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Talk overview

 Intersections of line segments (Bentley-Ottmann)
– Motivation 
– Sweep line algorithm recapitulation
– Sweep line intersections of line segments

 Intersection of polygons or planar subdivisions
– See assignment [21] or [Berg, Section 2.3]

 Intersection of axis parallel rectangles
– See assignment [26]
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Geometric intersections – what are they for?
One of the most basic problems in computational geometry
 Solid modeling 

– Intersection of object boundaries in CSG

 Overlay of subdivisions, e.g. layers in GIS
– Bridges on intersections of roads and rivers
– Maintenance responsibilities (road network X county boundaries)

 Robotics
– Collision detection and collision avoidance

 Computer graphics
– Rendering via ray shooting (intersection of the ray with objects)

 …
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Line segment intersection
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Line segment intersection
 Intersection of complex shapes is often reduced to simpler 

and simpler intersection problems
 Line segment intersection is the most basic intersection 

algorithm
 Problem statement:

Given n line segments in the plane, report all points where 
a pair of line segments intersect.

 Problem complexity
– Worst case – I = O(n2) intersections
– Practical case – only some intersections
– Use an output sensitive algorithm

• O(n log n + I) optimal randomized algorithm
• O(n log n + I log n ) sweep line algorithm - % [Berg]
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Plane sweep line algorithm recapitulation

 Horizontal line (sweep line, scan line) l moves 
top-down (or vertical line: left to right) over the set of objects

 The move is not continuous, but l jumps from one 
event point to another

– Event points are in priority queue or sorted list (~y)
– The (left) top-most event point is removed first
– New event points may be created 

(usually as interaction of neighbors on the sweep line)  
and inserted into the queue

 Scan-line status
– Stores information about the objects intersected by l 
– It is updated while stopping on event point
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Line segment intersection - Sweep line alg.
 Avoid testing of pairs of segments far apart
 Compute intersections of neighbors on the sweep line only
 O(n log n + I log n ) time in O(n) memory

– 2n steps for end points, 
– I steps for intersections,

– log n search the status tree

 Ignore “degenerate cases” (most of them will be solved later on)
– No segment is parallel to the sweep line 
– Segments intersect in one point and do not overlap
– No three segments meet in a common point
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Line segment intersections

Status = ordered sequence of segments 
intersecting the sweep line l 

Events (waiting in the priority queue)
=  points, where the algorithm actually does something

– Segment end-points 

• known at algorithm start

– Segment intersections between neighboring segments 
along SL

• discovered as the sweep executes

Postupový plán

Stav 
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Detecting intersections

[Berg]

 Intersection events must be detected and inserted 
to the event queue before they occur

 Given two segments a, b intersecting in point p, 
there must be a placement of sweep line l prior 
to p, such that segments a, b are adjacent along l
(only adjacent will be tested for intersection)

– segments a, b are not adjacent when the alg. starts
– segments a, b are adjacent just before p
=> there must be an event point when a,b become 

adjacent and therefore are tested for intersection
=> All intersections are found
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Data structures
Sweep line l status = order of segments along l
 Balanced binary search tree of segments
 Coords of intersections with l vary as l moves

=> store pointers to line segments in tree nodes
– Position of l is plugged in the y=mx+b to get the x-key 

[Berg]
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Data structures

Event queue (postupový plán, časový plán)

 Define: Order (top-down, lexicographic)

iff or and 
top-down, left-right approach
(points on l treated left to right)

 Operations
– Insertion of computed intersection points
– Fetching the next event

(highest below l or the leftmost right of e)
– Test, if the segment is already present in the queue

(Locate and delete intersection event in the queue)

top-down
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Problem with duplicities of intersections

Intersection may be detected many times
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Data structures

Event queue data structure
a)  Heap

– Problem: can not check duplicated intersection events
(reinvented & stored more than once)

– Intersections processed twice or even more times
– Memory complexity up to O(n2)

b)  Ordered dictionary (balanced binary tree)
– Can check duplicated events (adds just constant factor)
– Nothing inserted twice
– If non-neighbor intersections are deleted

i.e.,  if only intersections of neighbors along l are stored
then memory complexity just O(n)

3x detected
intersection

1
2

3
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Input:
Output:

Line segment intersection algorithm
FindIntersections(S)

A set S of line segments in the plane
The set of intersection points + pointers to segments in each 

1. init an empty event queue Q and insert the segment endpoints
2. init an empty status structure T
3. while Q in not empty
4. remove next event p from Q
5. handleEventPoint(p)

