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Windowing queries - examples

◼ Interaction in GIS

– Select subset by outlining

– Zoom in and re-center

◼ Circuit board inspection,…

[Vakken]

[Berg]

[Berg]
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Windowing versus range queries

◼ Range queries (see range trees in Lecture 03)

– Points

– Often in higher dimensions

◼ Windowing queries

– Line segments, curves, …

– Usually in low dimension (2D, 3D) 

◼ The goal for both: 

Preprocess the data into a data structure 

– so that the objects intersected by the query rectangle 

can be reported efficiently

(3 / 70)



Windowing queries on line segments

1. Axis parallel line segments 2. Arbitrary line segments

(non-crossing)
[Vakken]
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1. Windowing of axis parallel line segments

[Vakken]
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1. Windowing of axis parallel line segments

Window query

◼ Given 

– a set of orthogonal line segments S (preprocessed),

– and orthogonal query rectangle 𝑊 = 𝑥 ∶ 𝑥′ × 𝑦 ∶ 𝑦′

◼ Count or report all the line segments of S that 

intersect W

◼ Such segments have

a) one endpoint in

b) two end points in – included

c) no end point in – cross over

[Mount]

a)

a)

b)

c)

c)

b)

𝑥 𝑥′
𝑦

𝑦′
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Line segments with 1 or 2 points inside

a) one point inside

– Use a 2D range tree (lesson 3)

– 𝑂(𝑛 log 𝑛) storage

– 𝑂(log2𝑛 + 𝑘) query time or

– 𝑂(log 𝑛 + 𝑘) with fractional 

cascading

a)

a)

b)

c)

c)

[Mount]

b)
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– 𝑂(𝑛 log 𝑛) storage

– 𝑂(log2𝑛 + 𝑘) query time or

– 𝑂(log 𝑛 + 𝑘) with fractional 

cascading

b) two points inside – as a) one point inside

– Avoid reporting twice:

Mark segment when reported (clear after the query) 

and skip marked segments or

when end point found, check the other end-point and

report only one of them (the leftmost or the bottom)

a)

a)

b)

c)

c)
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2D range tree (without fractional cascading-more in Lecture 3)

[Mount]

Segment end-points

Search space: points

Query: Orthogonal intervals  𝑥 ∶ 𝑥′ × 𝑦 ∶ 𝑦′

𝑥 𝑥′

𝑦′

𝑦

𝑦′

𝑦

a), b)

slab

x-slabs
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Line segments that cross over the window

c) No points inside

– Such segments not detected 
using end-point range tree 

– Cross the boundary twice 
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Line segments that cross over the window

c) No points inside

– Such segments not detected 
using end-point range tree 

– Cross the boundary twice 

For axis parallel segments

Check left and bottom boundary

(9 / 70)



Line segments that cross over the window

[Mount]

c) No points inside

– Such segments not detected 
using end-point range tree 

– Cross the boundary twice 

For axis parallel segments

For non-parallel segments

Check all 4 boundariesCheck left and bottom boundary

(9 / 70)



Windowing problem summary

Cases a) and b) 

– Segment end-point in the query rectangle (window)

– Solved by 2D range trees (see lecture 3,  𝑂 𝑛 log 𝑛 time & memory)

◼ We will discuss only case c)

– Segment crosses the window

later – a segment treefirst – an interval tree

(three variants)

lecture 9

(10 / 70)



case c) principle

(11 / 70)

Segments cross the window

Line crosses the segments
(horizontal + vertical)



Talk Outline

1D 2D

Line x line segments

interval tree

For heat-up

Line segment x line segments

2 variants of interval tree

1 variant of segment tree
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Data structures for case c)

Interval tree (1D  IT)

stores 1D intervals (end-points in sorted lists)

computes intersections with query interval
see intersection of axis angle rectangles – there is y-overlap used, here is x-overlap

We must extend Interval tree to 2D

variants differ in storage of interval end-points 𝑀𝐿 , 𝑀𝑅

2D range trees

priority search trees

Segment tree

splits the plane to slabs in x in elementary intervals

(13 / 70)



Talk overview

1. Windowing of axis parallel line segments in 2D

– 3 variants of interval tree – IT in x-direction

– Differ in storage of segment end points ML and MR 

i. Line stabbing (standard IT with sorted lists ) lecture 9 - intersections

ii. Line segment stabbing (IT with range trees)

iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position

– segment tree + BST

1D

2D

2D
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i. Segment intersected by vertical line

◼ Query line l ∶= (𝑥 = 𝑞𝑥)

Report the segments 

stabbed by a vertical line 

= 1 dimensional problem

(ignore y coordinate)

 Report the interval 𝑥 ∶ 𝑥′
containing query point 𝑞𝑥

DS: Interval tree with sorted lists

[Mount]

2D

1D

(15 / 70)



Interval tree principle (see lecture 9 - intersections)
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Interval tree principle (see lecture 9 - intersections)

L(v)

R(v)

[Vigneron]

L
R

M

𝑥𝑀𝑖𝑑
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i. Segment intersected by vertical line

Principle

◼ Store input segments in static interval tree

◼ In each interval tree node 

– Check the segments in the set 𝑀

– These segments contain node’s 𝑥𝑀𝑖𝑑 value
• 𝑀𝐿 are left end-points

• 𝑀𝑅 are right end-points

– 𝑞𝑥 is the query value

– If (𝑞𝑥< 𝑥𝑀𝑖𝑑) Sweep 𝑀𝐿 from left
p ∈ 𝑀𝐿: if 𝑝𝑥 ≤ 𝑞𝑥 ⇒ intersection

– If (𝑞𝑥> 𝑥𝑀𝑖𝑑) Sweep 𝑀𝑅 from right
p ∈ 𝑀𝑅: if 𝑝𝑥 ≥ 𝑞𝑥 ⇒ intersection

Inspired by [Berg]

𝑥𝑀𝑖𝑑𝑞𝑥

l

𝑀𝐿 𝑀𝑅

(18 / 70)



Segment intersection (left from 𝑥𝑀𝑖𝑑)

