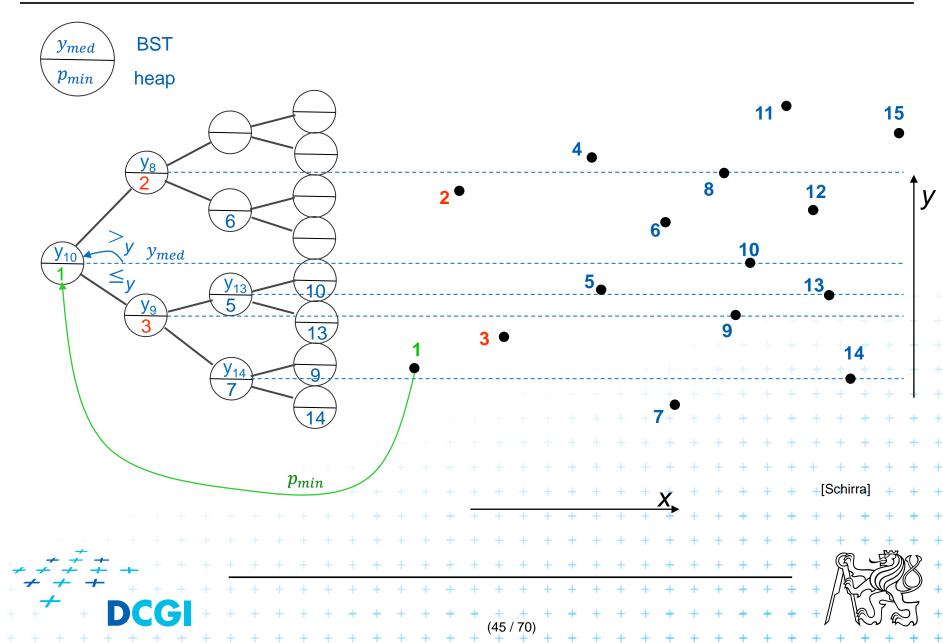


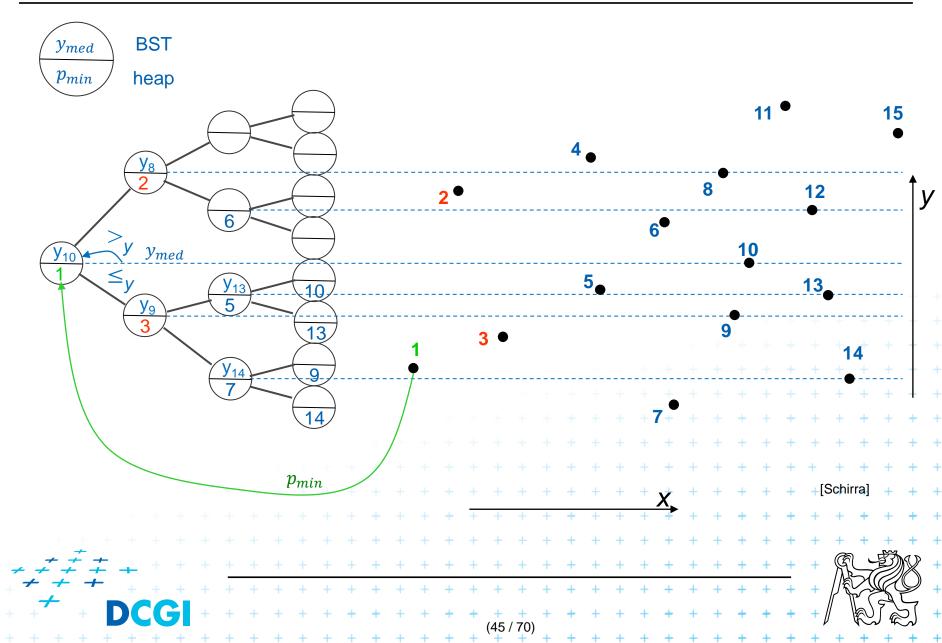


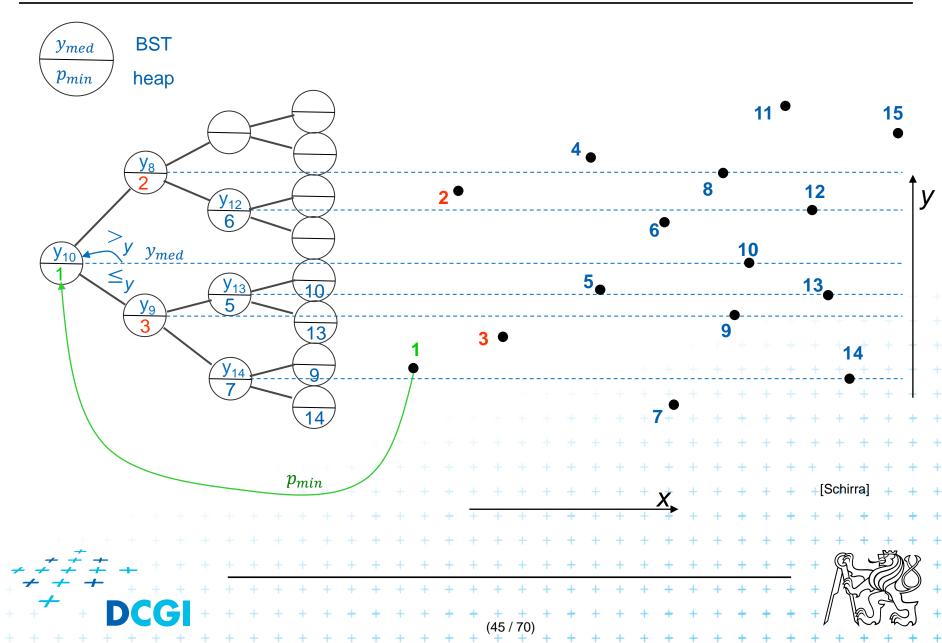


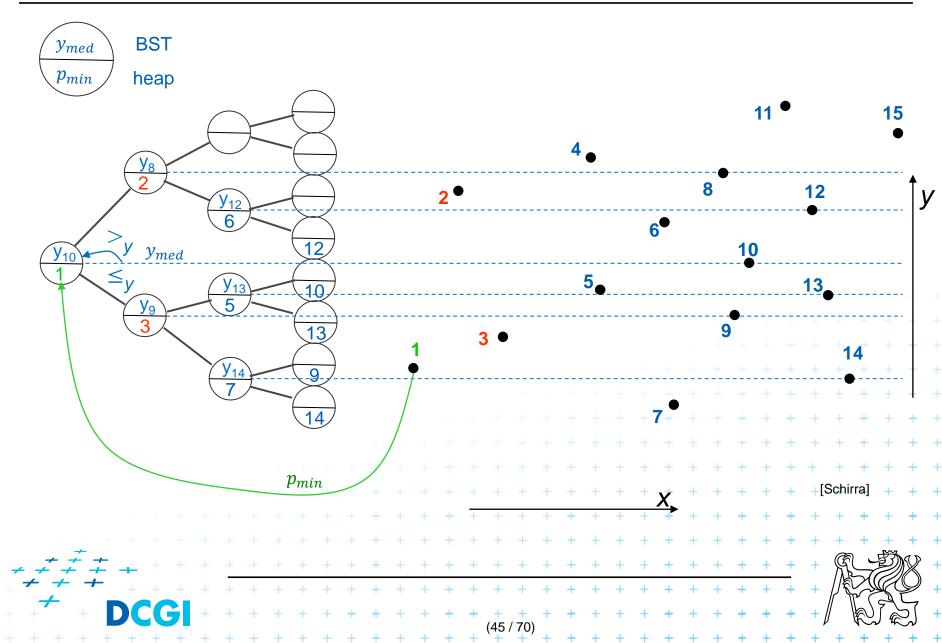


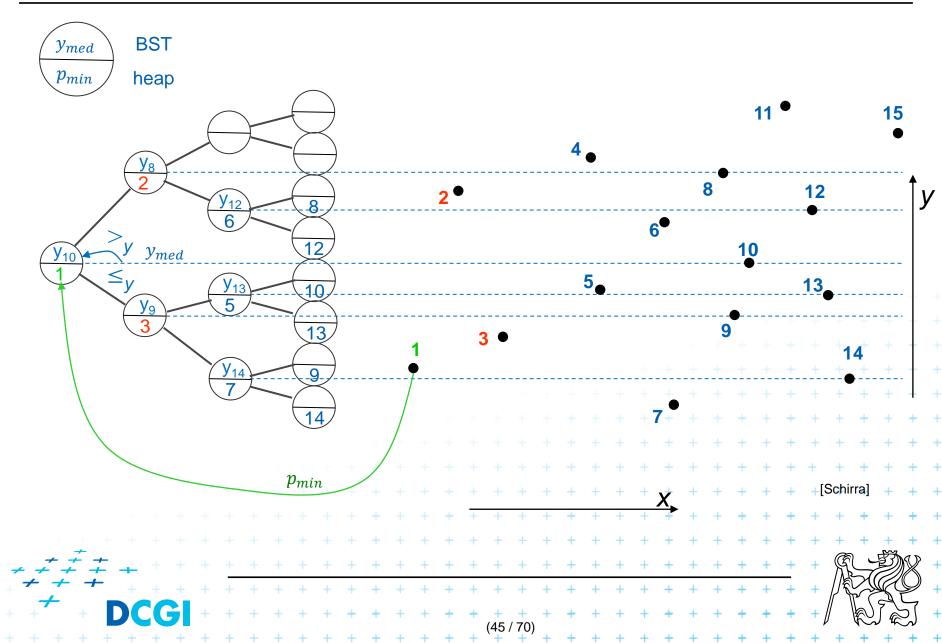


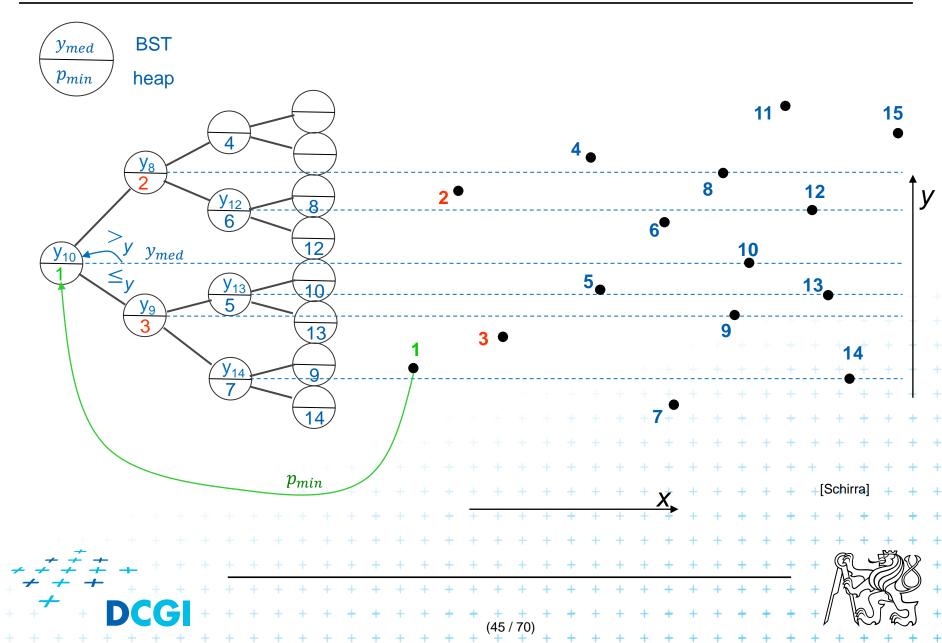


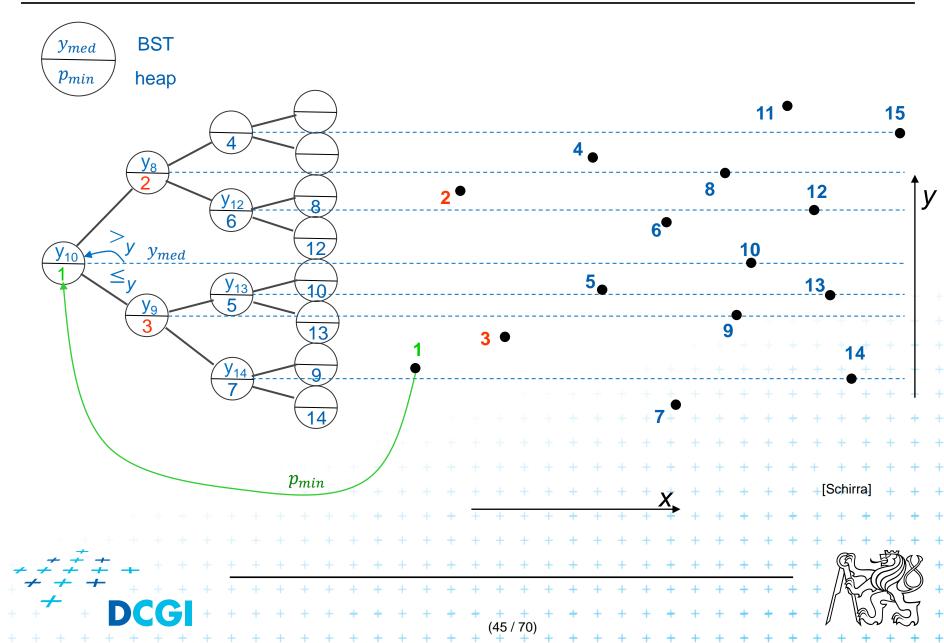


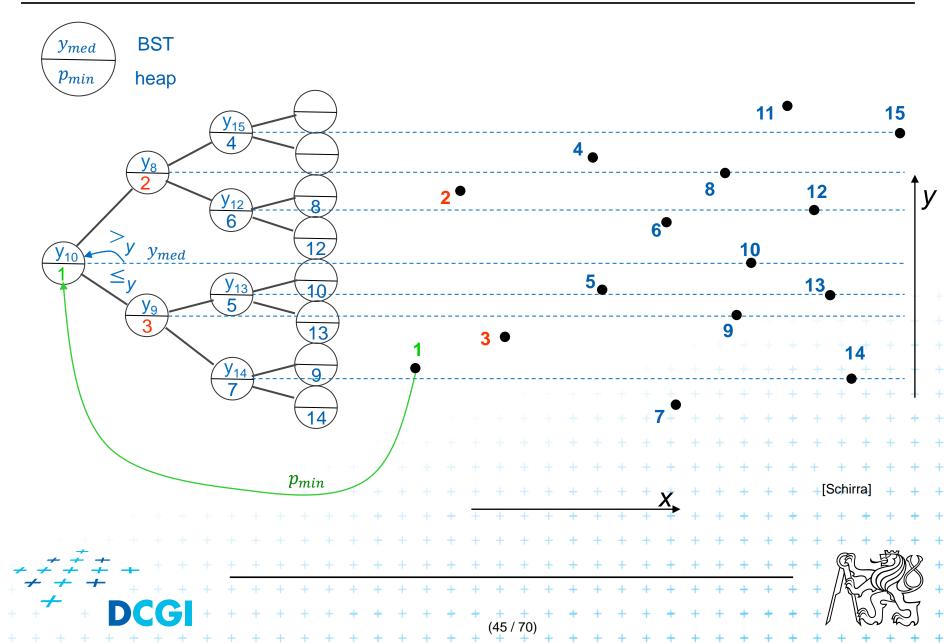


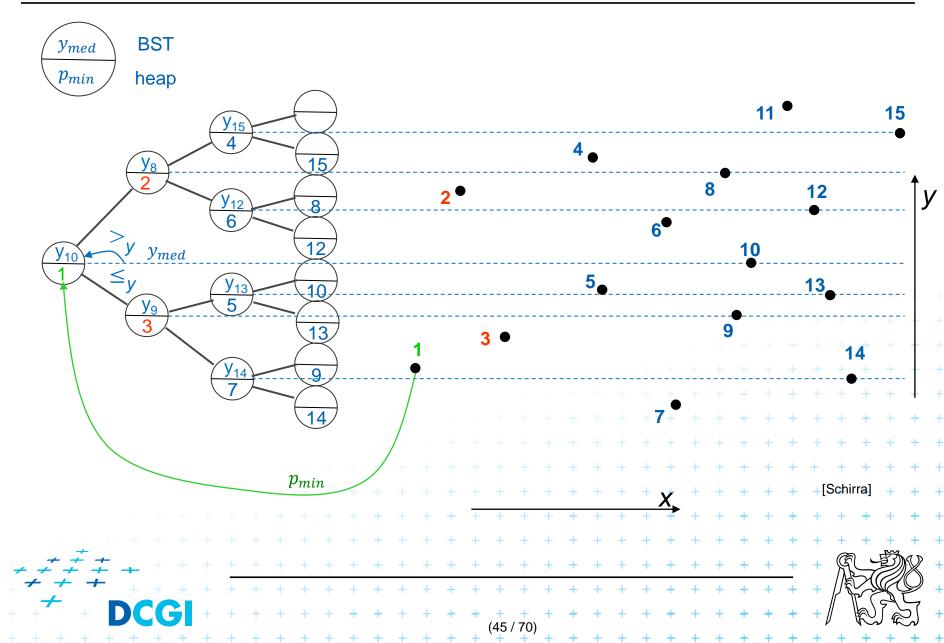


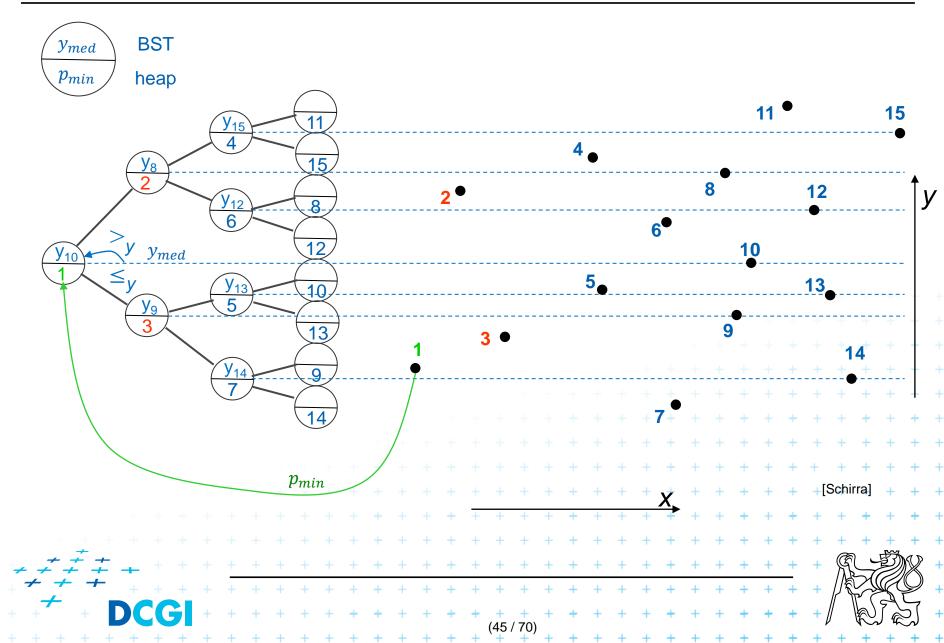












Priority search tree construction

```
PrioritySearchTree(P)
 Input: set P of points in plane
 Output: priority search tree T
 1. if P = \emptyset then PST is an empty leaf
2.
                     else
                                                                       = point with smallest x-coordinate in P // heap on x root
3.
                                   p_{min}
4.
                                                                      = y-coord. median of points P \setminus \{p_{min}\} // BST on y root
                                   Ymed
                                   Split points P \setminus \{p_{min}\} into two subsets – according to y_{med}
5.
                                                                       P_{below} \coloneqq \{ p \in P \setminus \{p_{min}\} : p_{\gamma} \leq y_{med} \}
6.
                                                                       P_{above} \coloneqq \{ p \in P \setminus \{p_{min}\} : p_v > y_{med} \}
7.
                                    T = \text{newTreeNode}()
8.
                                                                                                                                                                                                                                ... Notation on the next slide:
                                    T.p = p_{min} // point [x, y] .... p(v), v = tree node +
9.
                             T.p = p_{min} \quad \text{// point } [x, y]
T.y = y_{med} \quad \text{// scalar} \quad \dots \quad y(v) + \dots \quad y(
  10.
  11.
                                     T.rigft = PrioritySearchTree(P_{above}) \dots r(v)
   12.
 13. Q(n \log n), but O(n) if presorted on y-coordinate and bottom up
```

QueryPrioritySearchTree(*T***,** $(-\infty : q_x] \times [q_y : q'_y]$ **)** *Input:* A priority search tree and a range, unbounded to the left *Output:* All points lying in the range

- 1. Search with q_y and q'_y in T // BST on y-coordinate select y range Let v_{split} be the node where the two search paths split (split node)
- 2. for each node ν on the search path of q_y or q'_y // points along the paths
- 3. if $p(v) \in (-\infty : q_x] \times [q_y : q'_y]$ then Report p(v) // starting in tree root
- 4. for each node v on the path of q_y in the left subtree of v_{split} // inner trees

+ + + + + (105 / 70) + [Berg]

- 5. if the search path goes left at ν
- 6. ReportInSubtree(r(v), q_x) // report right subtree
- 7. for each node ν on the path of $q'_{\mathcal{Y}}$ in right subtree of ν_{split}
- 8. if the search path goes right at ν + + + + + + + +

QueryPrioritySearchTree(*T***,** $(-\infty : q_x] \times [q_y : q'_y]$ **)** *Input:* A priority search tree and a range, unbounded to the left *Output:* All points lying in the range

- 1. Search with q_y and q'_y in T // BST on y-coordinate select y range Let v_{split}^{\bullet} be the node where the two search paths split (split node)
- 2. for each node ν on the search path of q_y or q'_y // points along the paths
- 3. if $p(v) \in (-\infty : q_x] \times [q_y : q'_y]$ then Report p(v) // starting in tree root
- 4. for each node v on the path of q_y in the left subtree of v_{split} // inner trees

- 5. if the search path goes left at ν
- 6. ReportInSubtree(r(v), q_x) // report right subtree
- 7. for each node ν on the path of q'_{y} in right subtree of ν_{split}
- 8. if the search path goes right at ν + + + + + + + +

QueryPrioritySearchTree(*T***,** $(-\infty : q_x] \times [q_y : q'_y]$ **)** *Input:* A priority search tree and a range, unbounded to the left *Output:* All points lying in the range

- 1. Search with q_y and q'_y in T // BST on y-coordinate select y range Let v_{split}^{\bullet} be the node where the two search paths split (split node)
- 2. for each node ν on the search path of q_y or q'_y // points along the paths
- 3. if $p(v) \in (-\infty : q_x] \times [q_y : q'_y]$ then Report p(v) // starting in tree root
- 4. for each node v on the path of q_y in the left subtree of v_{split} // inner trees

+ + + + + + + (107 / 70)

- 5. if the search path goes left at ν
- 6. ReportInSubtree(r(v), q_x) // report right subtree
- 7. for each node ν on the path of $q'_{\mathcal{Y}}$ in right subtree of ν_{split}
- 8. if the search path goes right at ν + + + + + + + +