Note: Upper-endpoint events store info about the segment

Upper endpoint 
Intersection
Lower endpoint 

top-down



Input:
Output:

Line segment intersection algorithm
FindIntersections(S)

A set S of line segments in the plane
The set of intersection points + pointers to segments in each 

1. init an empty event queue Q and insert the segment endpoints
2. init an empty status structure T
3. while Q in not empty
4. remove next event p from Q
5. handleEventPoint(p)

Note: Upper-endpoint events store info about the segment

Upper endpoint 
Intersection
Lower endpoint 

Improved algorithm:
Handles all in p
in a single step

top-down



handleEventPoint() principle

 Upper endpoint U(p)
– insert p (on sj) to status T
– add intersections with left and 

right neighbors to Q

 Intersection C(p)
– switch order of segments in T
– add intersections with nearest left 

and nearest right neighbor to Q

 Lower endpoint L(p)
– remove p (on sl) from T
– add intersections of left and right 

neighbors to Q

[Berg]
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More than two segments incident

U(p) = {s2} start here
C(p) = {s1, s3} cross on l
L(p) = {s4, s5} end here [Berg]
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Handle Events [modified Berg, page 25]

handleEventPoint(p)   // precisely: handle all events with point p
1. Let U(p) = set of segments whose Upper endpoint is p.

These segments are stored with the event point p (will be added to T)
2. Search T for all segments S(p) that contain p (are adjacent in T):

Let L(p) ∪ S(p) = segments whose Lower endpoint is p
Let C(p) ∪ S(p) = segments that Contain p in interior

3. if( L(p) ∪ U(p) ∪ C(p) contains more than one segment )
4. report p as intersection   together with L(p), U(p), C(p) 
5. Delete the segments in L(p) ∪ C(p) from T
6. if( U(p) ∪ C(p) = ∅ ) then findNewEvent(sl, sr, p) 
7. else Insert  the segments in U(p) ∪ C(p) into T 

(order as below l, horizontal segment as the last)
8. s’  = leftmost segm. of U(p) ∪ C(p);   findNewEvent(sl , s’, p)
9. s’’ = rightmost segm. of U(p) ∪ C(p); findNewEvent(s’’, sr , p)

// reverse order of C(p) in T

p
C(p)

p
L(p)

// left & right neighbors

p srsl l

p

p

U(p)
l
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Input:
Output:

Detection of new intersections
findNewEvent(sl , sr , p)    // with handling of horizontal segments

two segments (left & right from p in T) and a current event point p
updated event queue Q with new intersection

1. if [ ( sl and sr intersect below the sweep line l )   // intersection below l
or (sr intersect s’’ on l and to the right of p ) ]  // horizontal segment
and( the intersection    is not present in Q )

2. then
insert intersection    as a new event into Q

sl and sr intersect below 
sr and s’’ intersect on l, 
s’’ is horizontal and to the right of p 

Non-overlapping 

p

srsl

p
s’’

s’  

srsl
psl

s’ = leftmost from U(p) � C(p)
s’’ = rightmost from U(p) � C(p)

s’’

srs’

Reported intersection - line 4

New intersection to Q - line 6,8,9

l

line 8line 6

line 9 line 9

line 8



Line segment intersections

 Memory O(I) = O(n2) with duplicities in Q 
or O(n ) with duplicities in Q deleted

 Operational complexity
– n + I stops
– log n each
=> O( I + n) log n total

 The algorithm is by Bentley-Ottmann
Bentley, J. L.; Ottmann, T. A. (1979), "Algorithms for reporting and counting geometric intersections", IEEE 
Transactions on Computers C-28 (9): 643-647, doi:10.1109/TC.1979.1675432 . 

See also http://wapedia.mobi/en/Bentley%E2%80%93Ottmann_algorithm
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Overlay of two subdivisions
(intersection of DCELs)
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Overlay of two subdivisions

DCEL 

hole
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Overlay of two subdivisions

DCEL DCEL 
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Overlay is a new planar subdivision

DCEL ( , )
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Sweep line overlay algorithm

DCEL DCEL 

Compute new planar subdivision
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Sweep line overlay algorithm

DCEL DCEL 

Compute new planar subdivision
Re-use not intersected half-edge records
Compute intersections and new half-edge records
Compute labels of new faces

( , )
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The algorithm principle

Copy DCELs of both subdivisions to invalid DCEL 
Transform the result into a valid DCEL for the 
subdivision overlay 