All line segments from 𝑀 pass through 𝑥𝑀𝑖𝑑

⇒ 𝑞𝑥 must be between 𝑝𝑥,𝑖 and 𝑥𝑀𝑖𝑑 to intersect the line segment 𝑖

⇒ left endpoints 𝑝𝑥,𝑖 ≤ 𝑞𝑥 ⇒ intersection

𝑥𝑀𝑖𝑑𝑞𝑥

l

𝑝𝑥,𝑖

Inspired by [Berg]

Sweep

𝑀𝐿
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Segment intersection (left from 𝑥𝑀𝑖𝑑)
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l

𝑝𝑥,𝑖

Inspired by [Berg]

Intersection with line l
l≔ 𝑞𝑥 × [−∞ ∶ ∞]

Sweep

𝑀𝐿
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l

𝑝𝑥,𝑖

Inspired by [Berg]

Intersection with line l means
l≔ 𝑞𝑥 × [−∞ ∶ ∞]

Sweep

𝑀𝐿
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Segment intersection (left from 𝑥𝑀𝑖𝑑)
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l

𝑝𝑥,𝑖

Inspired by [Berg]

Intersection with line l Intersection with half space 𝑞

𝑥𝑀𝑖𝑑𝑞𝑥

l

𝑝𝑥,𝑖 ≤ 𝑞𝑥
𝑝𝑥,𝑖 ∈ (−∞ ∶ 𝑞𝑥 ]

means

𝑞 ≔ (−∞ ∶ 𝑞𝑥 ] × [−∞ ∶ ∞]l≔ 𝑞𝑥 × [−∞ ∶ ∞]

Sweep

𝑀𝐿 𝑀𝐿

(19 / 70)
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Principle once more

𝑥𝑀𝑖𝑑𝑞𝑥

l

Instead of 

intersecting edges by line search points in half-space

𝑞𝑥

l

𝑥𝑀𝑖𝑑

(20 / 70)



i. Segment intersected by vertical line

◼ Query line l≔ 𝑞𝑥 × [−∞ ∶ ∞]

◼ Horizontal segment of 𝑀 stabs the query 

line l left of 𝑥𝑀𝑖𝑑 iff its (segment’s)

left endpoint lies in half-space

𝑞 ≔ (−∞ ∶ 𝑞𝑥 ] × [−∞ ∶ ∞]
◼ In IT node with stored median 𝑥𝑀𝑖𝑑

report all segments from 𝑀
– ML: whose left point lies in 

(−∞ ∶ 𝑞𝑥 ]

if l lies left from xMid

– MR: whose right point lies in 

[𝑞𝑥 ∶ +∞)

if l lies right from xMid

l

Inspired by [Berg]

𝑥𝑀𝑖𝑑𝑞𝑥

l

De facto a 1D problem

𝑞𝑥

(21 / 70)



Static interval tree [Edelsbrunner80]

1 2 3 4 5 6

1 3 5

2

4

2,4 6,5

1 3

5 6

[Kukral]

Tree over sorted segment end-points
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Primary structure – static tree for endpoints

1 2 3 4 5 6

1 3 5

2

4

2,4 6,5

1 3

v = vertex

d(v)= midpoint of 

segment 

endpoints

5 6

[Kukral]

Static
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ML(v) – left endpoints of interval containing v

(sorted ascending)

MR(v) – right endpoints

(descending)

Secondary lists of incident interval end-pts.

1 2 3 4 5 6

1 3 5

2

4

2,4 6,5

1 3
ML(v) MR(v)

5 6

[Kukral]

Dynamic

(24 / 70)



Input:
Output:

(50 / 70)

Interval tree construction

ConstructIntervalTree( S )         // Intervals all active – no active lists

Set S of intervals on the real line – on x-axis

The root of an interval tree for S

1. if (|S| == 0) return null // no more intervals

2. else

3. xMed = median endpoint of intervals in S // median endpoint

4. L = { [xlo, xhi] in S | xhi < xMed } // left of median

5. R = { [xlo, xhi] in S | xlo > xMed } // right of median

6. M = { [xlo, xhi] in S | xlo <= xMed <= xhi } // contains median

7. ML = sort M in increasing order of xlo // sort M

8. MR = sort M in decreasing order of xhi

9. t = new IntTreeNode(xMed, ML, MR) // this node

10. t.left = ConstructIntervalTree(L) // left subtree

11. t.right = ConstructIntervalTree(R) // right subtree

12. return t

steps 4.,5.,6. done in one step if presorted [Mount]

Merged procedures from in lecture 09

- PrimaryTree(S)  on slide 33 

- InsertInterval ( b, e, T ) on slide 35



Input:
Output:

(51 / 70)

Line stabbing query for an interval tree

Stab( t, qx)
IntTreeNode t, Scalar qx
prints the intersected intervals

1. if (t == null) return // no leaf: fell out of the tree

2. if (qx < t.xMed) // left of median?

3. for (i = 0; i < t.ML.length; i++)  // traverse 𝑀𝐿 left end-points

4. if (t.ML[i].lo ≤ qx) print (t.ML[i]) // ..report if in range

5. else break // ..else done

6. Stab (t.left, qx) // recurse on left subtre

7. else  // (qx ≥ t.xMed) // right of or equal to median

8. for (i = 0; i < t.MR.length; i++) { // traverse 𝑀𝑅 right end-points

9. if (t.MR[i].hi ≥ qx) print (t.MR[i]) // ..report if in range

10. else break // ..else done

11. Stab (t.right, qx) // recurse on right subtree

Note: Small inefficiency for qx == t.xMed – recurse on right

[Mount]

Less effective variant of QueryInterval ( b, e, T )

on slide 34 in lecture 09

with merged parts: fork and search right



Complexity of line stabbing via interval tree

◼ Construction - 𝑂(𝑛 log 𝑛) time

– Each step divides at maximum into two halves or less

(minus elements of M) => tree of height ℎ = 𝑂(log 𝑛)

– If presorted endpoints in three lists L,R, and M 

then median in O(1) and copy to new L,R,M in 𝑂(𝑛)

