DCGI

DEPARTMENT OF COMPUTER GRAPHICS AND INTERACTION

INTERSECTIONS OF LINE SEGMENTS AND AXIS ALIGNED RECTANGLES, OVERLAY OF SUBDIVISIONS

PETR FELKEL

FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Mount], [Kukral], and [Drtina]

Talk overview

- Intersections of line segments (Bentley-Ottmann)
- Motivation
- Sweep line algorithm recapitulation
- Sweep line intersections of line segments
- Intersection of polygons or planar subdivisions
- See assignment [21] or [Berg, Section 2.3]
- Intersection of axis parallel rectangles
- See assignment [26]

Geometric intersections - what are they for?

One of the most basic problems in computational geometry

- Solid modeling
- Intersection of object boundaries in CSG
- Overlay of subdivisions, e.g. layers in GIS
- Bridges on intersections of roads and rivers
- Maintenance responsibilities (road network X county boundaries)
- Robotics
- Collision detection and collision avoidance
- Computer graphics
- Rendering via ray shooting (intersection of the ray with objects)

Line segment intersection

Line segment intersection

- Intersection of complex shapes is often reduced to simpler and simpler intersection problems
- Line segment intersection is the most basic intersection algorithm
- Problem statement:

Given n line segments in the plane, report all points where a pair of line segments intersect.

- Problem complexity
- Worst case $-I=O\left(\mathrm{n}^{2}\right)$ intersections
- Practical case - only some intersections
- Use an output sensitive algorithm
- $\mathrm{O}(n \log n+I)$ optimal randomized algorithm
- O($n \log n+I \log n)$ sweep line algorithm - \%

Plane sweep line algorithm recapituation

- Horizontal line (sweep line, scan line) ℓ moves top-down (or vertical line: left to right) over the set of objects
- The move is not continuous, but ℓ jumps from one

会 event point to another

- Event points are in priority queue or sorted list ($\sim y$)
- The (left) top-most event point is removed first
- New event points may be created (usually as interaction of neighbors on the sweep line) and inserted into the queue
Scan-line status
- Stores information about the objects intersected by ℓ
\neq It is updated while stopping on event point
DCGI

Line segment intersection - Sweep line alg.

- Avoid testing of pairs of segments far apart
- Compute intersections of neighbors on the sweep line only
- $\mathrm{O}(n \log n+I \log n)$ time in $\mathrm{O}(n)$ memory
- $2 n$ steps for end points,
- I steps for intersections,
$-\log n$ search the status tree
- Ignore "degenerate cases" (most of them will be solved later on)
- No segment is parallel to the sweep line
- Segments intersect in one point and do not overlap
- No three segments meet in a common point

Line segment intersections

Status = ordered sequence of segments intersecting the sweep line ℓ

Events (waiting in the priority queue)
$=$ points, where the algorithm actually does something

- Segment end-points
- known at algorithm start
- Segment intersections between neighboring segments along SL
- discovered as the sweep executes

Detecting intersections

- Intersection events must be detected and inserted to the event queue before they occur
- Given two segments a, b intersecting in point p, there must be a placement of sweep line ℓ prior to p, such that segments a, b are adjacent along ℓ (only adjacent will be tested for intersection)
- segments a, b are not adjacent when the alg. starts
- segments a, b are adjacent just before p
=> there must be an event point when a, b become adjacent and therefore are tested for intersection
=> All intersections are found

DCGI

Data structures

Sweep line ℓ status = order of segments along ℓ

- Balanced binary search tree of segments
- Coords of intersections with ℓ vary as ℓ moves
=> store pointers to line segments in tree nodes
- Position of ℓ is plugged in the $y=m x+b$ to get the x-key

Data structures

Event queue (postupový plán, časový plán)

- Define: Order $>$ (top-down, lexicographic)
 top-down, left-right approach (points on ℓ treated left to right)
- Operations
- Insertion of computed intersection points
- Fetching the next event
(highest y below ℓ or the leftmost right of e)
- Test, if the segment is already present in the queue (Locate and delete intersection event in the queue)

Data structures

Event queue (postupový plán, časový plán)

- Define: Order $>\quad$ (top-down, lexicographic)
$p>q$ iff $p_{y}>q_{y}$ or $p_{y}=q_{y}$ and $p_{x}<q_{x} \quad \vec{x}$
top-down, left-right approach
(points on ℓ treated left to right)
- Operations
- Insertion of computed intersection points
- Fetching the next event (highest y below ℓ or the leftmost right of e)
- Test, if the segment is already present in the queue (Locate and delete intersection event in the queue)