QueryPrioritySearchTree(*T***,** $(-\infty : q_x] \times [q_y : q'_y]$ **)** *Input:* A priority search tree and a range, unbounded to the left *Output:* All points lying in the range

- 1. Search with q_y and q'_y in T // BST on y-coordinate select y range Let v_{split}^{\bullet} be the node where the two search paths split (split node)
- 2. for each node ν on the search path of q_y or q'_y // points along the paths
- 3. if $p(v) \in (-\infty : q_x] \times [q_y : q'_y]$ then Report p(v) // starting in tree root
- 4. for each node v on the path of q_y in the left subtree of v_{split} // inner trees

- 5. if the search path goes left at ν
- 6. ReportInSubtree(r(v), q_x) // report right subtree
- 7. for each node ν on the path of q'_{y} in right subtree of ν_{split}
- 8. if the search path goes right at ν + + + + + + + +

QueryPrioritySearchTree(*T***,** $(-\infty : q_x] \times [q_y : q'_y]$ **)** *Input:* A priority search tree and a range, unbounded to the left *Output:* All points lying in the range

- 1. Search with q_y and q'_y in T // BST on y-coordinate select y range Let v_{split}^{\bullet} be the node where the two search paths split (split node)
- 2. for each node ν on the search path of q_y or q'_y // points along the paths
- 3. if $p(v) \in (-\infty : q_x] \times [q_y : q'_y]$ then Report p(v) // starting in tree root
- 4. for each node v on the path of q_y in the left subtree of v_{split} // inner trees

+ + + + + + + (109 / 70) +

- 5. if the search path goes left at ν
- 6. ReportInSubtree(r(v), q_x) // report right subtree \blacktriangle
- 7. for each node ν on the path of q'_{y} in right subtree of ν_{split}
- 8. if the search path goes right at ν + + + + + +
 - ReportInSubtree(l(v), q_x) // rep. left subtree

QueryPrioritySearchTree(*T***,** $(-\infty : q_x] \times [q_y : q'_y]$ **)** *Input:* A priority search tree and a range, unbounded to the left *Output:* All points lying in the range

- 1. Search with q_y and q'_y in T // BST on y-coordinate select y range Let v_{split}^{\bullet} be the node where the two search paths split (split node)
- 2. for each node ν on the search path of q_y or q'_y // points along the paths
- 3. if $p(v) \in (-\infty : q_x] \times [q_y : q'_y]$ then Report p(v) // starting in tree root
- 4. for each node v on the path of q_y in the left subtree of v_{split} // inner trees

+ + + + + + (110 / 70)

- 5. if the search path goes left at ν
- 6. ReportInSubtree(r(v), q_x) // report right subtree \blacktriangle
- 7. for each node ν on the path of q'_{y} in right subtree of ν_{split}
- 8. if the search path goes right at ν + + + + + + +
 - ReportInSubtree(l(v), q_x) // rep. left subtree

Query Priority Search Tree

QueryPrioritySearchTree(*T***,** $(-\infty : q_x] \times [q_y : q'_y]$ **)** *Input:* A priority search tree and a range, unbounded to the left *Output:* All points lying in the range

- 1. Search with q_y and q'_y in T // BST on y-coordinate select y range Let v_{split}^{\bullet} be the node where the two search paths split (split node)
- 2. for each node ν on the search path of q_y or q'_y // points along the paths
- 3. if $p(v) \in (-\infty : q_x] \times [q_y : q'_y]$ then Report p(v) // starting in tree root
- 4. for each node v on the path of q_y in the left subtree of v_{split} // inner trees
- 5. if the search path goes left at ν
- 6. ReportInSubtree(r(v), q_x) // report right subtree \blacktriangle
- 7. for each node ν on the path of q'_{y} in right subtree of ν_{split}
- 8. if the search path goes right at ν + + +
 - ReportInSubtree(l(v), q_x) // rep. left subtree

Query Priority Search Tree

QueryPrioritySearchTree(*T***,** $(-\infty : q_x] \times [q_y : q'_y]$ **)** *Input:* A priority search tree and a range, unbounded to the left *Output:* All points lying in the range

- 1. Search with q_y and q'_y in T // BST on y-coordinate select y range Let v_{split}^{\bullet} be the node where the two search paths split (split node)
- 2. for each node ν on the search path of q_y or q'_y // points along the paths
- 3. if $p(v) \in (-\infty : q_x] \times [q_y : q'_y]$ then Report p(v) // starting in tree root
- 4. for each node v on the path of q_y in the left subtree of v_{split} // inner trees
- 5. if the search path goes left at ν
- 6. ReportInSubtree(r(v), q_x) // report right subtree \blacktriangle
- 7. for each node ν on the path of q'_{y} in right subtree of ν_{split}
- 8. if the search path goes right at ν + + + + +
 - ReportInSubtree(l(v), q_x) // rep. left subtree

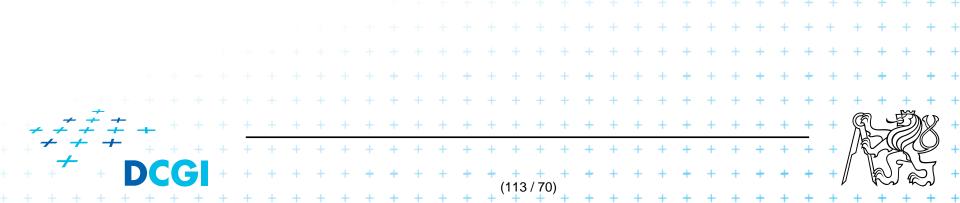
Reporting of subtrees between the *y***-paths**

ReportInSubtree(v, q_x)

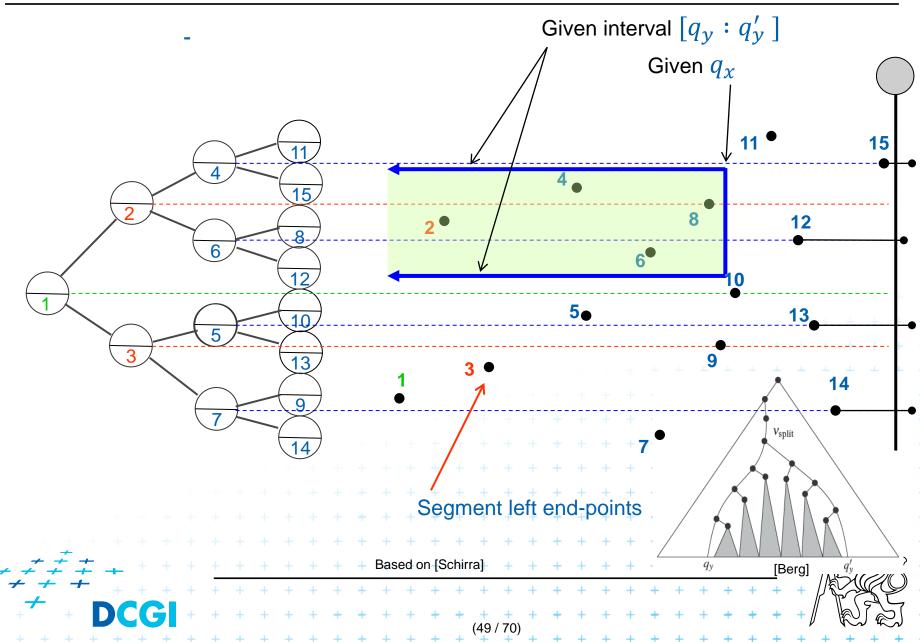
Input: The root v of a subtree of a priority search tree and a value q_x . *Output:* All points p in the subtree with x-coordinate at most q_x .