◼ Vertical line stabbing query - 𝑂(𝑘 + log 𝑛) time

– One node processed in 𝑂(1 + 𝑘′),   𝑘′reported intervals

– 𝑣 visited nodes in 𝑂(𝑣 + 𝑘), 𝑘 total reported intervals

– 𝑣 = ℎ = tree height = 𝑂(log 𝑛)

◼ Storage - 𝑂(𝑛)

– Tree has 𝑂(𝑛) nodes, each segment stored twice 

(two endpoints)

𝑘 = Σ𝑘′

with sorted lists 

(27 / 70)



Talk overview

1. Windowing of axis parallel line segments in 2D

– 3 variants of interval tree – IT in x-direction

– Differ in storage of segment end points ML and MR 

i. Line stabbing (standard IT with sorted lists ) lecture 9 - intersections

ii. Line segment stabbing (IT with range trees)

iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position

– segment tree + BST

1D

2D

2D

(28 / 70)



Line segment stabbing (IT with range trees)

Enhance 1D interval trees to 2D

l

𝑞𝑥

1D

l

𝑞𝑦

𝑞𝑦
′

𝑞𝑥

2D

to segments change lines

𝑞𝑥 × [−∞ ∶ ∞] (no y-test) 𝑞𝑥 × [𝑞𝑦 ∶ 𝑞𝑦
′ ] (additional y-test)

Sorted lists Range trees

(30 / 70)



i. Segments × vertical line

◼ Query line l≔ 𝑞𝑥 × [−∞ ∶ ∞]

◼ Horizontal segment of ML stabs the query 

line l left of 𝑥𝑀𝑖𝑑 iff its left endpoint lies in 

half-space

𝑞 ≔ (−∞ ∶ 𝑞𝑥 ] × [−∞ ∶ ∞]
◼ In IT node with stored median xMid

report all segments from M
– ML: whose left point lies in 

(−∞ ∶ 𝑞𝑥 ]

if l lies left from xMid

– MR: whose right point lies in 

[𝑞𝑥 ∶ +∞)

if l lies right from xMid

l

De facto a 1D problem

qx

Inspired by [Berg]

𝑥𝑀𝑖𝑑qx

l

Tree node

𝑀𝐿 𝑀𝑅

(31 / 70)



ii. Segments × vertical line segment

◼ Query segment 𝑞 ≔ 𝑞𝑥 × [𝑞𝑦 ∶ 𝑞𝑦
′ ]

◼ Horizontal segment of ML stabs the query 

segment q left of 𝑥𝑀𝑖𝑑 iff its left endpoint lies in 

semi-infinite rectangular region 

𝑞 ≔ (−∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′ ]

◼ In IT node with stored median xMid

report all segments 

– 𝑀𝐿: whose left points lie in 

(−∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦′ ]
where 𝑞𝑥 lies left from 𝑥𝑀𝑖𝑑

– 𝑀𝑅: whose right point lies in 

[𝑞𝑥 ∶ +∞) × [𝑞𝑦 ∶ 𝑞𝑦′ ]
where 𝑞𝑥 lies right from 𝑥𝑀𝑖𝑑

A 2D problem

(−∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′ ]

New test

Inspired by [Berg]

𝑞

𝑥𝑀𝑖𝑑qx

𝑀𝐿 𝑀𝑅

𝑞𝑦

𝑞𝑦
′
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Data structure for endpoints

◼ Storage of 𝑀𝐿 and 𝑀𝑅

– 1D Sorted lists is not enough for line segments

– We need to test in 𝑦 too

– Use 2D range trees

(one for 𝑀𝐿 and one for 𝑀𝑅 in each node)

◼ Instead 𝑂(𝑛) sequential search in 𝑀𝐿 and 𝑀𝑅

perform 𝑂(log 𝑛) search 

in range tree with fractional cascading
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2D range tree (without fractional cascading-more in Lecture 3)

Segment left end-points for 𝑀𝐿

[Mount]

𝑞𝑦
′

𝑞𝑦

𝑞𝑦
′

𝑞𝑦

Inspired by [Berg]

𝑥𝑀𝑖𝑑

𝑞𝑥𝑥𝑚𝑖𝑛
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Complexity of range tree line segment stabbing

◼ Construction - 𝑂(𝑛 log 𝑛) time

– Each step divides at maximum into two halves L,R
or less (minus elements of 𝑀) => int. tree height 𝑂(log 𝑛)

– If the range trees are efficiently build in 𝑂(𝑛) after points sorted

◼ Vertical line segment stab. q. - 𝑂(𝑘 + log2 𝑛 ) time

– One node processed in 𝑂(log 𝑛 + 𝑘’), 𝑘’ reported segm.

– 𝑣-visited nodes in 𝑂(𝑣 log 𝑛 + 𝑘), 𝑘 total reported segm.

– 𝑣 = interval tree height = 𝑂(log 𝑛)

– 𝑂(𝑘 + log2 𝑛) time - range tree with fractional cascading

– 𝑂(𝑘 + log3 𝑛) time - range tree without fractional casc.

◼ Storage - 𝑂(𝑛 log 𝑛)
– Dominated by the range trees

2D range tree search with Fractional Cascading

k = ∑𝑘′

interval tree 

interval tree 
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– 𝑂(𝑘 + log3 𝑛) time - range tree without fractional casc.

◼ Storage - 𝑂(𝑛 log 𝑛)
– Dominated by the range trees

2D range tree search with Fractional Cascading

Can be done better?

k = ∑𝑘′

interval tree 

interval tree 
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Talk overview

1. Windowing of axis parallel line segments in 2D

– 3 variants of interval tree – IT in x-direction

– Differ in storage of segment end points ML and MR 

i. Line stabbing (standard IT with sorted lists ) lecture 9 - intersections

ii. Line segment stabbing (IT with range trees)

iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position

– segment tree + BST

1D

2D

2D
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iii. Priority search trees [McCreight85]

◼ Another variant for  case c) on slide 9

– Exploit the fact that query rectangle in each node in 

interval tree is unbounded (in 𝑥 direction)

◼ Priority search trees

– as secondary data structure for both left and right 

endpoints (𝑀𝐿 and 𝑀𝑅) of segments 

in nodes of interval tree – one for ML, one for MR

– Improve the storage to 𝑂(𝑛) for horizontal segment 

intersection with left window edge (2D range tree has 𝑂(𝑛 log𝑛))