Data structures

Event queue (postupový plán, časový plán)

- Define: Order $>\quad$ (top-down, lexicographic)
$p>q$ iff $p_{y}>q_{y}$ or $p_{y}=q_{y}$ and $p_{x}<q_{x} \quad \vec{x}$
top-down, left-right approach
(points on ℓ treated left to right)
- Operations
- Insertion of computed intersection points
- Fetching the next event (highest y below ℓ or the leftmost right of e)
- Test, if the segment is already present in the queue] may (Locate and delete intersection event in the queue) have

Problem with duplicities of intersections

Intersection may be detected many times

Problem with duplicities of intersections

Intersection may be detected many times

Problem with duplicities of intersections

Intersection may be detected many times

Problem with duplicities of intersections

Intersection may be detected many times

Problem with duplicities of intersections

Intersection may be detected many times

Problem with duplicities of intersections

Intersection may be detected many times

Problem with duplicities of intersections

Intersection may be detected many times

Problem with duplicities of intersections

Intersection may be detected many times

Problem with duplicities of intersections

Intersection may be detected many times

Problem with duplicities of intersections

Intersection may be detected many times

Problem with duplicities of intersections

Intersection may be detected many times

Problem with duplicities of intersections

Intersection may be detected many times

Problem with duplicities of intersections

Intersection may be detected many times

Data structures

Event queue data structure
a) Heap

- Problem: can not check duplicated intersection events (reinvented \& stored more than once)
- Intersections processed twice or even more times
- Memory complexity up to $O\left(n^{2}\right)$
b) Ordered dictionary (balanced binary tree)
- Can check duplicated events (adds just constant factor)
- Nothing inserted twice
- If non-neighbor intersections are deleted
i.e., if only intersections of neighbors along ℓ are stored
$\neq \pm$ then memory complexity just $\mathrm{O}(n)$
DCGI

Line segment intersection algorithm

FindIntersections(S)
Input: A set S of line segments in the plane
Output: The set of intersection points + pointers to segments in each

1. init an empty event queue Q and insert the segment endpoints
2. init an empty status structure T
3. while Q in not empty
4. remove next event p from Q
5. handleEventPoint (p)
Upper endpoint
Intersection
Lower endpoint

Note: Upper-endpoint events store info about the segment

Line segment intersection algorithm

FindIntersections(S)
Input: A set S of line segments in the plane
Output: The set of intersection points + pointers to segments in each

1. init an empty event queue Q and insert the segment endpoints
2. init an empty status structure T
3. while Q in not empty
4. remove next event p from Q
5. handleEventPoint (p)
Upper endpoint
Intersection
Lower endpoint

$$
\begin{aligned}
& \text { Improved algorithm: } \\
& \text { Handles all in } p \\
& \text { in a single step }
\end{aligned}
$$

Note: Upper-endpoint events store info about the segment

handleEventPoint() principle

- Upper endpoint $U(p)$
- insert p (on s_{j}) to status T
- add intersections with left and right neighbors to Q
- Intersection C(p)
- switch order of segments in T
- add intersections with nearest left and nearest right neighbor to Q

More than two segments incident

Handle Events

handleEventPoint (p) // precisely: handle all events with point p

1. Let $U(p)=$ set of segments whose Upper endpoint is p.

These segments are stored with the event point p (will be added to T)
2. Search T for all segments $S(p)$ that contain p (are adjacent in T):

Let $L(p) \cup S(p)=$ segments whose Lower endpoint is p
Let $C(p) \cup S(p)=$ segments that Contain p in interior
3. if($L(p) \cup U(p) \cup C(p)$ contains more than one segment)
4. report p as intersection \circ together with $L(p), U(p), C(p)$
5. Delete the segments in $L(p) \cup C(p)$ from T

6. if($U(p) \cup C(p)=\varnothing)$ then findNewEvent $\left(s_{l}, s_{r}, p\right) \quad / /$ left \& right neighbors
7. else Insert the segments in $U(p) \cup C(p)$ into T // reverse order of $C(p)$ in T (order as below ℓ, horizontal segment as the last)
8. $\quad s^{\prime}=$ leftmost segm. of $U(p) \cup C(p)$; findNewEvent $\left(s_{I}, s^{\prime}, p\right)$
9. $s^{\prime \prime}=$ rightmost segm. of $U(p) \cup C(p)$; findNewEvent $\left(s^{\prime \prime}, s_{r}, p\right)$