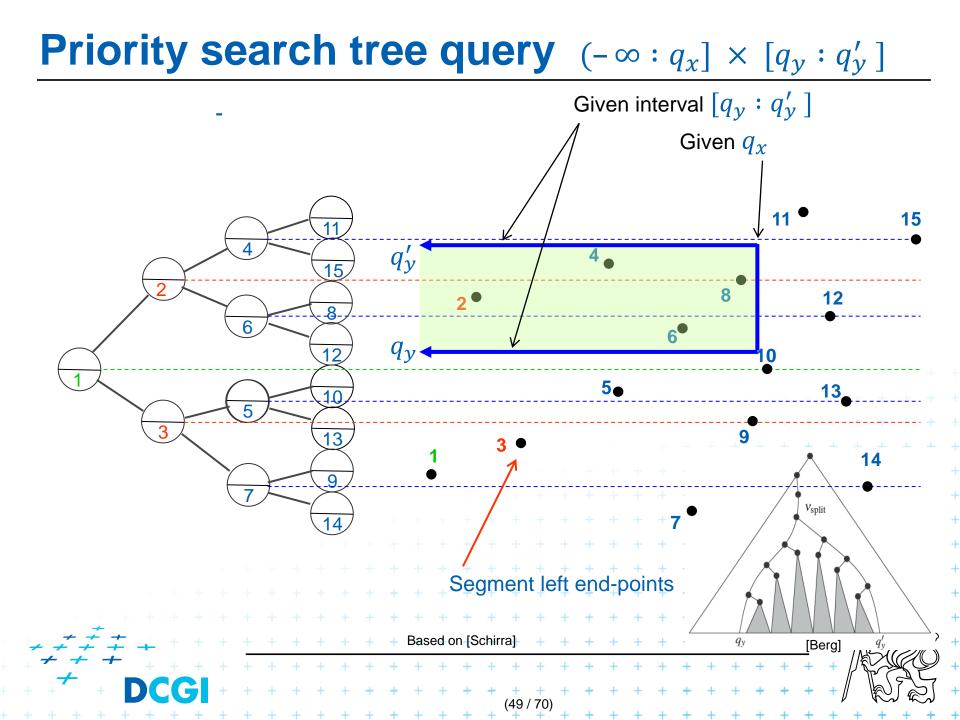
- 1. if $x(p(v)) \le q_x$ $//x \in (-\infty : q_x]$ -- heap condition
- 2. Report point p(v).
- 3. if ν is not a leaf
- 4. ReportInSubtree($l(v), q_x$)
- 5. ReportInSubtree($r(v), q_x$)

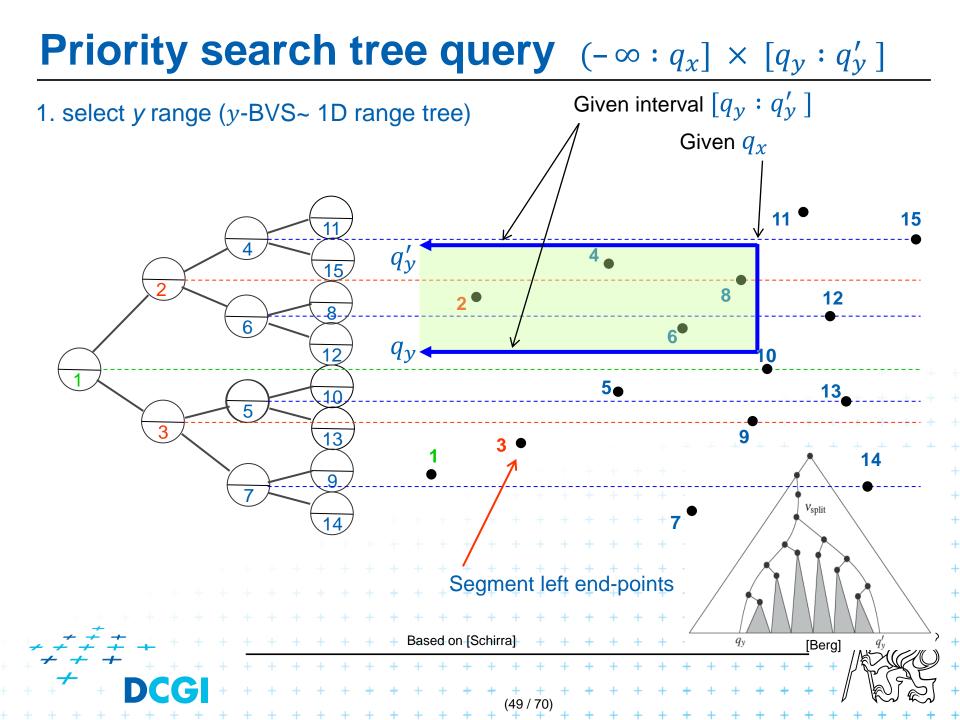
Search according to x in the heap

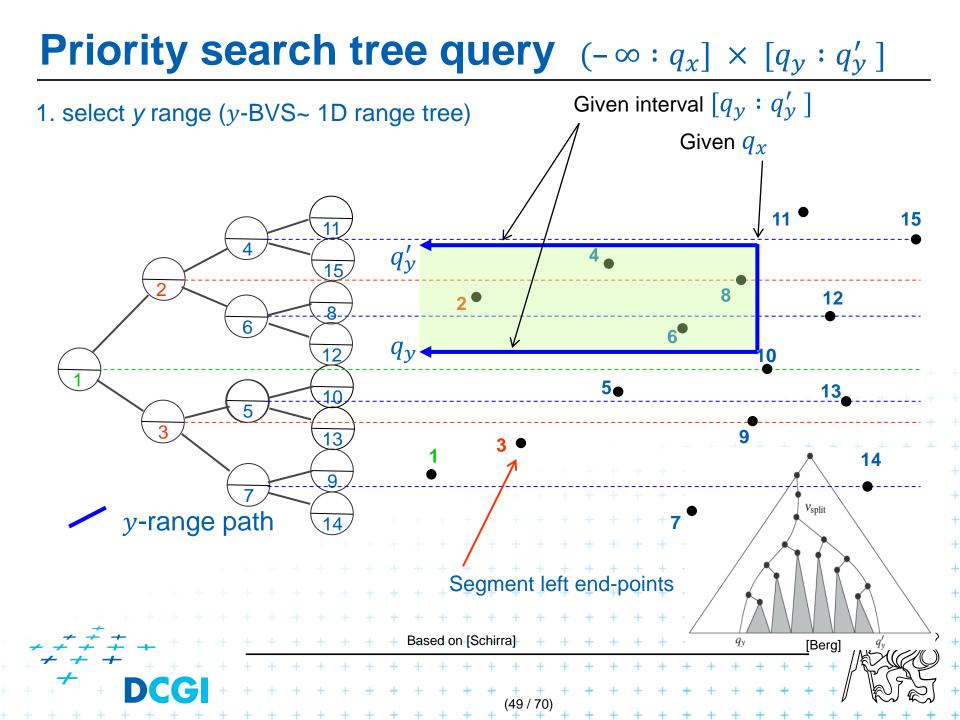


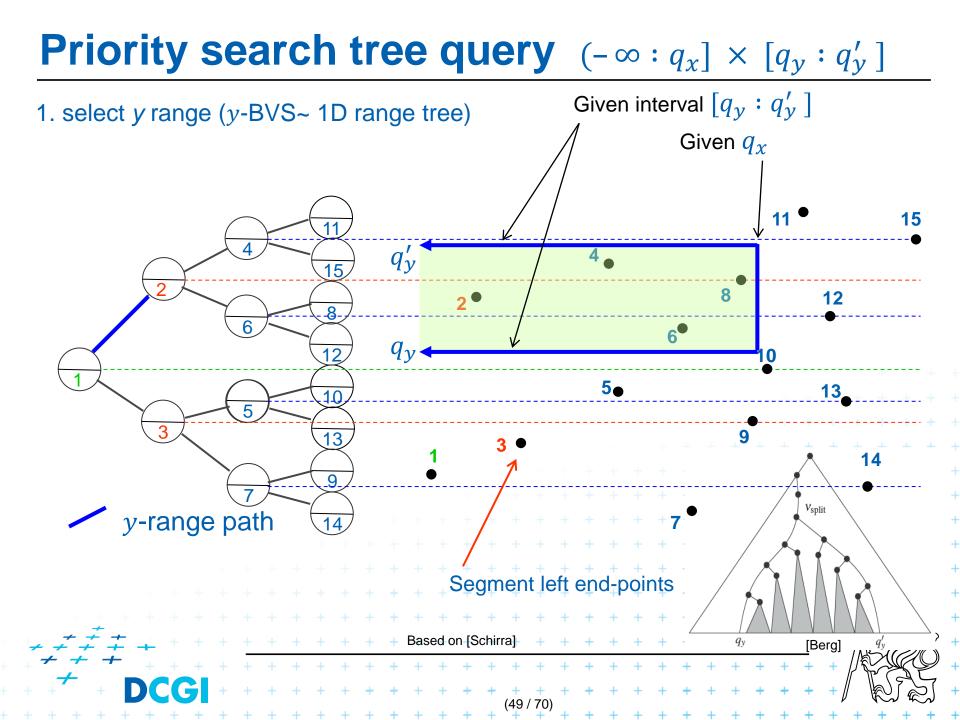
Priority search tree query $(-\infty : q_x] \times [q_y : q'_y]$