◼ For cases a) and b) - 𝑂(𝑛 log 𝑛) storage remains

– we need range trees for windowing segment endpoints 

min 𝑥
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Rectangular range queries variants

◼ Let 𝑃 = { 𝑝1, 𝑝2, … , 𝑝𝑛 } is set of points in plane

◼ Goal: rectangular range queries of the form
(–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦

′ ] – unbounded (in 𝑥 direction)

◼ In 1D: search for nodes 𝑣 with 𝑣𝑥 ∈ (–∞ ∶ 𝑞𝑥]
– range tree 𝑂(log 𝑛 + 𝑘) time (search the end, report left)

– ordered list 𝑂(1 + 𝑘) time 1 is for possibly fail test of the first

(start in the leftmost, stop on 𝑣 with 𝑣𝑥 > 𝑞𝑥)

– use heap 𝑂(1 + 𝑘) time !

(traverse all children, stop when 𝑣𝑥 > 𝑞𝑥)

◼ In 2D – use heap for points with 𝑥 ∈ (–∞ ∶ 𝑞𝑥]

+ integrate information about y-coordinate

(39 / 70)
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◼ In 2D – use heap for points with 𝑥 ∈ (–∞ ∶ 𝑞𝑥]

+ integrate information about y-coordinate

= Priority search tree
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Heap for 1D unbounded range queries

◼ Traverse all children, stop if 𝑣𝑥 > 𝑞𝑥

◼ Example: Query (–∞ ∶ 10], 𝑞𝑥 = 10

6

50 100

12

7

9

11

99 19

stop

report

[Berg]

xMidqx

l𝑣𝑥

heap without pop

𝑥
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Principle of priority search tree

◼ Heap   ≤𝑥

– relation between parent and its child nodes only

– no relation between the child nodes themselves

◼ Priority search tree

– relate the child nodes according to y     ≤𝑦

B

C

A ≤
𝑦

≤
𝑦

≤
𝑦

𝑥 Heap

A ≤𝑥B

A ≤𝑥C

𝑦 BVS

B ≤𝑦 A ≤𝑦 C ⇒ B ≤𝑦 C

𝑦

𝑥
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Priority search tree (PST)

= Heap in 2D that can incorporate info about both 𝑥, 𝑦
– BST on 𝑦-coordinate (horizontal slabs) ~ 1D range tree

– Heap on 𝑥-coordinate (minimum x from slab along x)

◼ If 𝑃 is empty, PST is empty leaf

◼ else
– 𝑝𝑚𝑖𝑛 = point with smallest 𝑥-coordinate in 𝑃 – a heap root

– 𝑦𝑚𝑒𝑑 = 𝑦-coord. median of points 𝑃 \ {𝑝𝑚𝑖𝑛} – BST root

– 𝑃𝑏𝑒𝑙𝑜𝑤 ≔ { 𝑝 ∈𝑃 \ 𝑝𝑚𝑖𝑛 ∶ 𝑝𝑦≤ 𝑦𝑚𝑒𝑑 }

– 𝑃𝑎𝑏𝑜𝑣𝑒 ≔ { 𝑝 ∈𝑃 \ 𝑝𝑚𝑖𝑛 ∶ 𝑝𝑦> 𝑦𝑚𝑒𝑑 }

◼ Point 𝑝𝑚𝑖𝑛 and scalar 𝑦𝑚𝑒𝑑 are stored in the PST root

◼ The left subtree is PST of 𝑃𝑏𝑒𝑙𝑜𝑤
◼ The right subtree is PST of 𝑃𝑎𝑏𝑜𝑣𝑒
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Priority search tree construction example

11 15

128

4

2

1
3

5

7

9

14

13

10
6

[Schirra]

y

x
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Priority search tree construction

PrioritySearchTree( 𝑷 )
set 𝑃 of points in plane
priority search tree  𝑇

1. if  𝑃 = ∅ then PST is an empty leaf
2. else
3. 𝑝𝑚𝑖𝑛 = point with smallest 𝑥-coordinate in 𝑃 // heap on 𝑥 root
4. 𝑦𝑚𝑒𝑑 = 𝑦-coord. median of points 𝑃 \ 𝑝𝑚𝑖𝑛 // BST on 𝑦 root
5. Split points P \ {pmin} into two subsets – according to 𝑦𝑚𝑒𝑑

6. 𝑃𝑏𝑒𝑙𝑜𝑤 ≔ { 𝑝 ∈ 𝑃 \ 𝑝𝑚𝑖𝑛 ∶ 𝑝𝑦≤ 𝑦𝑚𝑒𝑑 }
7. 𝑃𝑎𝑏𝑜𝑣𝑒 ≔ { 𝑝 ∈𝑃 \ 𝑝𝑚𝑖𝑛 ∶ 𝑝𝑦> 𝑦𝑚𝑒𝑑 }
8. T = newTreeNode() … Notation on the next slide: 
9. T.p = 𝑝𝑚𝑖𝑛 // point [ 𝑥, 𝑦 ] … 𝑝(𝑣), 𝑣 = tree node
10. T.y = 𝑦𝑚𝑒𝑑 // scalar … 𝑦(𝑣)
11. T.left = PrioritySearchTree( 𝑃𝑏𝑒𝑙𝑜𝑤 ) … 𝑙(𝑣)
12. T.rigft = PrioritySearchTree( 𝑃𝑎𝑏𝑜𝑣𝑒 ) … 𝑟(𝑣)

13. 𝑂(𝑛 log 𝑛) , but 𝑂(𝑛) if presorted on 𝑦-coordinate and bottom up
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Query Priority Search Tree

QueryPrioritySearchTree( 𝑻, (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′ ])

A priority search tree and a range, unbounded to the left
All points lying in the range 

1. Search with 𝑞𝑦 and 𝑞𝑦
′ in 𝑇 // BST on 𝑦-coordinate – select 𝑦 range     

Let 𝜈𝑠𝑝𝑙𝑖𝑡 be the node where the two search paths split (split node)