DCGI

Handle Events

handleEventPoint (p) // precisely: handle all events with point p

1. Let $U(p)=$ set of segments whose Upper endpoint is p.

These segments are stored with the event point p (will be added to T)
2. Search T for all segments $S(p)$ that contain p (are adjacent in T):

Let $L(p) \cup S(p)=$ segments whose Lower endpoint is p
Let $C(p) \cup S(p)=$ segments that Contain p in interior
3. if($L(p) \cup U(p) \cup C(p)$ contains more than one segment)
4. report p as intersection \circ together with $L(p), U(p), C(p)$
5. Delete the segments in $L(p) \cup C(p)$ from T

6. if($U(p) \cup C(p)=\varnothing)$ then findNewEvent $\left(s_{l}, s_{r}, p\right) \quad / /$ left \& right neighbors
7. else Insert the segments in $U(p) \cup C(p)$ into T // reverse order of $C(p)$ in T (order as below ℓ, horizontal segment as the last)
8. $\quad s^{\prime}=$ leftmost segm. of $U(p) \cup C(p)$; findNewEvent $\left(s_{I}, s^{\prime}, p\right)$
9. $s^{\prime \prime}=$ rightmost segm. of $U(p) \cup C(p)$; findNewEvent $\left(s^{\prime \prime}, s_{r}, p\right)$

DCGI

Handle Events

handleEventPoint (p) // precisely: handle all events with point p

1. Let $U(p)=$ set of segments whose Upper endpoint is p.

These segments are stored with the event point p (will be added to T)
2. Search T for all segments $S(p)$ that contain p (are adjacent in T):

Let $L(p) \cup S(p)=$ segments whose Lower endpoint is p
Let $C(p) \cup S(p)=$ segments that Contain p in interior
3. if($L(p) \cup U(p) \cup C(p)$ contains more than one segment)
4. report p as intersection \circ together with $L(p), U(p), C(p)$
5. Delete the segments in $L(p) \cup C(p)$ from T

6. if($U(p) \cup C(p)=\varnothing)$ then findNewEvent $\left(s_{l}, s_{r}, p\right) \quad / /$ left \& right neighbors
7. else Insert the segments in $U(p) \cup C(p)$ into T // reverse order of $C(p)$ in T (order as below ℓ, horizontal segment as the last)
8. $\quad s^{\prime}=$ leftmost segm. of $U(p) \cup C(p)$; findNewEvent $\left(s_{I}, s^{\prime}, p\right)$
9. $s^{\prime \prime}=$ rightmost segm. of $U(p) \cup C(p)$; findNewEvent $\left(s^{\prime \prime}, s_{r}, p\right)$

DCGI

Handle Events

handleEventPoint (p) // precisely: handle all events with point p

1. Let $U(p)=$ set of segments whose Upper endpoint is p.

These segments are stored with the event point p (will be added to T)
2. Search T for all segments $S(p)$ that contain p (are adjacent in T):

Let $L(p) \cup S(p)=$ segments whose Lower endpoint is p
Let $C(p) \cup S(p)=$ segments that Contain p in interior
3. if($L(p) \cup U(p) \cup C(p)$ contains more than one segment)
4. report p as intersection \circ together with $L(p), U(p), C(p)$
5. Delete the segments in $L(p) \cup C(p)$ from T

6. if($U(p) \cup C(p)=\varnothing)$ then findNewEvent $\left(s_{l}, s_{r}, p\right) \quad / /$ left \& right neighbors
7. else Insert the segments in $U(p) \cup C(p)$ into T // reverse order of $C(p)$ in T (order as below ℓ, horizontal segment as the last)
8. $\quad s^{\prime}=$ leftmost segm. of $U(p) \cup C(p)$; findNewEvent $\left(s_{I}, s^{\prime}, p\right)$
9. $s^{\prime \prime}=$ rightmost segm. of $U(p) \cup C(p)$; findNewEvent $\left(s^{\prime \prime}, s_{r}, p\right)$

DCGI

Detection of new intersections

findNewEvent $\left(s_{l}, s_{r}, p\right) \quad$ I/ with handling of horizontal segments Input: two segments (left \& right from p in T) and a current event point p Output: updated event queue Q with new intersection。 1. if [(s_{I} and s_{r} intersect below the sweep line $\left.\ell\right) / /$ intersection below ℓ