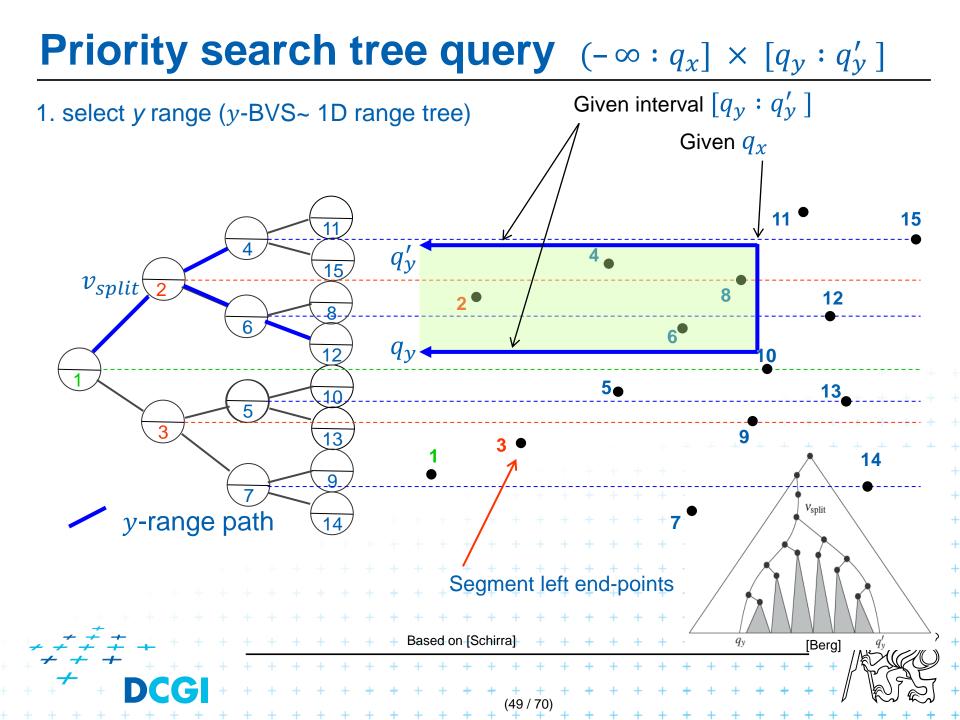


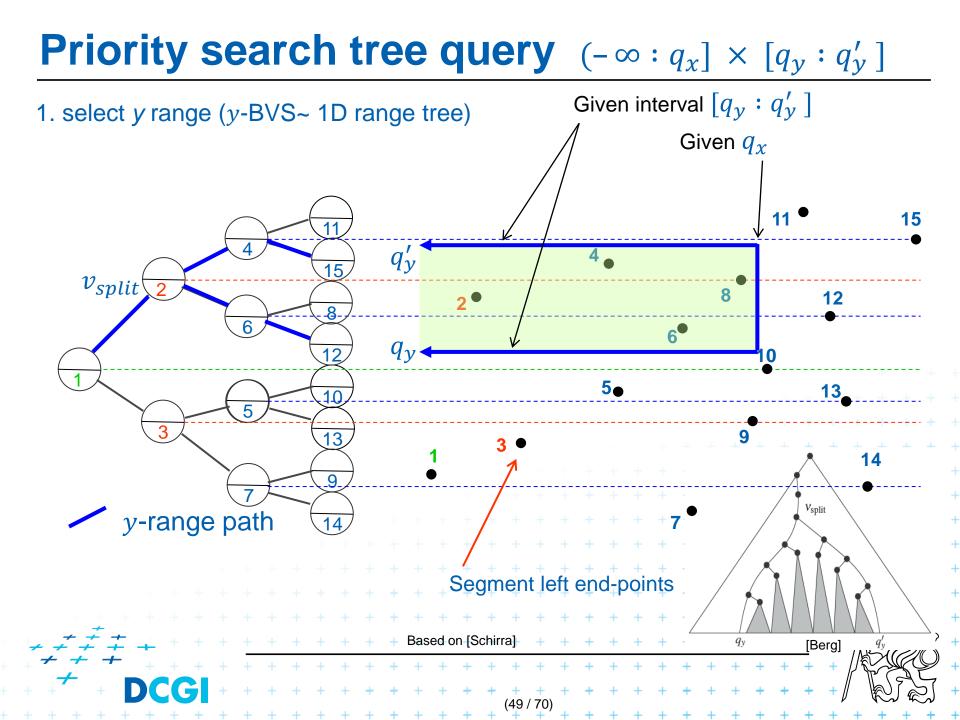


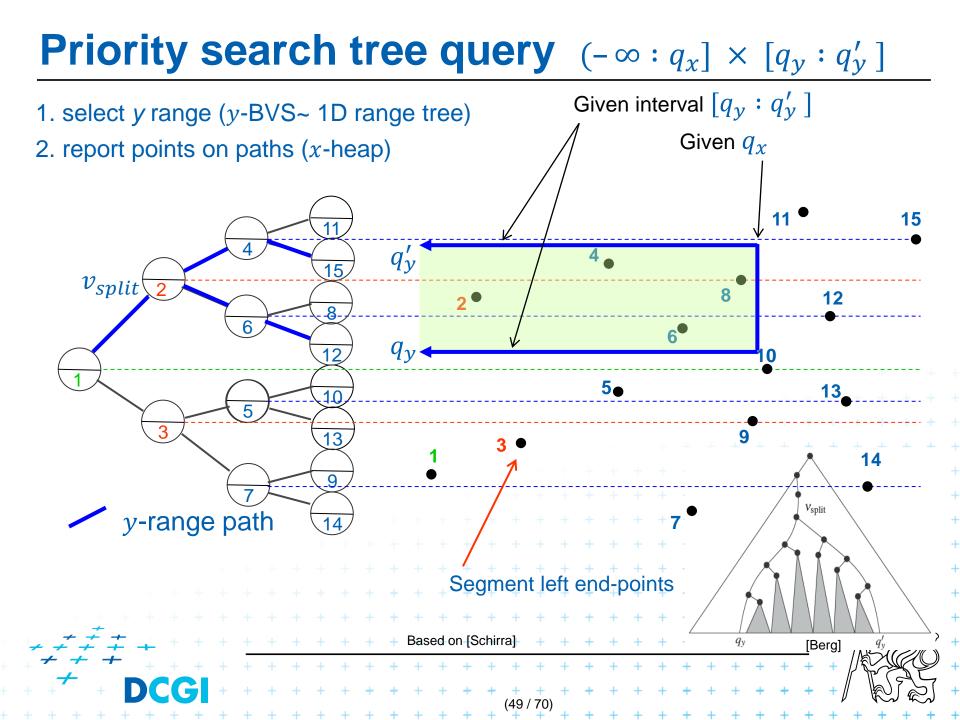


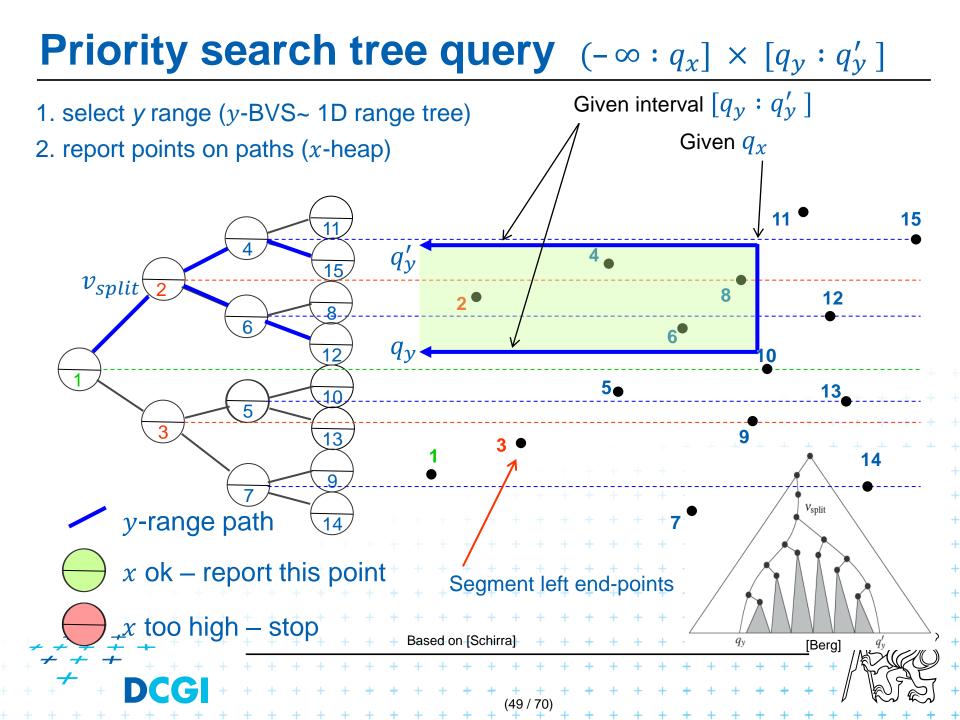


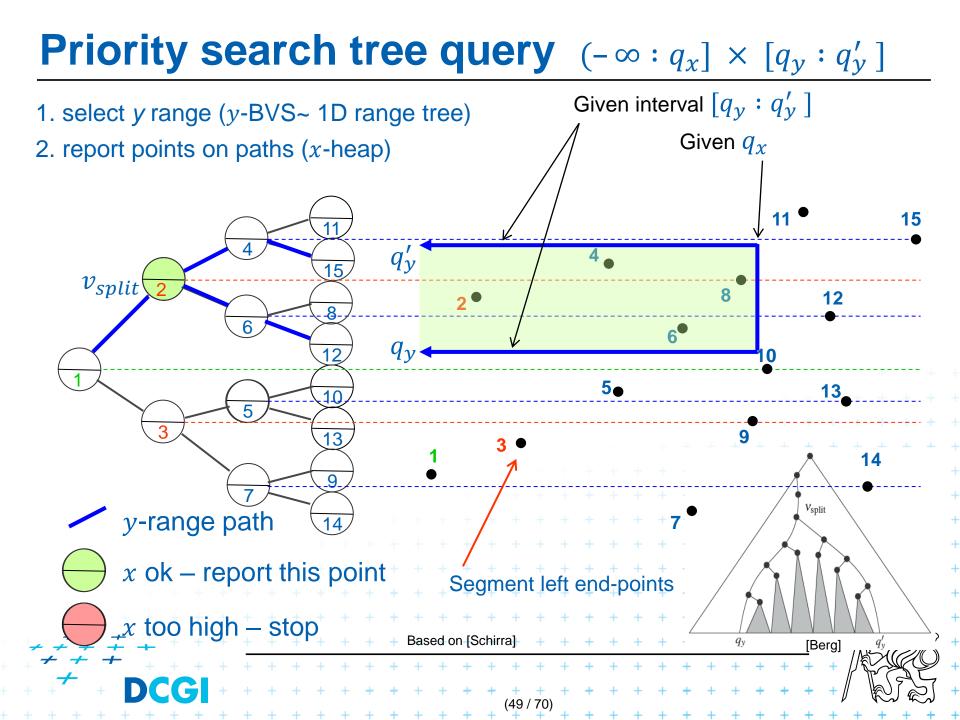


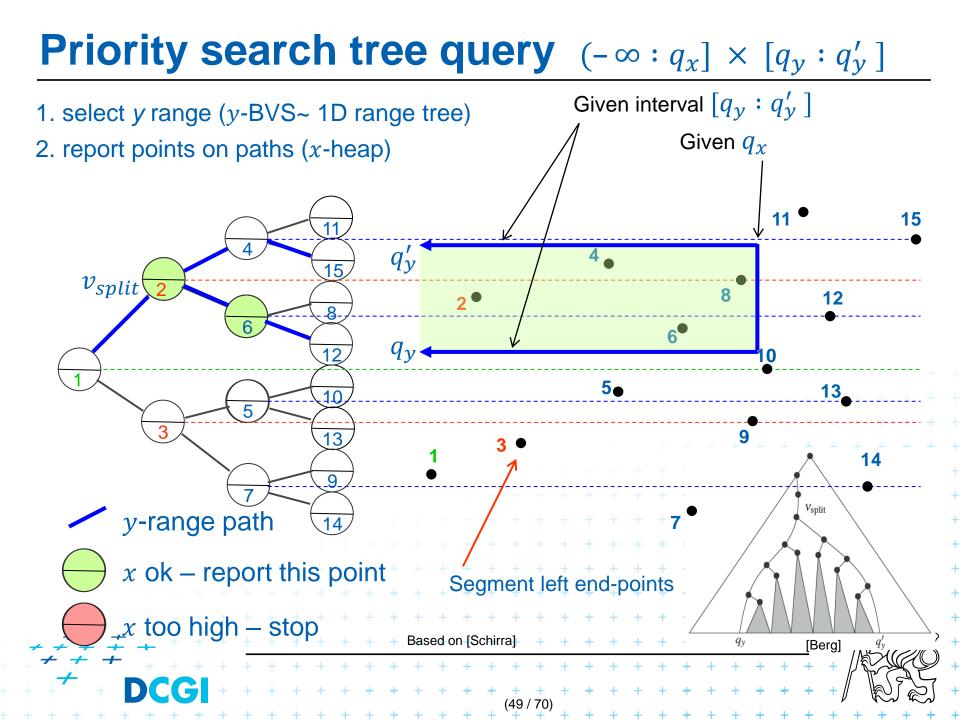


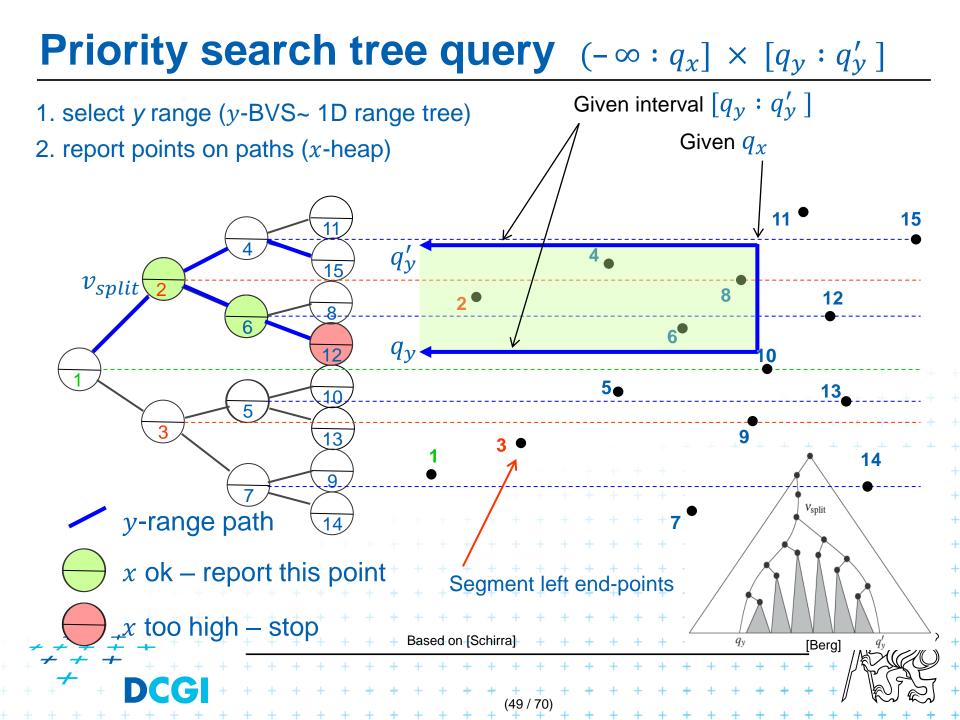


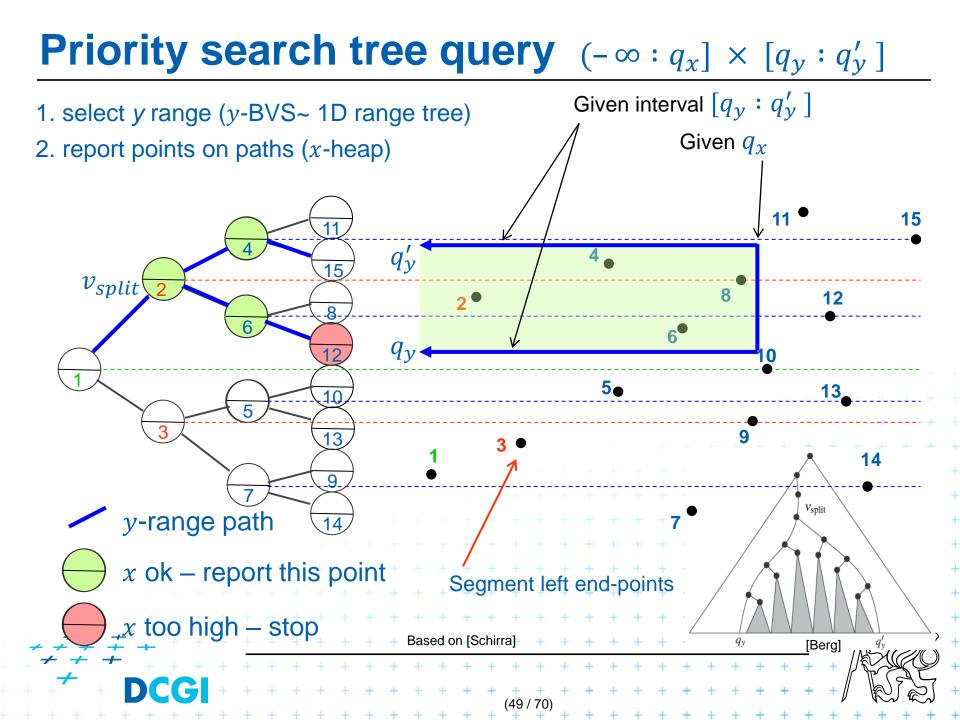


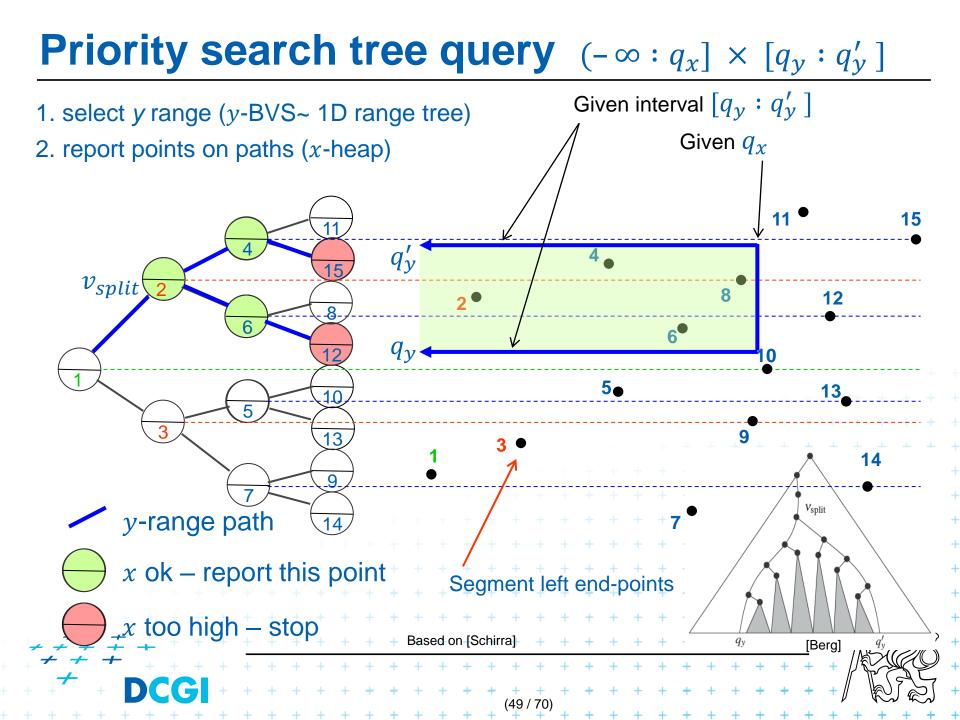


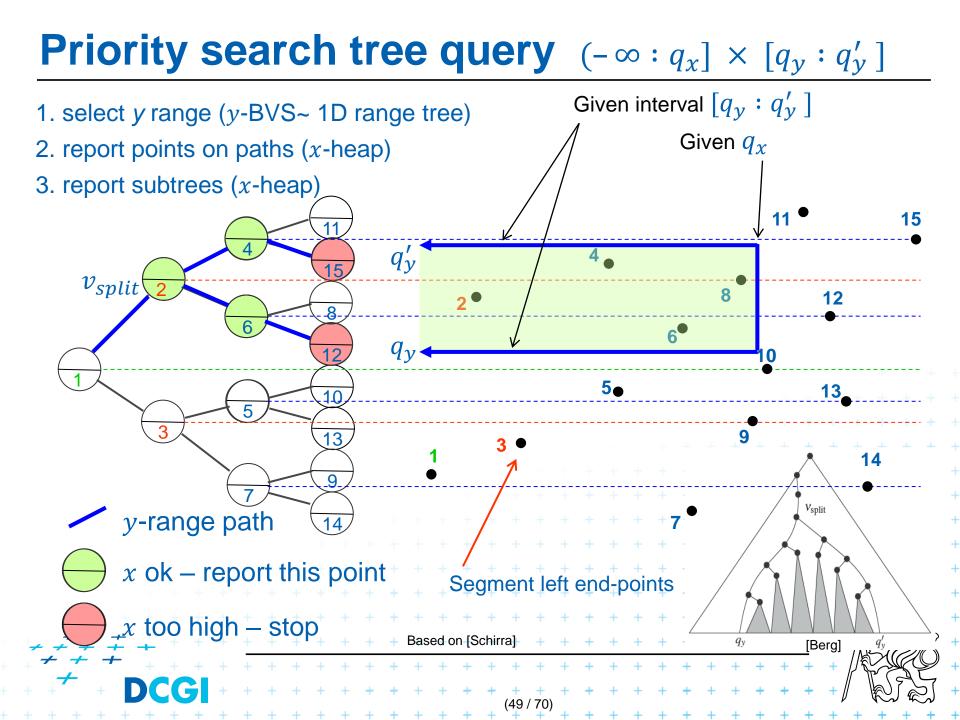


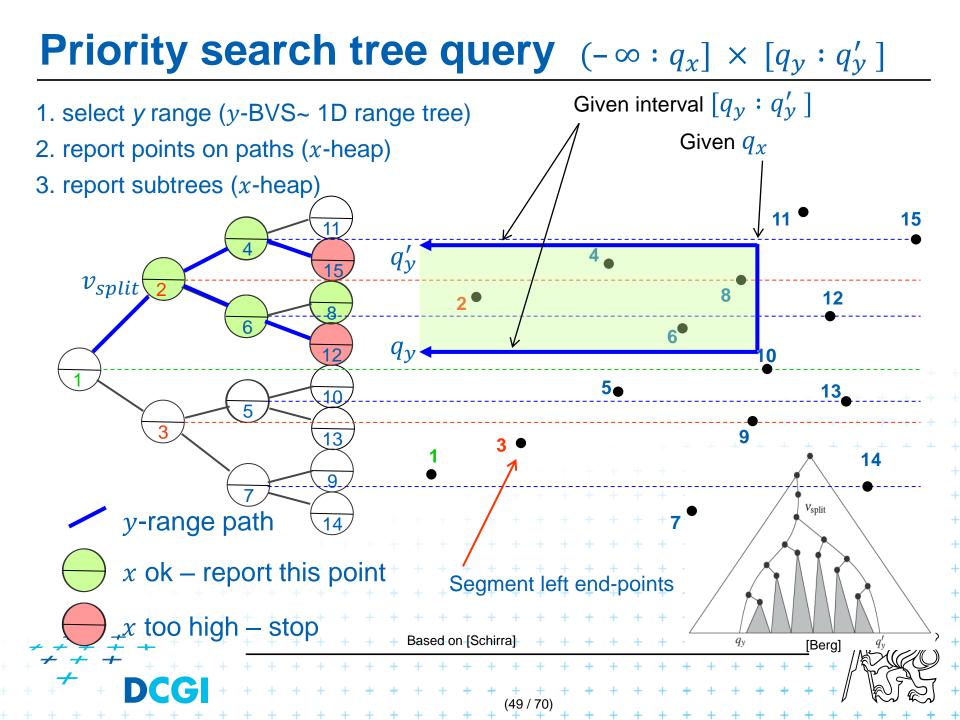












Priority search tree complexity

For set of *n* points in the plane

- Build $O(n \log n)$
- Storage O(n)
- Query $O(k + \log n)$
 - points in query range $(-\infty:q_x] \times [q_y:q_y']$
 - k is number of reported points

• Use Priority search tree as associated data structure for interval trees for storage of set M(one for M_L , one for M_R)

(50 / 70)

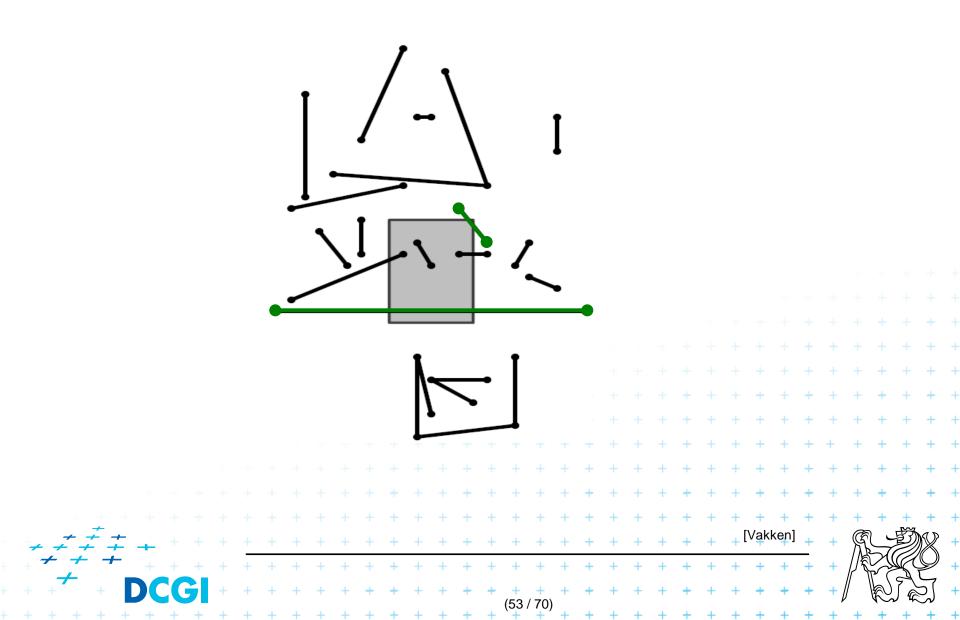
Talk overview

2D

- 1. Windowing of axis parallel line segments in 2D
 - 3 variants of *interval tree* IT in x-direction
 - Differ in storage of segment end points M_L and M_R
- 1D i. Line stabbing (standard *IT* with sorted lists) lecture 9 intersections
 - ii. Line segment stabbing (*IT* with *range trees*)
 - iii. Line segment stabbing (IT with priority search trees)

| 2.(| 2. Windowing of line segments in general position | | | | | | | | | | | | | | | | ++ | | | | | | | | | | | | | | | | | | |
|-------|--|------------|----|---|---|----|---|----|---|---|---|---|---|---|---|---|-----|-------|---|-----|---|---|---|---|---|---|-----|----|------|----|------------|----|-----|----|---|
| 2D | - | Se | эg | m | e | nt | t | re | e | + | B | S | T | | | | | | | | | | | | | | ++ | ++ | ++ | + | ++ | + | + | ++ | + |
| | | | | | | | | | | | | | | | | | | | | | | | | + | + | + | + | + | + | + | + | + | + | + | + |
| | | | | | | | | | | | | | | | | | | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| | | | | | | | | | | | | | | | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| | | | | | | | | | | | | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| | + - | | | | | | | | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| + + | $\stackrel{\neq}{\neq}$ $\stackrel{\pm}{\downarrow}$ | - <u>-</u> | | | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | Ŕ | | Ð | | + |
| + + + | - + | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | K | P | + |
| + + + | + | D | :C | | + | + | + | + | + | + | + | + | + | + | + | + | (51 | / 70) | + | +++ | + | + | + | + | + | + | +++ | + | ++++ | +/ | // \/
+ | K) | 5 m | 25 | + |

2. Windowing of line segments in general position



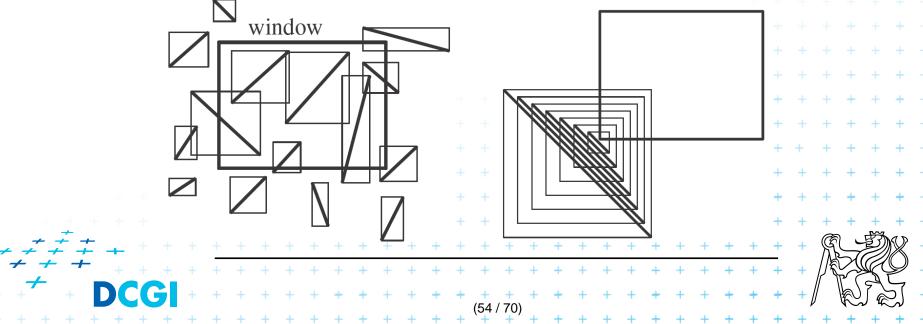
Windowing of arbitrary oriented line segments

Two cases of intersection