– Compute the intersection of edges 
(from different subdivisions ∩ )

– Link together appropriate parts of the two DCELs
• Vertex and half-edge records
• Face records
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At an Event point

 Update queue (pop, delete intersections of separated edges below)

and sweep line status tree (add/remove/swap edges, 
compute intersections with neighbors)

as in line segment intersection algorithm
(cross pointers between edges in and to access part of when 
processing an intersection)

 For vertex from one subdivision
– No additional work

 For Intersection of edges from different subdivisions
– Link both DCELs
– Handle all possible cases
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Three types of intersections

vertex – vertex: overlap of vertices

New are intersections of different subdivisions

vertex – edge:  edge passes through a vertex

edge – edge:  edges intersect in their interior
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Three types of intersections

vertex – vertex: overlap of vertices

New are intersections of different subdivisions

vertex – edge:  edge passes through a vertex

edge – edge:  edges intersect in their interior

Let’s discuss this case, 
the other two are similar
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vertex – edge update – the principle

Before:
two half-edges 

After:
four half-edges

(two shorter 
and

two new)

Before:
The geometry

update
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Pointers around the end-points of edge 
1. Edge = , splits into two edges ′ and ′′ at intersection= ( , ) ′ = ( , )

2. Shorten half-edge ( , ) to ,
Shorten half-edge ( , ) to ,

3. Create their twin ( , ) for ,
Create their twin ( , ) for ,

4. Set new twin’s next to former edge  nextnext , = next , now in next ,next , = next , now in next ,
5. Set prev pointers to new twinsprev(next , ) = ,prev(next , ) = ,

half-edge , =
shortened ,
Its new twin 
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Pointers around intersection 

6. Find the next edge for  from half-edge ,
= first CW half-edge from ′ with as originnext , =prev = ,

7. Find the prev edge for  from half-edge ,
= first CCW half-edge from ′ with as destination next, prev similarly 

8. Find the next edge for  from half-edge ,
= first CW half-edge from ′′ with as originnext, prev similarly 

9. Find the prev edge for  from half-edge ,
= first CCW half-edge from ′ with as destinationnext, prev similarly 
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Pointers around intersection 

6. Find the next edge for  from half-edge ,
= first CW half-edge from ′ with as originnext , =prev = ,

7. Find the prev edge for  from half-edge ,
= first CCW half-edge from ′ with as destination next, prev similarly 

8. Find the next edge for  from half-edge ,
= first CW half-edge from ′′ with as originnext, prev similarly 

9. Find the prev edge for  from half-edge ,
= first CCW half-edge from ′ with as destinationnext, prev similarly 

first CW half-edge
from ′
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Time cost for updating half-edge records

 All operations with splitting of edges in 
intersections and reconnecting of , 
pointers take time

 Locating of edge position in cyclic order 
– around single vertex takes (deg ( ))
– which sums to  = number of edges processed by 

the edge intersection algorithm =
– The overall complexity is not increased( log + log )= S + S
Complexity of input subdivisions

= complexity of the overlay (≈intersections)
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Face records for the overlay subdivision

 Create face records for each face in 
– Each face  has it unique outer boundary (CCW)  

(except the background that has none)
– Each face has its OuterComponent( ) – store edge of it
– Together faces = #outer boundaries + 1

 InnerComponents( ) – list of edges of holes (cw)
 Label of in 
 Label of in 

Used for Boolean operations 
such as ∩ ,  ∪ ,  \
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Extraction of faces

 Traverse cycles in DCEL (Tarjan alg. DFS) ...O(n)
 Decide, if the cycle is outer or inner boundary

– Find leftmost vertex of the cycle (bottom leftmost)
– Incident face lies to the left of edges
– Angle <  180° ⇒ outer 
– Angle >  180° ⇒ inner (hole)

outer

inner
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Which boundary cycles bound same face?

 Single outer boundary shares the face with its 
holes – inner boundaries

 Graph
– Node for each cycle

inner
outer      unbounded

– Arc if inner cycle has half-edge immediately to the left 
of the leftmost vertex

– Each connected component – set of cycles of one face
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Graph of faces and their relations

   inner (cw)   outer (ccw)

unbounded   

         
   

            
Connected component in
─ represents a face 
─ connects outer face with its holes 

InnerComponents( ) 
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Graph construction

1. Make node for every cycle
(graph traversal)

2. During plane sweep, 
– store pointer to graph node for 

each edge
– remember the leftmost vertex and

its nearest left edge

3. Create arc between cycles of the 
leftmost vertex an its nearest left 
edge

4.