Non-overlapping or ($s_{\text {r }}$ intersect s " on ℓ and to the right of p)
and(the intersection \circ is not present in Q)
2. then
insert intersection ${ }^{\circ}$ as a new event into Q

- Reported intersection - line 4
- New intersection to Q - line $6,8,9$

s " is horizontal and to the right of p (a) 3

Line segment intersections

- Memory $\mathrm{O}(I)=\mathrm{O}\left(\mathrm{n}^{2}\right)$ with duplicities in Q or $\mathrm{O}(\mathrm{n})$ with duplicities in Q deleted
- Operational complexity
$-n+I$ stops
$-\log n$ each
=> $O(I+n) \log n$ total
- The algorithm is by Bentley-Ottmann

Bentley, J. L.; Ottmann, T. A. (1979), "Algorithms for reporting and counting geometric intersections", IEEE Transactions on Computers C-28 (9): 643-647, doi:10.1109/TC.1979.1675432.

See also http://wapedia.mobi/en/Bentley\�\�\�0ttmann algorithm

Overlay of two subdivisions

 (intersection of DCELs)

Overlay of two subdivisions

Overlay of two subdivisions

Overlay is a new planar subdivision

Sweep line overlay algorithm

Sweep line overlay algorithm

Compute new planar subdivision
Re-use not intersected half-edge records

Sweep line overlay algorithm

Compute new planar subdivision
Re-use not intersected half-edge records
Compute intersections and new half-edge records

Sweep line overlay algorithm

Compute new planar subdivision
Re-use not intersected half-edge records
Compute intersections and new half-edge records
Compute labels of new faceSFelkel: computational geometry

Sweep line overlay algorithm

Compute new planar subdivision
Re-use not intersected half-edge records
Compute intersections and new half-edge records
Compute labels of new faceSFelkel: computational geometry

Sweep line overlay algorithm

Compute new planar subdivision
Re-use not intersected half-edge records
Compute intersections and new half-edge records
Compute labels of new faceSFelkel: computational geometry

Sweep line overlay algorithm

Compute new planar subdivision
Re-use not intersected half-edge records
Compute intersections and new half-edge records
Compute labels of new faceSFelkel: computational geometry

The algorithm principle

Copy DCELs of both subdivisions to invalid DCEL \mathcal{D}
Transform the result into a valid DCEL for the subdivision overlay $\mathcal{O}\left(S_{1}, S_{2}\right)$

- Compute the intersection of edges (from different subdivisions $S_{1} \cap S_{2}$)
- Link together appropriate parts of the two DCELs
- Vertex and half-edge records
- Face records

At an Event point

- Update queue Q (pop, delete intersections of separated edges below) and sweep line status tree \mathcal{T} (addremove/swap edges,
compute intersections with neighbors) as in line segment intersection algorithm
(cross pointers between edges in \mathcal{T} and \mathcal{D} to access part of \mathcal{D} when processing an intersection)
- For vertex from one subdivision
- No additional work
- For Intersection of edges from different subdivisions
- Link both DCELs
- Handle all possible cases

Three types of intersections

New are intersections of different subdivisions

vertex - vertex: overlap of vertices

vertex - edge: edge passes through a vertex
edge - edge: edges intersect in their interior

Three types of intersections

New are intersections of different subdivisions

vertex - vertex: overlap of vertices

vertex - edge: edge passes through a vertex
Let's discuss this case, the other two are similar

edge - edge: edges intersect in their interior

\qquad

Felkel: Computational geometry

vertex - edge update - the principle

Pointers around the end-points of edge e

1. Edge $e=(u, w)$ splits into two edges e^{\prime} and $e^{\prime \prime}$ at intersection v

$$
e^{\prime}=(w, v) \quad e^{\prime \prime}=(v, u)
$$

2. Shorten half-edge (w, u) to $(w, v))$ Shorten half-edge (u, w) to (u, v))
3. Create their twin (v, w) for (w, v)

Create their twin (v, u) for (u, v)
4. Set new twin's next to former edge e next

$$
\begin{aligned}
& \operatorname{next}(v, u)=\operatorname{next}(w, u) \text { now in next }(w, v) \\
& \operatorname{next}(v, w)=\operatorname{next}(u, w) \text { now in next }(u, v)
\end{aligned}
$$