2. for each node 𝜈 on the search path of qy or 𝑞𝑦
′ // points  along the paths

3. if 𝑝(𝑣) ∈ (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′ ] then Report 𝑝(𝜈) // starting in tree root

4. for each node 𝜈 on the path of 𝑞𝑦 in the left subtree of 𝜈𝑠𝑝𝑙𝑖𝑡 // inner trees

5. if the search path goes left at 𝜈
6. ReportInSubtree( 𝑟(𝜈), 𝑞𝑥)   // report right subtree

7. for each node 𝜈 on the path of 𝑞𝑦
′ in right subtree of 𝜈𝑠𝑝𝑙𝑖𝑡

8. if the search path goes right at 𝜈
9. ReportInSubtree( 𝑙(𝜈), 𝑞𝑥)   // rep. left subtree

[Berg]
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Query Priority Search Tree

QueryPrioritySearchTree( 𝑻, (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′ ])

A priority search tree and a range, unbounded to the left
All points lying in the range 

1. Search with 𝑞𝑦 and 𝑞𝑦
′ in 𝑇 // BST on 𝑦-coordinate – select 𝑦 range     

Let 𝜈𝑠𝑝𝑙𝑖𝑡 be the node where the two search paths split (split node)

2. for each node 𝜈 on the search path of qy or 𝑞𝑦
′ // points  along the paths

3. if 𝑝(𝑣) ∈ (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′ ] then Report 𝑝(𝜈) // starting in tree root

4. for each node 𝜈 on the path of 𝑞𝑦 in the left subtree of 𝜈𝑠𝑝𝑙𝑖𝑡 // inner trees

5. if the search path goes left at 𝜈
6. ReportInSubtree( 𝑟(𝜈), 𝑞𝑥)   // report right subtree

7. for each node 𝜈 on the path of 𝑞𝑦
′ in right subtree of 𝜈𝑠𝑝𝑙𝑖𝑡

8. if the search path goes right at 𝜈
9. ReportInSubtree( 𝑙(𝜈), 𝑞𝑥)   // rep. left subtree

[Berg]
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Query Priority Search Tree

QueryPrioritySearchTree( 𝑻, (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′ ])

A priority search tree and a range, unbounded to the left
All points lying in the range 

1. Search with 𝑞𝑦 and 𝑞𝑦
′ in 𝑇 // BST on 𝑦-coordinate – select 𝑦 range     

Let 𝜈𝑠𝑝𝑙𝑖𝑡 be the node where the two search paths split (split node)

2. for each node 𝜈 on the search path of qy or 𝑞𝑦
′ // points  along the paths

3. if 𝑝(𝑣) ∈ (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′ ] then Report 𝑝(𝜈) // starting in tree root

4. for each node 𝜈 on the path of 𝑞𝑦 in the left subtree of 𝜈𝑠𝑝𝑙𝑖𝑡 // inner trees

5. if the search path goes left at 𝜈
6. ReportInSubtree( 𝑟(𝜈), 𝑞𝑥)   // report right subtree

7. for each node 𝜈 on the path of 𝑞𝑦
′ in right subtree of 𝜈𝑠𝑝𝑙𝑖𝑡

8. if the search path goes right at 𝜈
9. ReportInSubtree( 𝑙(𝜈), 𝑞𝑥)   // rep. left subtree

[Berg]
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Query Priority Search Tree

QueryPrioritySearchTree( 𝑻, (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′ ])

A priority search tree and a range, unbounded to the left
All points lying in the range 

1. Search with 𝑞𝑦 and 𝑞𝑦
′ in 𝑇 // BST on 𝑦-coordinate – select 𝑦 range     

Let 𝜈𝑠𝑝𝑙𝑖𝑡 be the node where the two search paths split (split node)

2. for each node 𝜈 on the search path of qy or 𝑞𝑦
′ // points  along the paths

3. if 𝑝(𝑣) ∈ (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′ ] then Report 𝑝(𝜈) // starting in tree root

4. for each node 𝜈 on the path of 𝑞𝑦 in the left subtree of 𝜈𝑠𝑝𝑙𝑖𝑡 // inner trees

5. if the search path goes left at 𝜈
6. ReportInSubtree( 𝑟(𝜈), 𝑞𝑥)   // report right subtree

7. for each node 𝜈 on the path of 𝑞𝑦
′ in right subtree of 𝜈𝑠𝑝𝑙𝑖𝑡

8. if the search path goes right at 𝜈
9. ReportInSubtree( 𝑙(𝜈), 𝑞𝑥)   // rep. left subtree

[Berg]
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Query Priority Search Tree

QueryPrioritySearchTree( 𝑻, (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′ ])

A priority search tree and a range, unbounded to the left
All points lying in the range 

1. Search with 𝑞𝑦 and 𝑞𝑦
′ in 𝑇 // BST on 𝑦-coordinate – select 𝑦 range     

Let 𝜈𝑠𝑝𝑙𝑖𝑡 be the node where the two search paths split (split node)

2. for each node 𝜈 on the search path of qy or 𝑞𝑦
′ // points  along the paths

3. if 𝑝(𝑣) ∈ (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′ ] then Report 𝑝(𝜈) // starting in tree root

4. for each node 𝜈 on the path of 𝑞𝑦 in the left subtree of 𝜈𝑠𝑝𝑙𝑖𝑡 // inner trees

5. if the search path goes left at 𝜈
6. ReportInSubtree( 𝑟(𝜈), 𝑞𝑥)   // report right subtree

7. for each node 𝜈 on the path of 𝑞𝑦
′ in right subtree of 𝜈𝑠𝑝𝑙𝑖𝑡

8. if the search path goes right at 𝜈
9. ReportInSubtree( 𝑙(𝜈), 𝑞𝑥)   // rep. left subtree

[Berg]



Input:
Output:

(110 / 70)

Query Priority Search Tree

QueryPrioritySearchTree( 𝑻, (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′ ])

A priority search tree and a range, unbounded to the left
All points lying in the range 

1. Search with 𝑞𝑦 and 𝑞𝑦
′ in 𝑇 // BST on 𝑦-coordinate – select 𝑦 range     

Let 𝜈𝑠𝑝𝑙𝑖𝑡 be the node where the two search paths split (split node)