Idea – during sweep line, we know the nearest left 
edge for every vertex (and half-edge with origin )
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Face label determination

a b
(a,b)

b
a a

For intersection of two edges:
During the sweep-line
• In both new pieces, remember the 

face of half-edge being split into two
After
• Label the face by both labels

a

b
(a,b)

a

b

For face in other face:
Known half-edge label only from 
Use graph to locate outer boundary 
label for face from 
(or store containing face of other 
subdivision for each vertex)
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MapOverlay( , )
Input: Two planar subdivisions and stored in DCEL  
Output: The overlay of and stored in DCEL 
1. Copy both DCELs for of and into DCEL 
2. Use plane sweep to compute intersections of edges from and 

• Update vertex and edge records in when the event involves edges of both , 
• Store the half-edge to the left of the event point at the vertex in 

3. Traverse (depth-first search) to determine the boundary cycles
4. Construct the graph (boundary and hole cycles, immediately to the left of hole),
5. for each connected component in do
6. ← the unique outer boundary cycle 
7. ← the face bounded by the cycle . 
8. Create a face record for 
9. OuterComponent( ) ← some half-edge of , 
10. InnerComponents( ) ← list of pointers to one half-edge in each hole 
11. IncidentFace( ) ←  for all half-edges bounding cycle and the holes
12. Label each face of ( , ) with the names of the faces of and containing it

   

Map overlay algorithm

      …

(intersection)

         …
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Running time

The overlay of two planar subdivisions with total 
complexity can be constructed in 

where complexity of the overlay ( intersections)
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Axis parallel rectangles 
intersection
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Intersection of axis parallel rectangles

 Given the collection of n isothetic rectangles, 
report all intersecting parts

r7

r2

r8

r6

r5
r4

r3

r1

Answer:  (r1, r2) (r1, r3) (r1, r8) (r3, r4) (r3, r5) (r3, r9) (r4, r5) (r7, r8) 

r9

Overlap

Inclusion

[?]

Alternate sides 
belong to two 
pencils of lines

(trsy přímek)

(often used with 
points in infinity 
= axis parallel)

2D => 2 pencils 

Felkel: Computational geometry

(40 / 96)



Input:
Output:

Brute force intersection
Brute force algorithm

set of axis parallel rectangles
pairs of intersected rectangles

1. For every pair ( , ) of rectangles ∈ , ≠
2. if ( ∩ ≠ ∅) then
3. report ( , )
Analysis
Preprocessing:  None.
Query:  2 = ( ) ∈ .
Storage:  



Plane sweep intersection algorithm

 Vertical sweep line moves from left to right
 Stops at every x-coordinate of a rectangle 

(either at its left side or at its right side).
 active rectangles – a set

= rectangles currently intersecting the sweep line
– left side event of a rectangle      – start

=> the rectangle is added to the active set. 
– right side – end

=> the rectangle is deleted from the active set.

 The active set used to detect rectangle intersection
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Example rectangles and sweep line

not active 
rectangle

active 
rectangle

sweep line
[Drtina]

y

x
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Interval tree as sweep line status structure

 Vertical sweep-line => only y-coordinates along it
 The status tree is drawn horizontal - turn 90° right 

as if the sweep line (y-axis) is horizontal 

y
L Rsweep line [Drtina]

y

not active 
rectangle

active 
rectangle

x
1 2 3 4 5 6

1 3 5

2
4
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Intersection test – between pair of intervals 

 Given two intervals I = [y1, y2] and I’ = [y’1, y’2] 
the condition I  I’ is equivalent to one of these 
mutually exclusive conditions:

a) y1  y ’1 y2

b) y ’1  y1 y ’2
y’1 y’2

y1 y2

y1 y2

y ’1 y ’2

a) b) b)Intervals along the sweep line

Intersection (fork)

OR

1st variant
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Intersection test – between pair of intervals 

 Given two intervals I = [y1, y2] and I’ = [y’1, y’2] 
the condition I  I’ is equivalent to both of these 
conditions simultaneously:

1) y ’1 y2

2) y1 y ’2
y’1 y’2

y1 y2

y1 y2

y ’1 y ’2

1,2) 1,2) 1,2)
Intervals along the sweep line

Intersection (fork)