5. Set prev pointers to new twins

$$
\begin{aligned}
& \operatorname{prev}(\operatorname{next}(v, u))=(v, u) \\
& \operatorname{prev}(\operatorname{next}(v, w))=(v, w)
\end{aligned}
$$

Pointers around the end-points of edge e

1. Edge $e=(u, w)$ splits into two edges e^{\prime} and $e^{\prime \prime}$ at intersection v

$$
e^{\prime}=(w, v) \quad e^{\prime \prime}=(v, u)
$$

2. Shorten half-edge (w, u) to $(w, v))$ Shorten half-edge (u, w) to $(u, v))$
3. Create their twin (v, w) for (w, v)

Create their twin (v, u) for (u, v)
(4. Set new twin's next to former edge e next $\operatorname{next}(v, u)=\operatorname{next}(w, u)$ now in $\operatorname{next}(w, v)$ $\operatorname{next}(v, w)=\operatorname{next}(u, w)$ now in next (u, v)
5. Set prev pointers to new twins

$$
\operatorname{prev}(\operatorname{next}(v, u))=(v, u)
$$

$$
\operatorname{prev}(\operatorname{next}(v, w))=(v, w)
$$

Pointers around the end-points of edge e

1. Edge $e=(u, w)$ splits into two edges e^{\prime} and $e^{\prime \prime}$ at intersection v

2. Shorten half-edge (w, u) to $(w, v))$ Shorten half-edge (u, w) to (u, v)
3. Create their twin (v, w) for (w, v)

Create their twin (v, u) for (u, v)
(4. Set new twin's next to former edge e next $\operatorname{next}(v, u)=\operatorname{next}(w, u)$ now in next (w, v) $\operatorname{next}(v, w)=\operatorname{next}(u, w)$ now in next (u, v)
5. Set prev pointers to new twins

$$
\operatorname{prev}(\operatorname{next}(v, u))=(v, u)
$$

$$
\operatorname{prev}(\operatorname{next}(v, w))=(v, w)
$$

Pointers around the end-points of edge e

1. Edge $e=(u, w)$ splits into two edges e^{\prime} and $e^{\prime \prime}$ at intersection v

$$
e^{\prime}=(w, v) \quad e^{\prime \prime}=(v, u)
$$

2. Shorten half-edge (w, u) to $(w, v))$ Shorten half-edge (u, w) to (u, v)
3. Create their twin (v, w) for (w, v)

Create their twin (v, u) for (u, v)
(4. Set new twin's next to former edge e next $\operatorname{next}(v, u)=\operatorname{next}(w, u)$ now in next (w, v) $\operatorname{next}(v, w)=\operatorname{next}(u, w)$ now in next (u, v)
(5. Set prev pointers to new twins $\operatorname{prev}(\operatorname{next}(v, u))=(v, u)$ $\operatorname{prev}(\operatorname{next}(v, w))=(v, w)$

Pointers around the end-points of edge e

1. Edge $e=(u, w)$ splits into two edges e^{\prime} and $e^{\prime \prime}$ at intersection v

$$
e^{\prime}=(w, v) \quad e^{\prime \prime}=(v, u)
$$

2. Shorten half-edge (w, u) to $(w, v))$ Shorten half-edge (u, w) to (u, v)
3. Create their twin (v, w) for (w, v)

Create their twin (v, u) for (u, v)
(4. Set new twin's next to former edge e next $\operatorname{next}(v, u)=\operatorname{next}(w, u)$ now in next (w, v) $\operatorname{next}(v, w)=\operatorname{next}(u, w)$ now in next (u, v)
(5. Set prev pointers to new twins $\operatorname{prev}(\operatorname{next}(v, u))=(v, u)$ $\operatorname{prev}(\operatorname{next}(v, w))=(v, w)$

Pointers around intersection v

6. Find the next edge x for e^{\prime} from half-edge (w, v)
$k=$ first CW half-edge from e^{\prime} with v as origin
$\checkmark \operatorname{next}(w, v)=x$
$\rightarrow \operatorname{prev}(x)=(w, v)$
7. Find the prev edge for e^{\prime} from half-edge (v, w) $=$ first CCW half-edge from e^{\prime} with v as destination next, prev similarly
8. Find the next edge for $e^{\prime \prime}$ from half-edge (u, v) $=$ first CW half-edge from $e^{\prime \prime}$ with v as origin next, prev similarly
9. Find the prev edge for $e^{\prime \prime}$ from half-edge (v, u) $=$ first CCW half-edge from e^{\prime} with v as destination next, prev similarly