a,b) Endpoint inside the query window => range treec) Segment intersects side of query window => ???

Intersection with BBOX (segment bounding box)?

- Intersection with 4n sides of the segment BBOX?
- But segments may not intersect the window -> query y



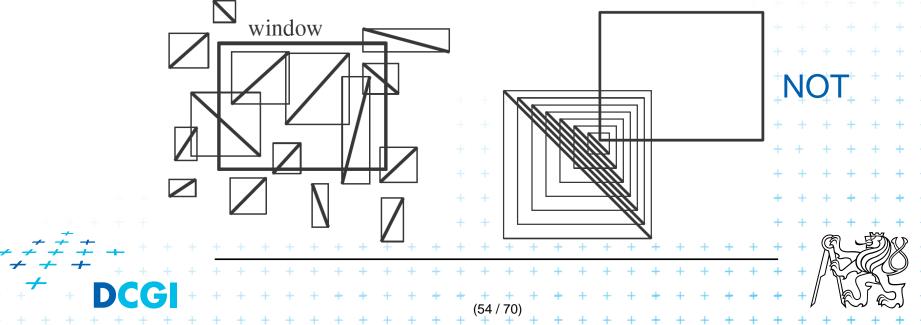
Windowing of arbitrary oriented line segments

Two cases of intersection

a,b) Endpoint inside the query window => range treec) Segment intersects side of query window => ???

Intersection with BBOX (segment bounding box)?

- Intersection with 4n sides of the segment BBOX?
- But segments may not intersect the window -> query y



Talk overview

2D

- 1. Windowing of axis parallel line segments in 2D (variants of *interval tree IT*)
- 1D i. Line stabbing (IT with sorted lists)
 - ii. Line segment stabbing (*IT* with *range trees*)
 - iii. Line segment stabbing (*IT* with *priority search trees*)

2. Windowing of line segments in general position

| 2D | - segment tree | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|-------|----------------|----------|---|----|---|---|--|---|---|---|----|----|---|----------|---|---|------------|------------|----|---|----|----|-----|---|------------------|-----|---|---|---|-----|------|---------------|----|----|---|
| | Note: | | | | | | segment = interval + + + + + + + + + + + + + + + + + + + | | | | | | | | | | | | | | | + | + | + | + | | | | | | | | | | |
| | | | | 0. | | | | | | | | | | | | | en e | | nt | | rv | ir | nte | r | | alc | + | + | + | + | + | + | + | + | + |
| | | | | | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 51 | 31 | 9 | U | | | + | I | + | 4 | y | 4 | 4 | 4 | v ₊ c | | + | + | + | + | + | + | + | + | + |
| | | | | | | | | | | | | | | | | | | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| | | | | | | | | | | | | | | | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| | | | | | | | | | | | | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| | | | | | | | | | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| + + + | <i>+</i> + | <u>_</u> | | | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | Ŕ | | Ŋ | NV | + |
| + + | - | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | //₹ | \mathcal{N} | K. | Q | + |
| + + | + | | C |) | + | + | + | + | + | + | + | + | + | + | + | + | +
(55 / | +
/ 70) | + | + | + | + | + | + | + | + | + | + | + | + ļ | // \ | R | | 2 | + |

Exploits locus approach

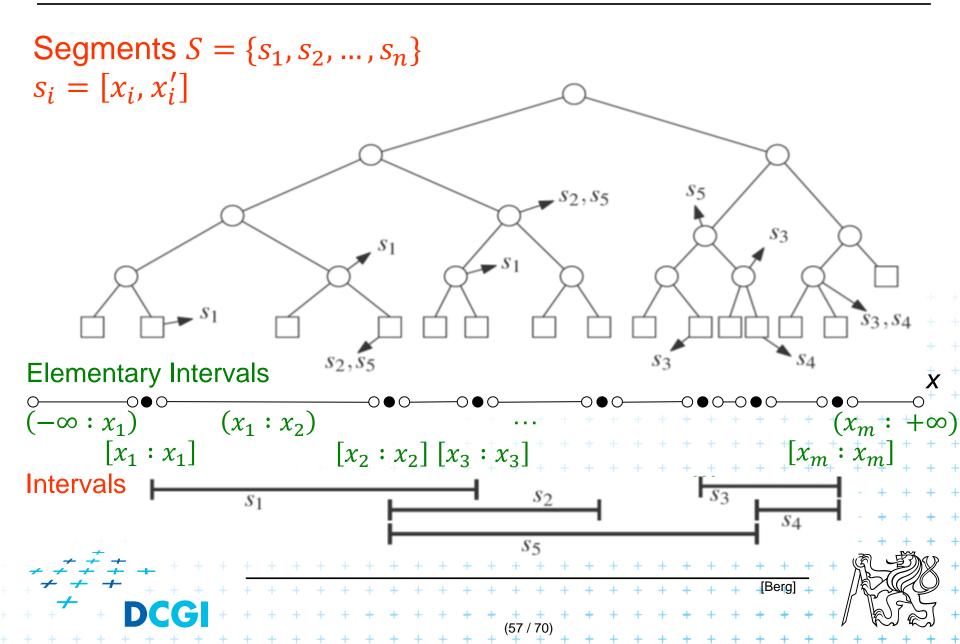
- Partition parameter space into regions of same answer
- Localization of such region = knowing the answer
- For given set S of n intervals (segments) on real line
 - Finds *m* elementary intervals (induced by interval end-points)

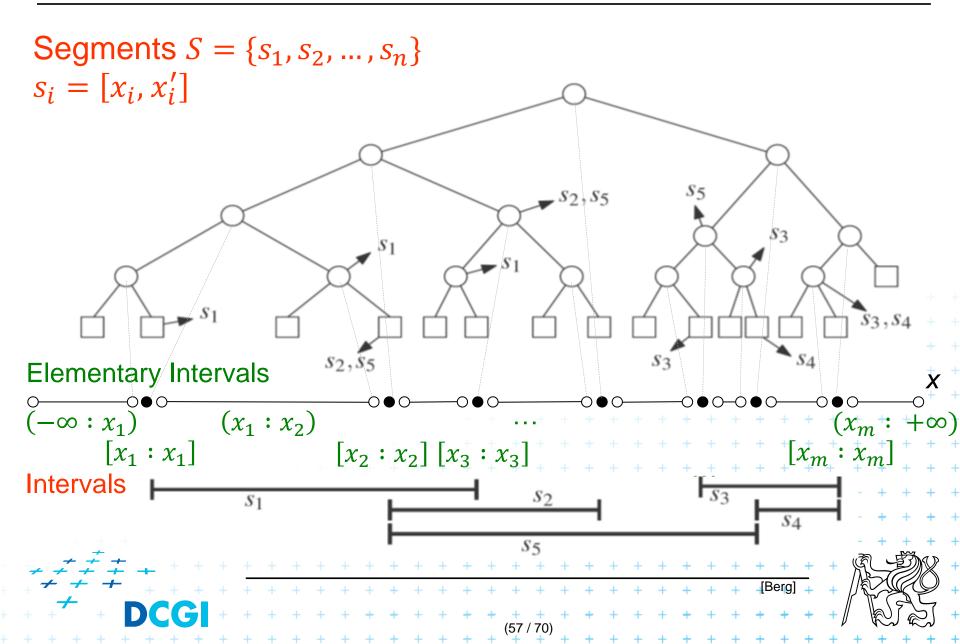
 - Stores line segments s_i with the elementary intervals