2nd variant

y ’1 y’2
AND

2) 1)
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Static interval tree – stores all end point
 Let = be the median of end-points of segments
 : segments of S that are completely to the left of 
 : segments of S that contain 
 : segments of S that are completely to the right of 

[Vigneron]

y
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Static interval tree – Example

L(v)
R(v)

[Vigneron]

Left ends – ascending
Right ends – descending
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Static interval tree [Edelsbrunner80]

1 2 3 4 5 6

1 3 5

2

4

2,4 6,5

1 3
5 6

[Kukral]

 Stores intervals along y sweep 
line

 3 kinds of information
- end points
- incident 
intervals

- active nodes
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Primary structure – static tree for endpoints

1 2 3 4 5 6

1 3 5

2

4

2,4 6,5

1 3

v = midpoint of all 
segment endpoints

H(v) = value (y-coord) of v

5 6

[Kukral]

Static – known 
from beginning
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ML(v) – left endpoints of interval containing v
(sorted ascending)

MR(v) – right endpoints
(descending)

Secondary lists of incident interval end-pts.

1 2 3 4 5 6

1 3 5

2

4

2,4 6,5

1 3
ML(v) MR(v)

5 6

[Kukral]

Dynamic
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Active nodes – intersected by the sweep line 

1 2 3 4 5 6

1 3 5

2

4

2,4 6,5

1 3

Subset of all nodes currently
intersected by the sweep line
(nodes with intervals)

5 6

[Kukral]

RPTR

Active node

Active node

Active node

LPTR Dynamic
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Entries in the event queue

X

Y

0

1

2

3

4

A

B

1

3

 (   ,  ,  , )
( , 1 , 3 , left) 
( , 2 , 4 , left) 
( , 1 , 3 , right) 
( , 2 , 4 , right) 

Static nodes in the SL status tree
1,2,3,4
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Input:
Output:

Query =  sweep and report intersections
RectangleIntersections( )

Set of rectangles
Intersected rectangle pairs

1. Preprocess( )   // create the interval tree (for -coords)
// and event queue (for -coords)

2. while ( ≠ ∅ ) do
3. Get next entry ( , , , ) from // ∈ { left | right }
4. if ( = left )   // left edge
5. a) QueryInterval ( , , root( )) // report intersections
6. b) InsertInterval ( , , root( )) // insert new interval
7. else // right edge 
8. c) DeleteInterval ( , , root( ))



Input:
Output:

Preprocessing
Preprocess( )

Set of rectangles
Primary structure of the interval tree and the event queue 1. = PrimaryTree( )   // Construct the static primary structure 

// of the interval tree -> sweep line STATUS 

2. // Init event queue with vertical rectangle edges in ascending order ~
// Put the left edges with the same x ahead of right ones

3. for i = 1 to n

4. insert , , , left , // left edges of -th rectangle 

5. insert , , , , // right edges



Input:
Output:

Interval tree – primary structure construction
PrimaryTree(S)           // only the y-tree structure, without intervals

Set S of rectangles
Primary structure of an interval tree T

1. Sy = Sort endpoints of all segments in S according to y-coordinate
2. T = BST( Sy )
3. return T

BST( Sy )
1. if(  |Sy | = 0 ) return null
2. yMed = median of Sy // the smaller item for even Sy.size
3. L = endpoints py  yMed
4. R = endpoints py > yMed
5. t = new IntervalTreeNode( yMed ) 
6. t.left = BST(L)
7. t.right = BST(R)
8. return t



Input:
Output:

Interval tree – search the intersections
QueryInterval ( b, e, T )

Interval of the edge and current tree T
Report the rectangles that intersect [ b, e ]

1. if( T = null ) return
2. i=0; if( b < H(v) < e )  // forks at this node 
3. while ( MR(v).[i] >= b ) && (i < Count(v)) // Report all intervals inM
4. ReportIntersection; i++
5. QueryInterval( b,e,T.LPTR ) // jump to active
6. QueryInterval( b,e,T.RPTR ) // node below
7. else if (H(v)  b < e) // search RIGHT (    )
8. while (MR(v).[i] >= b) && (i < Count(v)) 
9. ReportIntersection; i++
10. QueryInterval( b,e,T.RPTR )
11. else // b < e  H(v) //search LEFT(    )
12. while (ML(v).[i] <= e) 
13. ReportIntersection; i++
14. QueryInterval( b,e,T.LPTR )