Pointers around intersection v

6. Find the next edge x for e^{\prime} from half-edge (w, v)
$k=$ first CW half-edge from e^{\prime} with v as origin
$\checkmark \operatorname{next}(w, v)=x$
$\rightarrow \operatorname{prev}(x)=(w, v)$
7. Find the prev edge for e^{\prime} from half-edge (v, w) $=$ first CCW half-edge from e^{\prime} with v as destination next, prev similarly
8. Find the next edge for $e^{\prime \prime}$ from half-edge (u, v) $=$ first CW half-edge from $e^{\prime \prime}$ with v as origin next, prev similarly
9. Find the prev edge for $e^{\prime \prime}$ from half-edge (v, u) $=$ first CCW half-edge from e^{\prime} with v as destination next, prev similarly

Pointers around intersection v

6. Find the next edge x for e^{\prime} from half-edge (w, v)

人 = first CW half-edge from e^{\prime} with v as origin
$\checkmark \operatorname{next}(w, v)=x$
$\rightarrow \operatorname{prev}(x)=(w, v)$
7. Find the prev edge for e^{\prime} from half-edge (v, w) $=$ first CCW half-edge from e^{\prime} with v as destination next, prev similarly
8. Find the next edge for $e^{\prime \prime}$ from half-edge (u, v) $=$ first CW half-edge from $e^{\prime \prime}$ with v as origin next, prev similarly
9. Find the prev edge for $e^{\prime \prime}$ from half-edge (v, u) $=$ first CCW half-edge from e^{\prime} with v as destination next, prev similarly

Pointers around intersection v

6. Find the next edge x for e^{\prime} from half-edge (w, v)
$k=$ first CW half-edge from e^{\prime} with v as origin
$\checkmark \operatorname{next}(w, v)=x$
$\rightarrow \operatorname{prev}(x)=(w, v)$
7. Find the prev edge for e^{\prime} from half-edge (v, w) $=$ first CCW half-edge from e^{\prime} with v as destination next, prev similarly
8. Find the next edge for $e^{\prime \prime}$ from half-edge (u, v) $=$ first CW half-edge from $e^{\prime \prime}$ with v as origin next, prev similarly
9. Find the prev edge for $e^{\prime \prime}$ from half-edge (v, u) $=$ first CCW half-edge from e^{\prime} with v as destination next, prev similarly

Pointers around intersection v

6. Find the next edge x for e^{\prime} from half-edge (w, v)
$k=$ first CW half-edge from e^{\prime} with v as origin
$\checkmark \operatorname{next}(w, v)=x$
$\rightarrow \operatorname{prev}(x)=(w, v)$
7. Find the prev edge for e^{\prime} from half-edge (v, w) $=$ first CCW half-edge from e^{\prime} with v as destination next, prev similarly
8. Find the next edge for $e^{\prime \prime}$ from half-edge (u, v) $=$ first CW half-edge from $e^{\prime \prime}$ with v as origin next, prev similarly
9. Find the prev edge for $e^{\prime \prime}$ from half-edge (v, u) $=$ first CCW half-edge from e^{\prime} with v as destination next, prev similarly

Pointers around intersection v

6. Find the next edge x for e^{\prime} from half-edge (w, v)
$k=$ first CW half-edge from e^{\prime} with v as origin
$\checkmark \operatorname{next}(w, v)=x$
$\rightarrow \operatorname{prev}(x)=(w, v)$
7. Find the prev edge for e^{\prime} from half-edge (v, w) $=$ first CCW half-edge from e^{\prime} with v as destination next, prev similarly
8. Find the next edge for $e^{\prime \prime}$ from half-edge (u, v) $=$ first CW half-edge from $e^{\prime \prime}$ with v as origin next, prev similarly
9. Find the prev edge for $e^{\prime \prime}$ from half-edge (v, u) $=$ first CCW half-edge from e^{\prime} with v as destination next, prev similarly

Pointers around intersection v

6. Find the next edge x for e^{\prime} from half-edge (w, v)

人 = first CW half-edge from e^{\prime} with v as origin
$\checkmark \operatorname{next}(w, v)=x$
$\rightarrow \operatorname{prev}(x)=(w, v)$
7. Find the prev edge for e^{\prime} from half-edge (v, w) $=$ first CCW half-edge from e^{\prime} with v as destination next, prev similarly
8. Find the next edge for $e^{\prime \prime}$ from half-edge (u, v) $=$ first CW half-edge from $e^{\prime \prime}$ with v as origin next, prev similarly
9. Find the prev edge for $e^{\prime \prime}$ from half-edge (v, u) $=$ first CCW half-edge from e^{\prime} with v as destination next, prev similarly