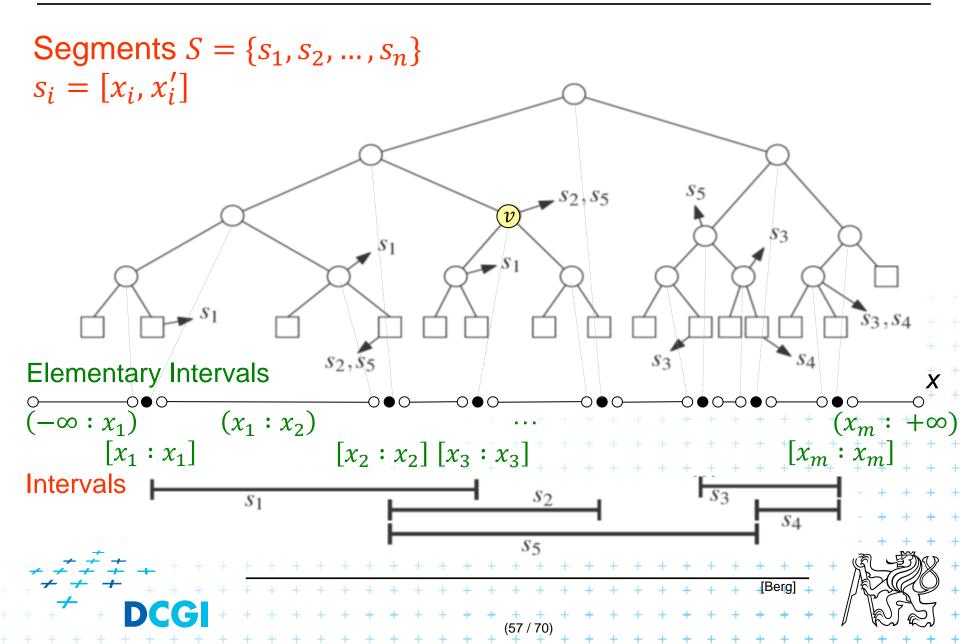
Plain is partitioned into vertical slabs

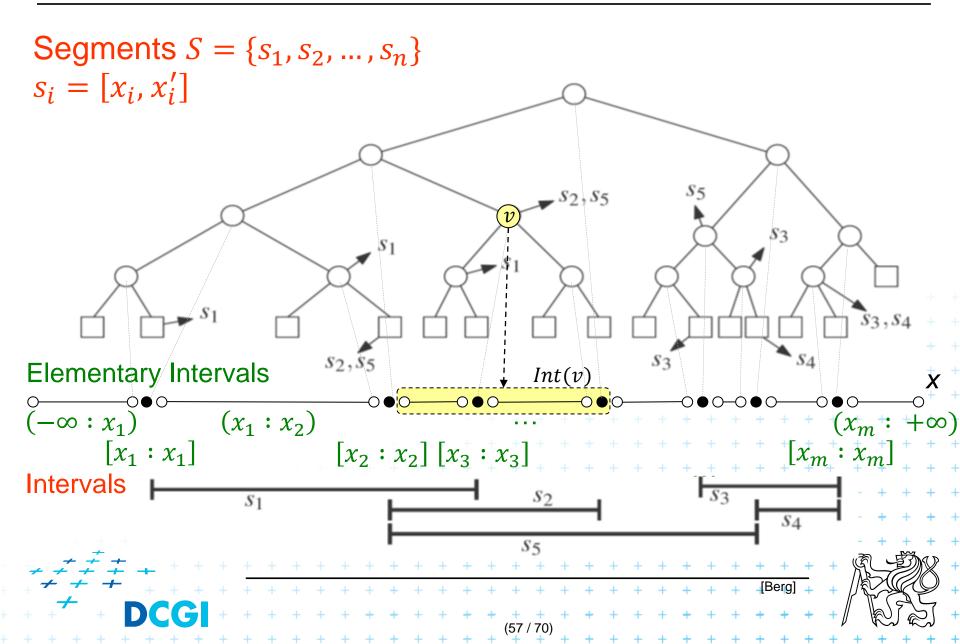
(56 / 70)

- Reports the segments s_i containing query point q_x .

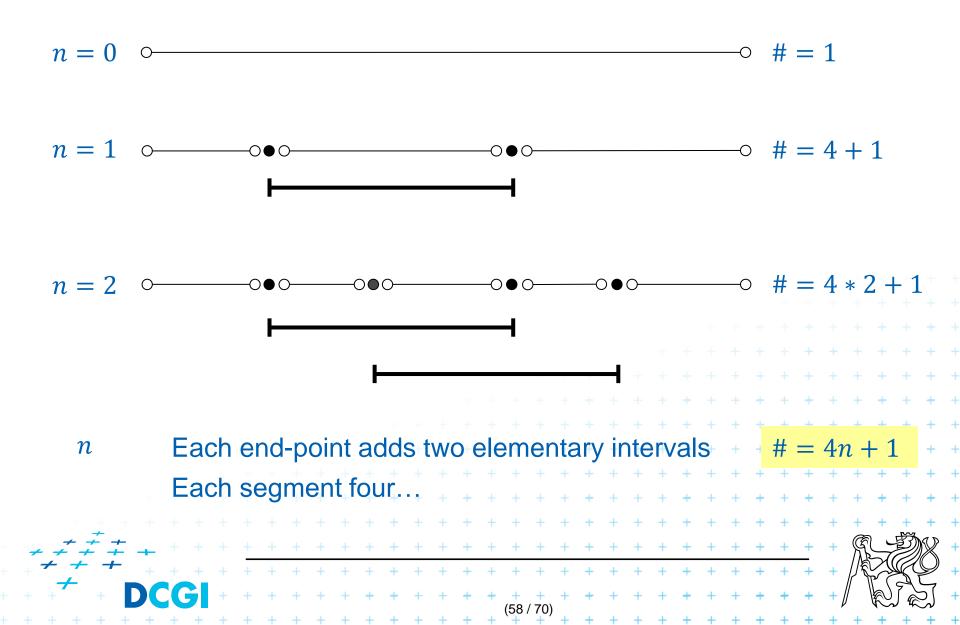








Number of elementary intervals for *n* segments



Segment tree

- Skeleton is a balanced binary tree *T*
- Leaves ~ elementary intervals
- Internal nodes v
 - ~ union of elementary intervals of its children
 - Store: 1. interval Int(v) = union of elementary intervals

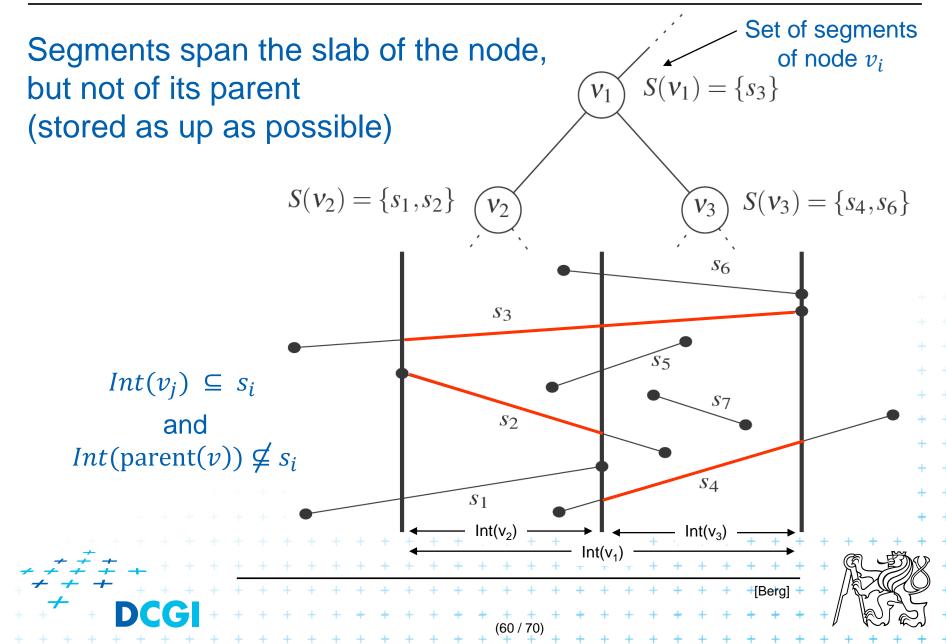
of its children segments s_i

2. canonical set S(v) of segments $[x_i : x_i'] \in S$

- Holds $Int(v) \subseteq [x_i : x_i']$ and $Int(parent(v)] \notin [x_i : x_i']_+$ (node interval is not larger than the segment)
- Segments $[x_i : x_i']$ are stored as high as possible, such

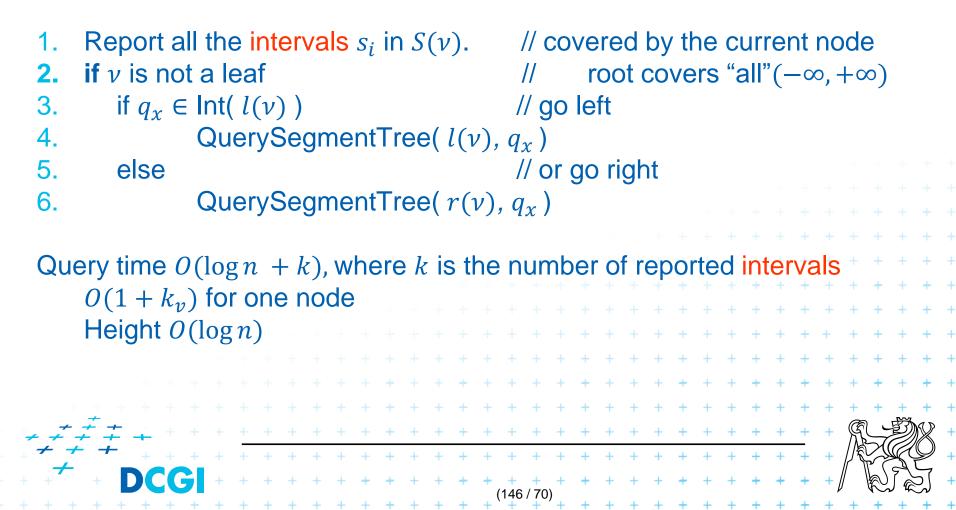
 \downarrow that Int(v) is completely contained in the segment

Segments span the slab



Query segment tree – stabbing query (1D)

QuerySegmentTree(v, q_x) Input: The root of a (subtree of a) segment tree and a query point q_x Output: All intervals (=segments) in the tree containing q_x .



Segment tree construction

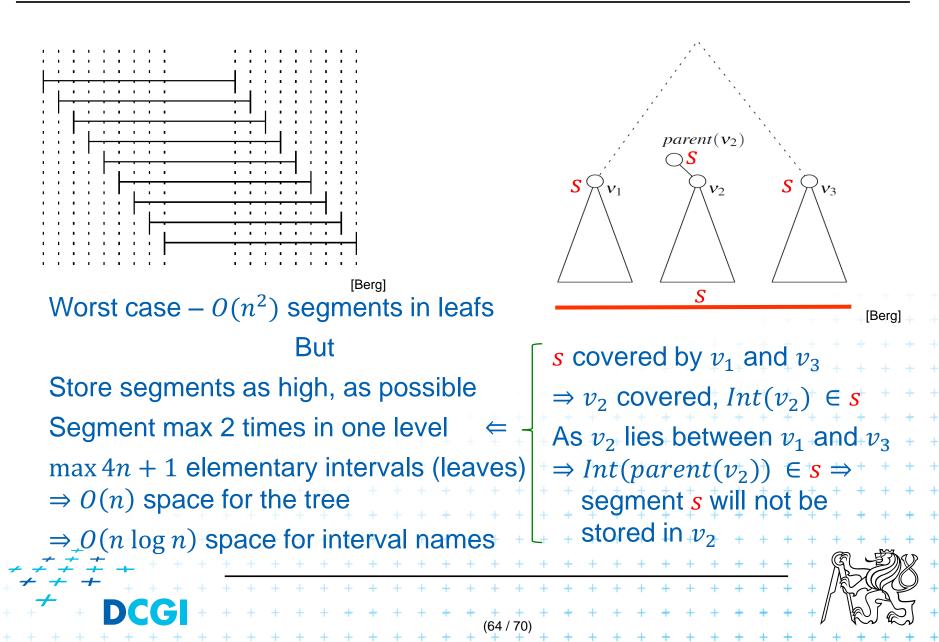
ConstructSegmentTree(S) Input: Set of intervals (segments) S Output: segment tree

- 1. Sort endpoints of segments in S, get elementary intervals ... $O(n \log n)$
- 2. Construct a binary search tree *T* on elementary intervals $\dots O(n)$ (bottom up) and determine the interval Int(v) it represents
- 3. Compute the canonical subsets for the nodes (lists of their segments s_i):
- 4. v = root(T)
- 5. for all segments $s_i = [x_i : x'_i] \in S$
- 6. InsertSegmentTree($v, [x_i : x'_i]$)

Segment tree construction – interval insertion

InsertSegmentTree(v, [x : x']) *Input:* The root of (a sub-tree of) a segment tree and an interval. Output: The interval will be stored in the sub-tree. 1. if $Int(v) \subseteq [x : x']$ // Int(v) contains $s_i = [x : x']$ store $s_i = [x : x']$ at v2. else if $Int(l(v)) \cap [x : x'] \neq \emptyset$ // part of s_i to the left 3. InsertSegmentTree(l(v), [x : x']) 4. if $Int(r(v)) \cap [x : x'] \neq \emptyset$ // part of s_i to the right 5. InsertSegmentTree(r(v), [x : x']) 6. One interval is stored at most twice in one level => Single interval insert $O(\log n)$, insert n intervals $O(2n \log n)_{+} + +$ Construction total $O(n \log n)$ + Storage $O(n \log n)$ + + + + + + + + + + + + + Tree height $O(\log n)$, name stored max 2x in one level, + + +

Space complexity - notes



Segment tree complexity

A segment tree for set *S* of *n* intervals in the plane,

- Build $O(n \log n)$
- Storage $O(n \log n)$
- Query $O(k + \log n)$
 - Report all intervals that contain a query point

+ + + + + + +

(65 / 70)

-k is number of reported intervals

Segment tree versus Interval tree

Segment tree

- $O(n \log n)$ storage versus O(n) of Interval tree
- But returns exactly the intersected segments s_i , interval tree must search the lists M_L and/or M_R

Good for

- 1. extensions (allows different structuring of intervals)
- 2. stabbing counting queries
 - store number of intersected intervals in nodes
 - -O(n) storage and $O(\log n)$ query time = optimal
- 3. higher dimensions multilevel segment trees

(Interval and priority search trees do not exist in ^dims)