H(v) New interval being 
tested for intersection 

b e

Stored intervals
of active rectangles

T.LPTR T.RPTR

A

C
B

Crosses A,B

Crosses A,B,C Cross.B

Crosses A,B,C

Crosses C

Crosses nothing

Other new interval being 
tested for intersection 



Input:
Output:

Interval tree - interval insertion 
InsertInterval ( b, e, T ) 

Interval [b,e] and interval tree T
T after insertion of the interval 

1. v = root(T )
2. while( v != null )  // find the fork node
3. if (H(v) < b < e) 
4. v = v.right // continue right
5. else if (b < e < H(v)) 
6. v = v.left // continue left
7. else // bH(v)  e // insert interval
8. set v node to active
9. connect LPTR resp. RPTR to its parent (active node above)
10. insert [b,e] into list ML(v) – sorted in ascending order of b’s
11. insert [b,e] into list MR(v) – sorted in descending order of e’s
12. break
13. endwhile
14. return T

H(v)
New interval 

being inserted

b e

b e



Example 1
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Example 1 – static tree on endpoints





X

Y

0
1 2 3 4

1

2

3

4

1 3

2 

 

[Drtina]

A

B

A

B

H(v) – value of node v
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Interval insertion [1,3] a) Query Interval

X

Y

0
1 2 3 4

1

2

3

4

1 3

2
A

B

A

B

1

3

Current node

Active node

Active rectangle

[Drtina]

b < H(v) < e

1 < 2 < 3

Search MR(v) or ML(v):
MR(v) is empty
No active sons, stop
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X

Y

0
1 2 3 4

1

2

3

4

1 3

2

Interval insertion [1,3] b) Insert Interval
b  H(v)  e

? 1  2  3 ?

A

B

Current node

Active node

Active rectangle
A

B

[Drtina]
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X

Y

0
1 2 3 4

1

2

3

4

1 3

2

1 3

Interval insertion [1,3]    b) Insert Interval

fork
=> to lists

A

B

Current node

Active node

Active rectangle
A

B

[Drtina]

b  H(v)  e

1  2  3
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X

Y

0
1 2 3 4

1

2

3

4

1 31 3

H(v)  b < e

2  2 < 4

Search MR(v) only:
MR(v)[1] = 3 ≥ 2?

=> intersection

Interval insertion [2,4]   a) Query Interval

R(v)

A

B

Current node

Active node

Active rectangle

2

A

B

[Drtina]
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X

Y

0
1 2 3 4

1

2

3

4

1 31,2 4,3

b  H(v)  e

2  2  4

Interval insertion [2,4]   b) Insert Interval

fork
=> to lists

A

B

Current node

Active node

Active rectangle

2

A

B

[Drtina]
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X

Y

0

1

2

3

4

1 2 3 4

1 31,2 4,3

Interval delete [1,3]

A

B

Current node

Active node

Active rectangle

2

A

B

[Drtina]
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X

Y

0

1

2

3

4

1 2 3 4

1 32 4

Interval delete [1,3]

A

B

Current node

Active node

Active rectangle

2

A

B

[Drtina]
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X

Y

0

1

2

3

4

1 2 3 4

1 32 4

Interval delete [2,4]

A

B

Current node

Active node

Active rectangle

2

A

B

[Drtina]
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X

Y

0

1

2

3

4

1 2 3 4

1 3

2

Interval delete [2,4]

A

B

A

B

[Drtina]
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Example 2
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Input:
Output:

Query =  sweep and report intersections
RectangleIntersections( )

Set of rectangles
Intersected rectangle pairs

1. Preprocess( )   // create the interval tree (for -coords)
// and event queue (for -coords)

2. while ( ≠ ∅ ) do
3. Get next entry ( , , , ) from // ∈ { left | right }
4. if ( = left )   // left edge
5. a) QueryInterval ( , , root( )) // report intersections
6. b) InsertInterval ( , , root( )) // insert new interval
7. else // right edge 
8. c) DeleteInterval ( , , root( ))

// this is a copy of the slide before
// just to remember the algorithm



X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f
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Complexities of rectangle intersections

 n rectangles, s intersected pairs found
 O(n log n) preprocessing time to separately sort  

– x-coordinates of the rectangles for the plane sweep  
– the y-coordinates for initializing the interval tree. 

 The plane sweep itself takes O(n log n + s) time, 
so the overall time is O(n log n + s)

 O(n) space 
 This time is optimal for a decision-tree algorithm 

(i.e., one that only makes comparisons between 
rectangle coordinates).
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