2. for each node 𝜈 on the search path of qy or 𝑞𝑦
′ // points  along the paths

3. if 𝑝(𝑣) ∈ (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′ ] then Report 𝑝(𝜈) // starting in tree root

4. for each node 𝜈 on the path of 𝑞𝑦 in the left subtree of 𝜈𝑠𝑝𝑙𝑖𝑡 // inner trees

5. if the search path goes left at 𝜈
6. ReportInSubtree( 𝑟(𝜈), 𝑞𝑥)   // report right subtree

7. for each node 𝜈 on the path of 𝑞𝑦
′ in right subtree of 𝜈𝑠𝑝𝑙𝑖𝑡

8. if the search path goes right at 𝜈
9. ReportInSubtree( 𝑙(𝜈), 𝑞𝑥)   // rep. left subtree

[Berg]
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Query Priority Search Tree

QueryPrioritySearchTree( 𝑻, (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′ ])

A priority search tree and a range, unbounded to the left
All points lying in the range 

1. Search with 𝑞𝑦 and 𝑞𝑦
′ in 𝑇 // BST on 𝑦-coordinate – select 𝑦 range     

Let 𝜈𝑠𝑝𝑙𝑖𝑡 be the node where the two search paths split (split node)

2. for each node 𝜈 on the search path of qy or 𝑞𝑦
′ // points  along the paths

3. if 𝑝(𝑣) ∈ (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′ ] then Report 𝑝(𝜈) // starting in tree root

4. for each node 𝜈 on the path of 𝑞𝑦 in the left subtree of 𝜈𝑠𝑝𝑙𝑖𝑡 // inner trees

5. if the search path goes left at 𝜈
6. ReportInSubtree( 𝑟(𝜈), 𝑞𝑥)   // report right subtree

7. for each node 𝜈 on the path of 𝑞𝑦
′ in right subtree of 𝜈𝑠𝑝𝑙𝑖𝑡

8. if the search path goes right at 𝜈
9. ReportInSubtree( 𝑙(𝜈), 𝑞𝑥)   // rep. left subtree

[Berg]
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Query Priority Search Tree

QueryPrioritySearchTree( 𝑻, (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′ ])

A priority search tree and a range, unbounded to the left
All points lying in the range 

1. Search with 𝑞𝑦 and 𝑞𝑦
′ in 𝑇 // BST on 𝑦-coordinate – select 𝑦 range     

Let 𝜈𝑠𝑝𝑙𝑖𝑡 be the node where the two search paths split (split node)

2. for each node 𝜈 on the search path of qy or 𝑞𝑦
′ // points  along the paths

3. if 𝑝(𝑣) ∈ (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′ ] then Report 𝑝(𝜈) // starting in tree root

4. for each node 𝜈 on the path of 𝑞𝑦 in the left subtree of 𝜈𝑠𝑝𝑙𝑖𝑡 // inner trees

5. if the search path goes left at 𝜈
6. ReportInSubtree( 𝑟(𝜈), 𝑞𝑥)   // report right subtree

7. for each node 𝜈 on the path of 𝑞𝑦
′ in right subtree of 𝜈𝑠𝑝𝑙𝑖𝑡

8. if the search path goes right at 𝜈
9. ReportInSubtree( 𝑙(𝜈), 𝑞𝑥)   // rep. left subtree

[Berg]
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Reporting of subtrees between the 𝑦-paths

ReportInSubtree( ν, qx )

The root 𝜈 of a subtree of a priority search tree and a value 𝑞𝑥.

All points 𝑝 in the subtree with 𝑥-coordinate at most 𝑞𝑥.

1. if 𝑥 𝑝 𝜈 ≤ 𝑞𝑥 // 𝑥 ∈ (–∞ ∶ 𝑞𝑥] -- heap condition

2. Report point 𝑝(𝜈).
3. if 𝜈 is not a leaf

4. ReportInSubtree( 𝑙(𝜈), 𝑞𝑥)

5. ReportInSubtree( 𝑟(𝜈), 𝑞𝑥)

Search according to 𝑥 in the heap
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3. report subtrees (𝑥-heap)

11 15

128

4

2

11

15

8

12

10

13

9

14

4

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

𝑣𝑠𝑝𝑙𝑖𝑡

𝑥 too high – stop

𝑥 ok – report this point

Based on [Schirra] [Berg]

𝑦-range path

𝑞𝑦

𝑞𝑦
′

Given interval [𝑞𝑦 ∶ 𝑞𝑦
′ ]

Given 𝑞𝑥

Segment left end-points

(49 / 70)



Priority search tree query (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′ ]

1. select y range (𝑦-BVS~ 1D range tree)

2. report points on paths (𝑥-heap)

3. report subtrees (𝑥-heap)

11 15

128

4

2

11

15

8

12

10

13

9

14

4

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

𝑣𝑠𝑝𝑙𝑖𝑡

𝑥 too high – stop

𝑥 ok – report this point

Based on [Schirra] [Berg]

𝑦-range path

𝑞𝑦

𝑞𝑦
′

Given interval [𝑞𝑦 ∶ 𝑞𝑦
′ ]

Given 𝑞𝑥

Segment left end-points

(49 / 70)



Priority search tree complexity

For set of 𝑛 points in the plane

◼ Build 𝑂(𝑛 log 𝑛)

◼ Storage 𝑂(𝑛)

◼ Query 𝑂(𝑘 + log 𝑛)

– points in query range (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′ ]

– 𝑘 is number of reported points

◼ Use Priority search tree as associated data 

structure for interval trees for storage of set 𝑀
(one for 𝑀𝐿, one for 𝑀𝑅)
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Talk overview

1. Windowing of axis parallel line segments in 2D

– 3 variants of interval tree – IT in x-direction

– Differ in storage of segment end points ML and MR 

i. Line stabbing (standard IT with sorted lists ) lecture 9 - intersections

ii. Line segment stabbing (IT with range trees)

iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position

– segment tree + BST

1D

2D

2D
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2. Windowing of line segments in general position

[Vakken]
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◼ Two cases of intersection

a,b) Endpoint inside the query window => range tree

c) Segment intersects side of query window => ???