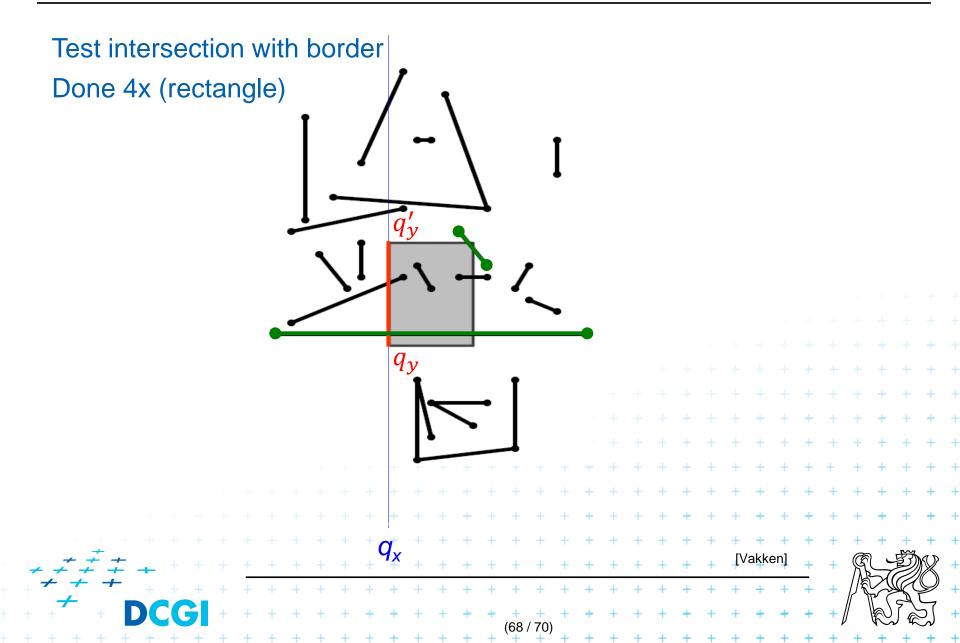
Talk overview

2D

- 1. Windowing of axis parallel line segments in 2D (variants of *interval tree IT*)
- 1D i. Line stabbing (standard *IT* with sorted lists)
 - ii. Line segment stabbing (*IT* with *range trees*)
 - iii. Line segment stabbing (*IT* with priority search trees)
- 2. Windowing of line segments in general position
- 2D
 segment tree

 the windowing algorithm

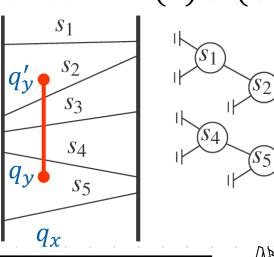
2. Windowing of line segments in general position



Windowing of arbitrary oriented line segments

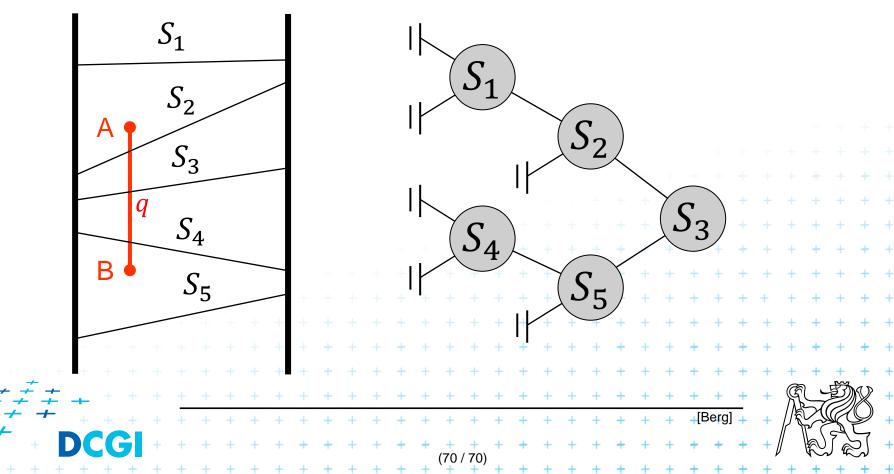
- Let S be a set of arbitrarily oriented line segments in the plane.
- Report the segments intersecting a vertical query segment $q := q_x \times [q_y : q'_y]$ window border
- Segment tree T on x intervals of segments in S
 - node v of T corresponds to vertical slab $Int(v) \times (-\infty : \infty)$
 - segments span the slab of the node, but not of its parent
 - segments do not intersect

=> segments in the slab (node) can be vertically ordered – BST

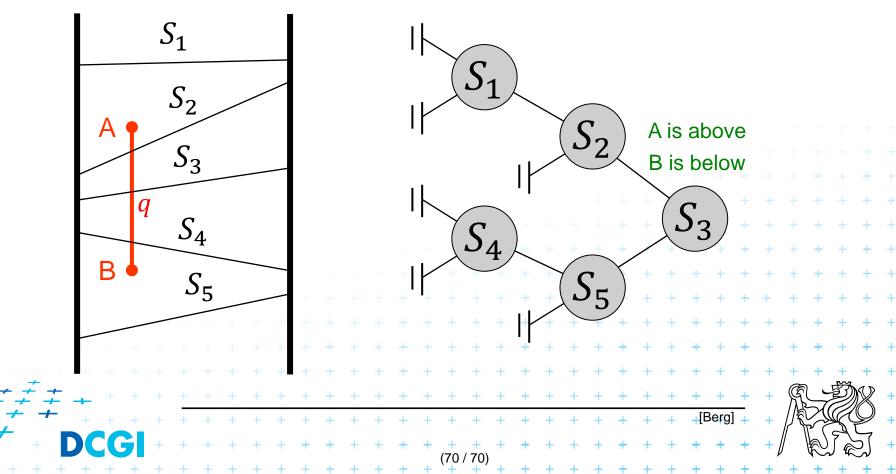


'S3

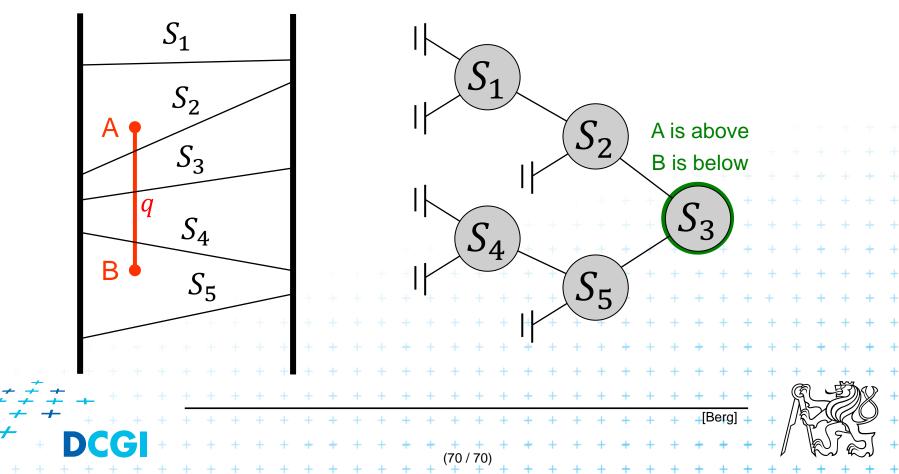
- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s



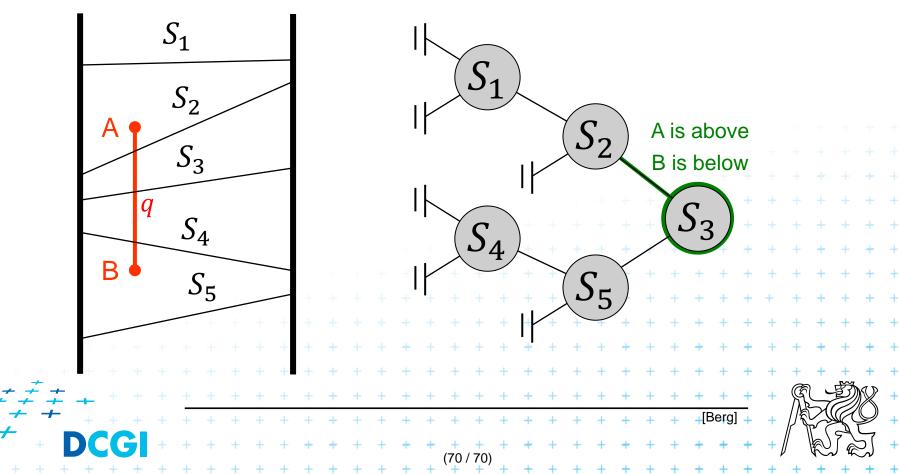
- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s



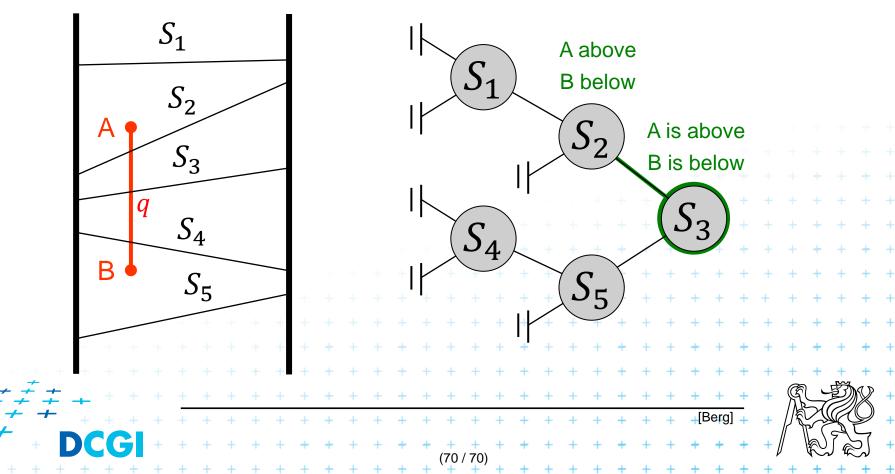
- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s



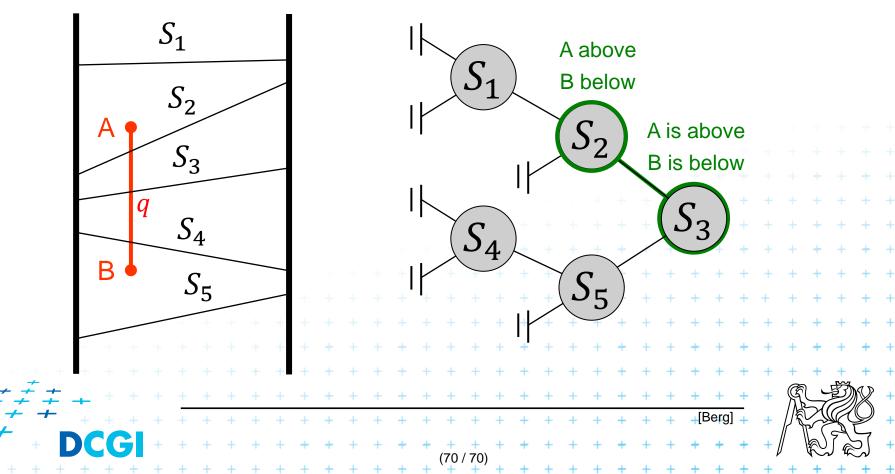
- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s



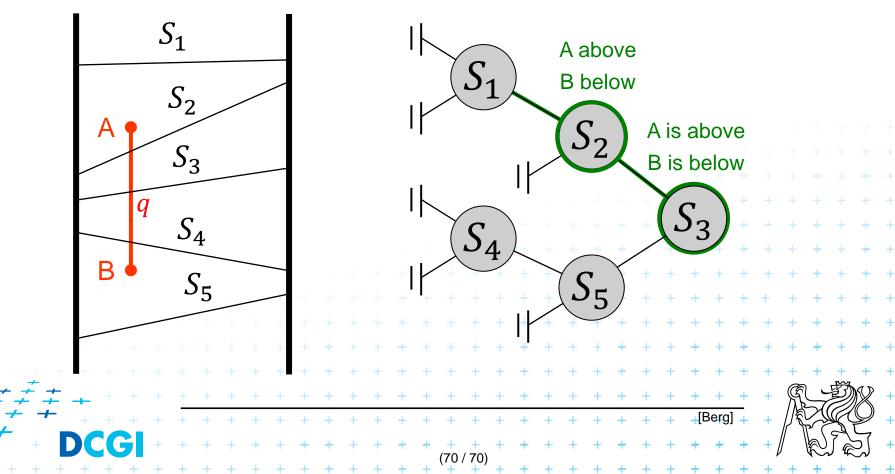
- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s



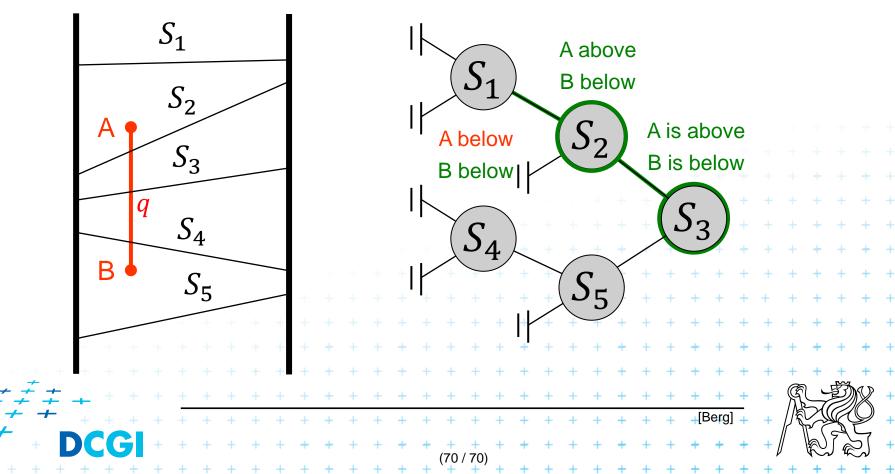
- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s



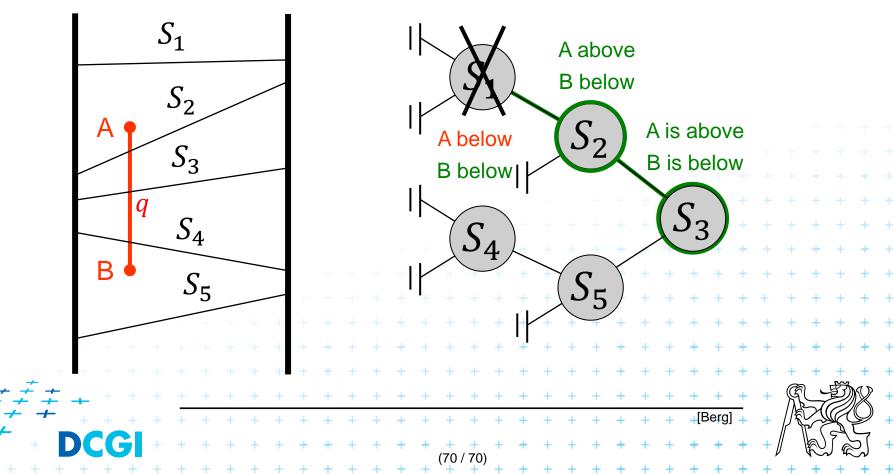
- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s



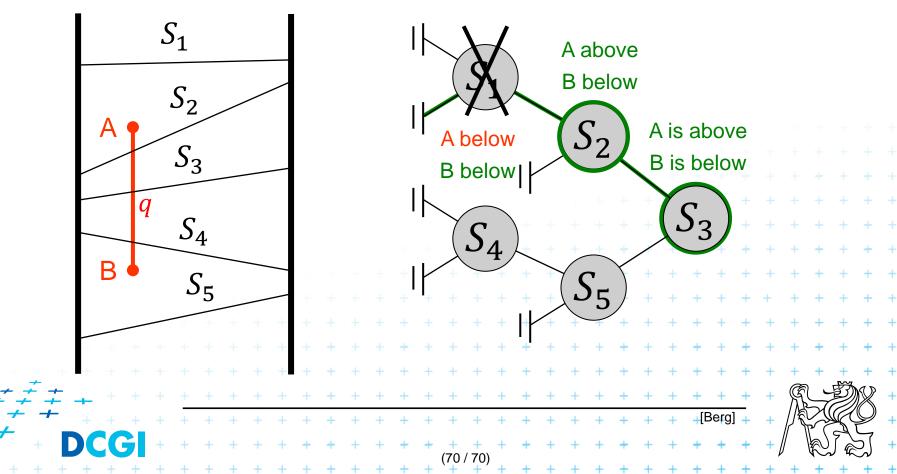
- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s



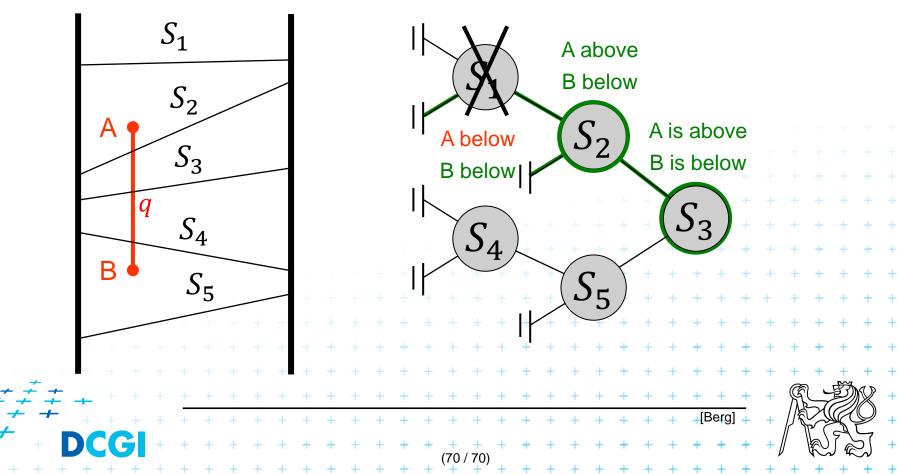
- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s



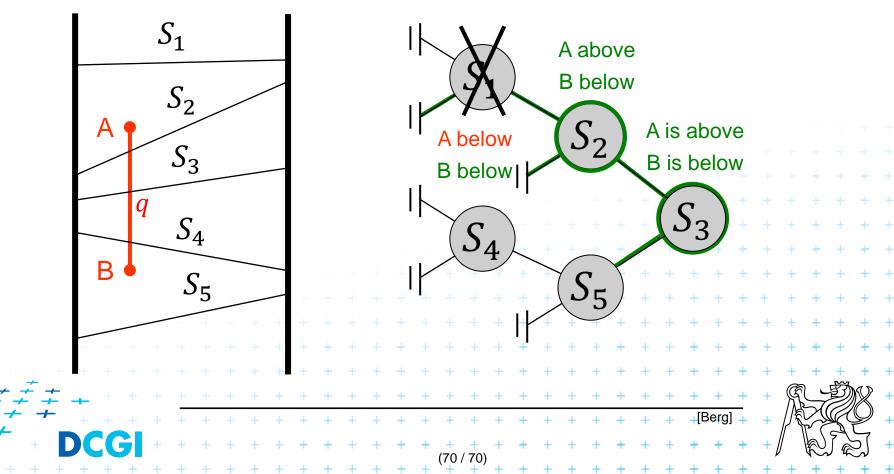
- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s



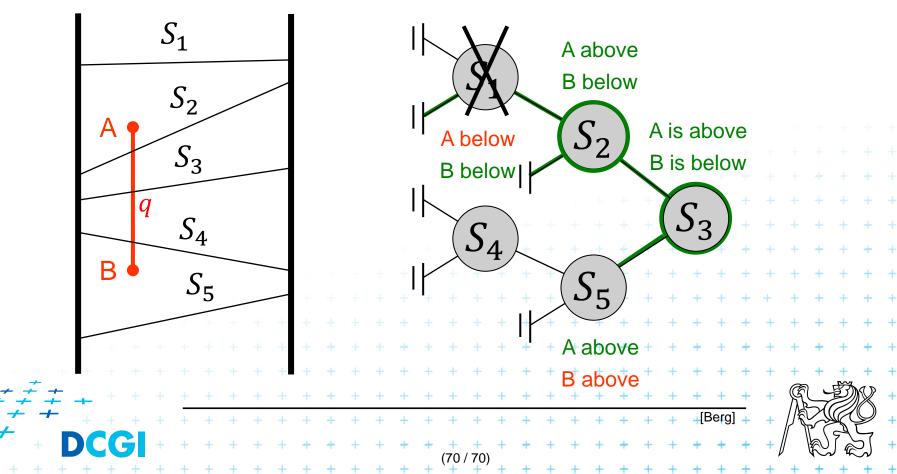
- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s



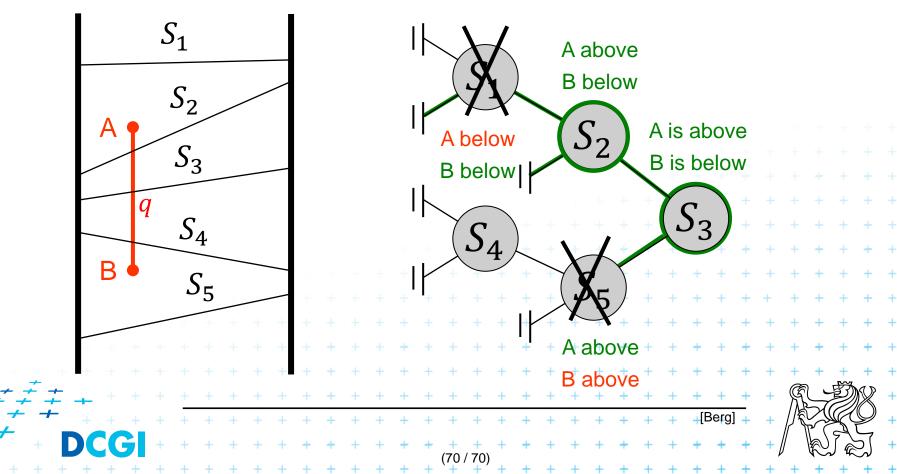
- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s



- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s



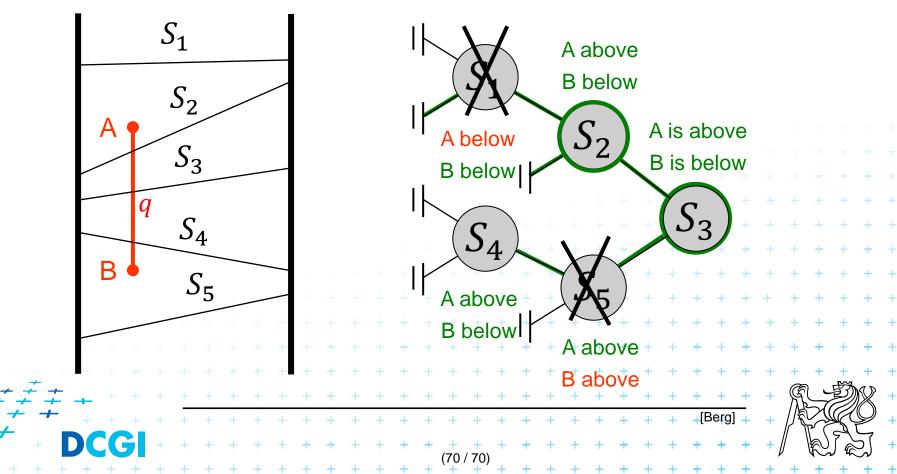
- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s



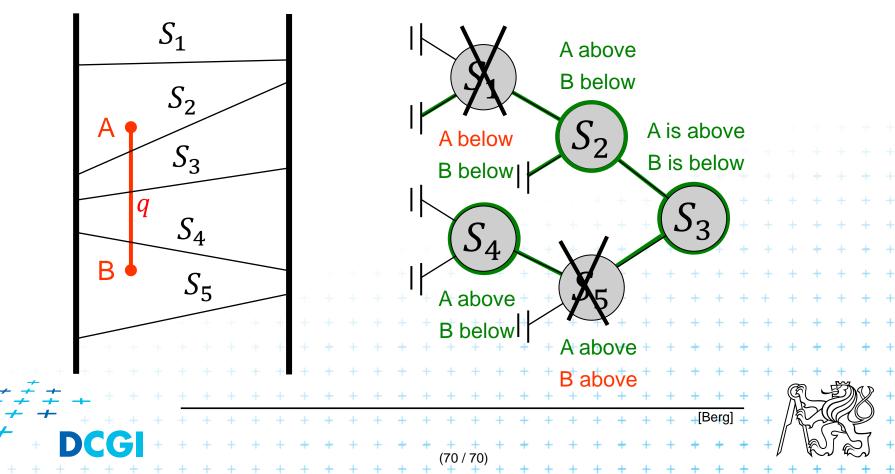
- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s



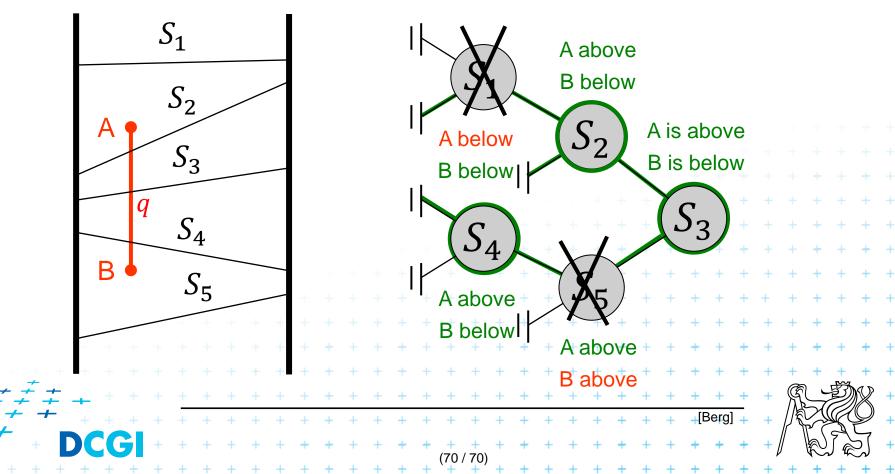
- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s



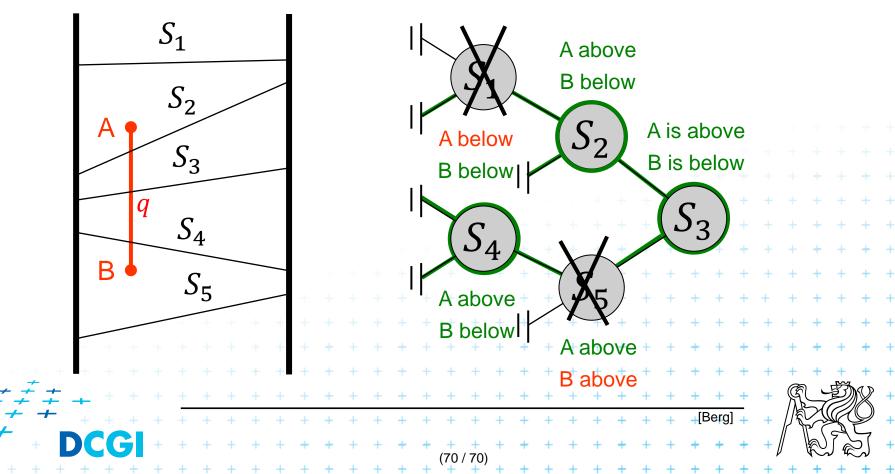
- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s



- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s



- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s



- Segments (in the slab) do not mutually intersect
 => segments can be vertically ordered and stored in BST
 - Each node v of the x segment tree (vertical slab)
 has an associated y-BST
 - BST T(v) of node v stores the canonical subset S(v) according to the vertical order
 - Intersected segments can be found by searching T(v) in $O(k_v + \log n)$, k_v is the number of intersected segments

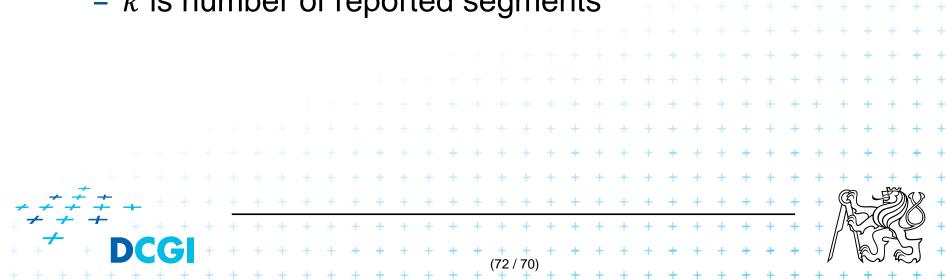
+ + + + + + +

(71 / 70)

Windowing of arbitrary oriented line segments complexity

Structure associated to node (BST) uses storage linear in the size of S(v)

- Build $O(n \log n)$
- Storage $O(n \log n)$
- $O(k + \log^2 n)$... $O(\log n)$ segm tree + $O(\log n)$ BST Query
 - Report all segments that contain a query point
 - k is number of reported segments



Windowing of line segments in 2D – conclusions

Construction: all interval tree variants $O(n \log n)$ 1. Axis parallel Search Memory

1D i. Line (sorted lists) $O(k + \log n) \quad O(n)$

| 2D | ii. Segment (<i>range trees</i>) $O(k + \log^2 n)$ | | | | | | | | | | | | | | | 2 | n) | | 0(| (n | lo | g | n) | | | + | | | | | |
|------------------------|---|-----|-----|-----|-----|----|-----|---|---|---|---|---|---|---|------|-------|-----|----|-----|----|----|-----|-----|-------------------|-------|--------------|----|-----|---------------|-------------------|----|
| | iii. Segment (<i>priority s. tr.</i>) $O(k + \log n)$ | | | | | | | | | | | | | | |) | | 0(| (n) |) | | | | + +
+ +
+ + | + + + | | | | | | |
| 2. In general position | | | | | | | | | | | | | | | + + | + | | | | | | | | | | | | | | | |
| 2D - | – s | eg | me | ən | t t | re | e · | ÷ | B | S | T | | | | (|)(| [k] | + | 10 |)g | 2 | n) | | 0 | (n | 2 1 0 | og | (n) |) | · ·
+ +
+ + | ++ |
| | | | | | | | | | | | | | | | | + | + | + | + | + | + | + - | | - + | + | + | + | + | + - | + + | + |
| | | | | | | | | | | | | | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + - | + + | + |
| + $+$ $+$ | | | | | | | | | | + | + | + | + | + | + | + | + | + | + | + | + | + · | + + | - + | + | + | + | + | + - | + + | + |
| + +
+ + + - | <i>‡</i> + | + | | + + | + | + | + | + | + | + | + | | | | | | | | + | | | | + + | - + | + | + | + | R | | ÐX | + |
| | ≁_ + | + | + - | + + | + | + | + | + | + | + | | | | | | | | | + | | | | + + | - + | + | . + | + | | \mathcal{M} | I P | + |
| + + + + | D | CG | | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | | + + | + | + | + | | NJ | è l' | + |
| + + + + | + + | - + | + - | + + | + | + | + | + | + | + | + | + | + | + | (73) | (70) | + | + | + | + | + | + - | | - + | + | + | + | + | + - | + + | + |

References

[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapters 3 and 9, <u>http://www.cs.uu.nl/geobook/</u>

[Mount] Mount, D.: Computational Geometry Lecture Notes for Fall 2016, University of Maryland, Lecture 33. http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf

[Rourke] Joseph O'Rourke: Computational Geometry in C, Cambridge University Press, 1993, ISBN 0-521- 44592-2 http://maven.smith.edu/~orourke/books/compgeom.html

[Vigneron] Segment trees and interval trees, presentation, INRA, France, http://w3.jouy.inra.fr/unites/miaj/public/vigneron/cs4235/slides.html

[Schirra] Stefan Schirra. Geometrische Datenstrukturen. Sommersemester + 2009 <u>http://wwwisg.cs.uni-</u> magdeburg.de/ag/lehre/SS2009/GDS/slides/S10.pdf