◼ Intersection with BBOX (segment bounding box)?

– Intersection with 4n sides of the segment BBOX? 

– But segments may not intersect the window –> query y

Windowing of arbitrary oriented line segments
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Talk overview

1. Windowing of axis parallel line segments in 2D

(variants of interval tree - IT)

i. Line stabbing                (IT with sorted lists )

ii. Line segment stabbing (IT with range trees)

iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position

– segment tree

Note: segment = interval

it consists of elementary intervals

1D

2D

2D

(55 / 70)



Segment tree [Bentley, 1977]

◼ Exploits locus approach 

– Partition parameter space into regions of same answer

– Localization of such region = knowing the answer

◼ For given set 𝑆 of 𝑛 intervals (segments) on real line

– Finds 𝑚 elementary intervals (induced by interval end-points)

– Partitions 1D parameter space into these elementary 

intervals

– Stores line segments 𝑠𝑖 with the elementary intervals

– Reports the segments 𝑠𝑖 containing query point 𝑞𝑥.

𝑥1−∞ 𝑥2 𝑥3 𝑥4 +∞

Plain is partitioned into vertical slabs

−∞ ∶ 𝑥1 , 𝑥1 ∶ 𝑥1 , 𝑥1 ∶ 𝑥2 , 𝑥2 ∶ 𝑥2 , … ,
𝑥𝑚

𝑥𝑚−1 ∶ 𝑥𝑚 , 𝑥𝑚 ∶ 𝑥𝑚 , (𝑥𝑚 ∶ +∞)

(56 / 70)



𝑥3 ∶ 𝑥3𝑥2 ∶ 𝑥2

Segment tree example

x

Intervals

Elementary Intervals

𝑥1 ∶ 𝑥1

…

…

Segments 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}
𝑠𝑖 = 𝑥𝑖 , 𝑥𝑖

′

−∞ ∶ 𝑥1 𝑥1 ∶ 𝑥2 (𝑥𝑚 ∶ +∞)

[Berg]

𝑥𝑚 ∶ 𝑥𝑚
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𝑥𝑚 ∶ 𝑥𝑚

𝑣

𝐼𝑛𝑡(𝑣)
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Number of elementary intervals for 𝑛 segments

𝑛 = 0

𝑛 = 1

𝑛 = 2

𝑛

# = 1

# = 4 + 1

# = 4 ∗ 2 + 1

# = 4𝑛 + 1Each end-point adds two elementary intervals

Each segment four… 

(58 / 70)



Segment tree definition

Segment tree

◼ Skeleton is a balanced binary tree 𝑇

◼ Leaves ~ elementary intervals

◼ Internal nodes 𝑣
~ union of elementary intervals of its children 

– Store: 1. interval 𝐼𝑛𝑡(𝑣) = union of elementary intervals
of its children 

2. canonical set 𝑆(𝑣) of segments [𝑥𝑖 ∶ 𝑥𝑖’] ∈ 𝑆

– Holds 𝐼𝑛𝑡 𝑣 ⊆ [𝑥𝑖 ∶ 𝑥𝑖 ’] and 𝐼𝑛𝑡 parent 𝑣 ⊆ [𝑥𝑖 ∶ 𝑥𝑖 ’]
(node interval is not larger than the segment)

– Segments [𝑥𝑖 ∶ 𝑥𝑖 ’] are stored as high as possible, such 
that 𝐼𝑛𝑡(𝑣) is completely contained in the segment

segments 𝑠𝑖

(59 / 70)



Segments span the slab

Segments span the slab of the node, 

but not of its parent

(stored as up as possible)

Int(v2)

Int(v1)

Int(v3)

[Berg]

𝐼𝑛𝑡(𝑣𝑗) ⊆ 𝑠𝑖

and

𝐼𝑛𝑡(parent 𝑣 ) ⊆ 𝑠𝑖

Set of segments

of node 𝑣𝑖

(60 / 70)



Input:
Output:

(146 / 70)

Query segment tree – stabbing query (1D)

QuerySegmentTree(𝑣, 𝑞𝑥)
The root of a (subtree of a) segment tree and a query point 𝑞𝑥
All intervals (=segments) in the tree containing 𝑞𝑥.

1. Report all the intervals 𝑠𝑖 in 𝑆(𝜈).       // covered by the current node

2. if 𝜈 is not a leaf                                   //       root covers “all”(−∞,+∞)
3. if 𝑞𝑥 ∈ Int( 𝑙(𝜈) ) // go left

4. QuerySegmentTree( 𝑙(𝜈), 𝑞𝑥 )

5. else // or go right 

6. QuerySegmentTree( 𝑟(𝜈), 𝑞𝑥 )

Query time 𝑂(log 𝑛 + 𝑘), where 𝑘 is the number of reported intervals

𝑂(1 + 𝑘𝑣) for one node

Height 𝑂(log 𝑛)



Input:
Output:

(147 / 70)

Segment tree construction 

ConstructSegmentTree( 𝑆 )

Set of intervals (segments) 𝑆
segment tree

1. Sort endpoints of segments in 𝑆, get elementary intervals … 𝑂(𝑛 log𝑛)

2. Construct a binary search tree 𝑇 on elementary intervals … 𝑂(𝑛)
(bottom up) and determine the interval 𝐼𝑛𝑡(𝑣) it represents

3. Compute the canonical subsets for the nodes 

(lists of their segments 𝑠𝑖):

4. v = root( 𝑇 )

5. for all segments 𝑠𝑖 = 𝑥𝑖 ∶ 𝑥𝑖
′ ∈ 𝑆

6. InsertSegmentTree( 𝑣, 𝑥𝑖 ∶ 𝑥𝑖
′ )



Input:
Output:
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Segment tree construction – interval insertion

InsertSegmentTree( 𝑣, 𝑥 ∶ 𝑥′ ) 

The root of (a sub-tree of) a segment tree and an interval.

The interval will be stored in the sub-tree.

1. if Int v ⊆ 𝑥 ∶ 𝑥′ // Int v contains 𝑠𝑖 = 𝑥 ∶ 𝑥′

2. store 𝑠𝑖 = 𝑥 ∶ 𝑥′ at 𝜈

3. else if Int l v ∩ 𝑥 ∶ 𝑥′ ≠ ∅ // part of 𝑠𝑖 to the left

4. InsertSegmentTree( l v , 𝑥 ∶ 𝑥′ )

5. if Int r v ∩ 𝑥 ∶ 𝑥′ ≠ ∅ // part of 𝑠𝑖 to the right

6. InsertSegmentTree( r v , 𝑥 ∶ 𝑥′ )

One interval is stored at most twice in one level =>

Single interval insert 𝑂 log 𝑛 , insert 𝑛 intervals 𝑂 2𝑛 log 𝑛
Construction total 𝑂 𝑛 log 𝑛

Storage 𝑂 𝑛 log 𝑛
Tree height 𝑂 log 𝑛 , name  stored max 2x in one level

Storage total 𝑂 𝑛 log 𝑛 – see next slide



Space complexity - notes

Worst case – 𝑂(𝑛2) segments in leafs

But 

Store segments as high, as possible

Segment max 2 times in one level

max4𝑛 + 1 elementary intervals (leaves)

⇒ 𝑂 𝑛 space for the tree 

⇒ 𝑂 𝑛 log 𝑛 space for interval names 

𝑠 covered by 𝑣1 and 𝑣3

⇒ 𝑣2 covered, 𝐼𝑛𝑡(𝑣2) ∈ 𝑠

As 𝑣2 lies between 𝑣1 and 𝑣3
⇒ 𝐼𝑛𝑡(𝑝𝑎𝑟𝑒𝑛𝑡(𝑣2)) ∈ 𝑠 ⇒

segment 𝑠 will not be

stored in 𝑣2

𝑠
[Berg]

[Berg]

⇐

𝑠
𝑠 𝑠
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Segment tree complexity

A segment tree for set 𝑆 of 𝑛 intervals in the plane, 

◼ Build 𝑂(𝑛 log 𝑛)

◼ Storage 𝑂(𝑛 log 𝑛)

◼ Query 𝑂(𝑘 + log 𝑛)

– Report all intervals that contain a query point

– 𝑘 is number of reported intervals

(65 / 70)



Segment tree versus Interval tree

◼ Segment tree

– 𝑂(𝑛 log 𝑛 ) storage versus  𝑂(𝑛) of Interval tree  

– But returns exactly the intersected segments 𝑠𝑖, 
interval tree must search the lists 𝑀𝐿 and/or 𝑀𝑅

◼ Good for 

1. extensions (allows different structuring of intervals) 

2. stabbing counting queries 

– store number of intersected intervals in nodes

– 𝑂(𝑛) storage and 𝑂(log 𝑛 ) query time = optimal

3. higher dimensions – multilevel segment trees

(Interval and priority search trees do not exist in ^dims)

(66 / 70)



Talk overview

1. Windowing of axis parallel line segments in 2D

(variants of interval tree - IT)

i. Line stabbing (standard IT with sorted lists )

ii. Line segment stabbing (IT with range trees)

iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position

– segment tree

– the windowing algorithm

1D

2D

2D

(67 / 70)



2. Windowing of line segments in general position

qx

𝑞𝑦

𝑞𝑦
′

[Vakken]

Test intersection with border

Done 4x (rectangle)

(68 / 70)



Windowing of arbitrary oriented line segments

◼ Let 𝑆 be a set of arbitrarily oriented line segments in 

the plane. 

◼ Report the segments intersecting a vertical query 

segment 𝑞 ∶= 𝑞𝑥 × [𝑞𝑦 ∶ 𝑞𝑦
′ ] – window border

◼ Segment tree 𝑇 on 𝑥 intervals of segments in 𝑆

– node 𝑣 of 𝑇 corresponds to vertical slab 𝐼𝑛𝑡(𝑣) × (−∞ ∶ ∞)

– segments span the slab of the

node, but not of its parent

– segments do not intersect  

=> segments in the slab (node)

can be vertically ordered – BST

[Berg]

𝑞𝑥

𝑞𝑦

𝑞𝑦
′
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Segments between vertical segment endpoints

Segment 𝑠 is intersected by vert.query segment 𝑞 iff 

– The lower endpoint (B) of 𝑞 is below 𝑠 and

– The upper endpoint (A) of 𝑞 is above 𝑠

[Berg]

A

B

𝑞

𝑆1

𝑆4
𝑆5

𝑆3

𝑆2

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5
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Segments between vertical segment endpoints
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Segments between vertical segment endpoints

◼ Segments (in the slab) do not mutually intersect

=> segments can be vertically ordered and stored in BST

– Each node 𝑣 of the 𝑥 segment tree (vertical slab) 

has an associated 𝑦-BST

– BST 𝑇(𝑣) of node 𝑣 stores the canonical subset 𝑆(𝑣)
according to the vertical order

– Intersected segments can be found by searching 𝑇(𝑣) in 

𝑂( 𝑘𝑣 + log 𝑛), 𝑘𝑣 is the number of intersected segments
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Windowing of arbitrary oriented line segments complexity

Structure associated to node (BST) uses storage 

linear in the size of 𝑆(𝑣)

◼ Build 𝑂(𝑛 log 𝑛)

◼ Storage 𝑂(𝑛 log 𝑛)

◼ Query 𝑂(𝑘 + log2 𝑛) … 𝑂(log 𝑛) segm tree +𝑂(log 𝑛) BST

– Report all segments that contain a query point

– 𝑘 is number of reported segments
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Windowing of line segments in 2D – conclusions 

Construction: all interval tree variants 𝑂(𝑛 log 𝑛)

1. Axis parallel Search Memory

i. Line (sorted lists ) 𝑂(𝑘 + log 𝑛) 𝑂(𝑛)

ii. Segment (range trees) 𝑂(𝑘 + log2 𝑛) 𝑂(𝑛 log 𝑛)

iii. Segment (priority s. tr.) 𝑂(𝑘 + log 𝑛) 𝑂(𝑛)

2. In general position

– segment tree + BST 𝑂(𝑘 + log2 𝑛) 𝑂(𝑛 log 𝑛)

1D

2D

2D
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