Pointers around intersection v

6. Find the next edge x for e^{\prime} from half-edge (w, v)
$k=$ first CW half-edge from e^{\prime} with v as origin
$\checkmark \operatorname{next}(w, v)=x$
$\rightarrow \operatorname{prev}(x)=(w, v)$
7. Find the prev edge for e^{\prime} from half-edge (v, w) $=$ first CCW half-edge from e^{\prime} with v as destination next, prev similarly
8. Find the next edge for $e^{\prime \prime}$ from half-edge (u, v) $=$ first CW half-edge from $e^{\prime \prime}$ with v as origin next, prev similarly
9. Find the prev edge for $e^{\prime \prime}$ from half-edge (v, u) $=$ first CCW half-edge from e^{\prime} with v as destination next, prev similarly

Pointers around intersection v

6. Find the next edge x for e^{\prime} from half-edge (w, v)
$k=$ first CW half-edge from e^{\prime} with v as origin
$\checkmark \operatorname{next}(w, v)=x$
$\rightarrow \operatorname{prev}(x)=(w, v)$
7. Find the prev edge for e^{\prime} from half-edge (v, w) $=$ first CCW half-edge from e^{\prime} with v as destination next, prev similarly
8. Find the next edge for $e^{\prime \prime}$ from half-edge (u, v) $=$ first CW half-edge from $e^{\prime \prime}$ with v as origin next, prev similarly
9. Find the prev edge for $e^{\prime \prime}$ from half-edge (v, u) $=$ first CCW half-edge from e^{\prime} with v as destination next, prev similarly

Pointers around intersection v

6. Find the next edge x for e^{\prime} from half-edge (w, v)
$k=$ first CW half-edge from e^{\prime} with v as origin
$\checkmark \operatorname{next}(w, v)=x$
$\rightarrow \operatorname{prev}(x)=(w, v)$
7. Find the prev edge for e^{\prime} from half-edge (v, w) $=$ first CCW half-edge from e^{\prime} with v as destination next, prev similarly
8. Find the next edge for $e^{\prime \prime}$ from half-edge (u, v) $=$ first CW half-edge from $e^{\prime \prime}$ with v as origin next, prev similarly
9. Find the prev edge for $e^{\prime \prime}$ from half-edge (v, u) $=$ first CCW half-edge from e^{\prime} with v as destination next, prev similarly

Time cost for updating half-edge records

- All operations with splitting of edges in intersections and reconnecting of prev, next pointers take O (1) time
- Locating of edge position in cyclic order
- around single vertex v takes $O(\operatorname{deg}(v))$
- which sums to $O(m)=$ number of edges processed by the edge intersection algorithm $=O(n)$
- The overall complexity is not increased

$$
\begin{aligned}
& O(n \log n+k \log n) \\
n= & \left|\mathrm{S}_{1}\right|+\left|\mathrm{S}_{2}\right| \quad k=\text { complexity of the overlay (} \approx \text { intersections) }
\end{aligned}
$$

Complexity of input subdivisions

Face records for the overlay subdivision

- Create face records for each face f in $\mathcal{O}\left(S_{1}, S_{2}\right)$
- Each face f has it unique outer boundary (CCW) (except the background that has none)
- Each face has its OuterComponent (f) - store edge of it
- Together faces = \#outer boundaries +1
- InnerComponents (f) - list of edges of holes (cw)
- Label of f in S_{1}

Used for Boolean operations such as $S_{1} \cap S_{2}, \quad S_{1} \cup S_{2}, \quad S_{1} \backslash S_{2}$

Polygon examples:

Extraction of faces

- Traverse cycles in DCEL (Tarjan alg. DFS) ...O(n)
- Decide, if the cycle is outer or inner boundary
- Find leftmost vertex of the cycle (bottom leftmost)
- Incident face lies to the left of edges
- Angle $<180^{\circ} \Rightarrow$ outer
- Angle $>180^{\circ} \Rightarrow$ inner (hole)

DCGI

Which boundary cycles bound same face?

- Single outer boundary shares the face with its holes - inner boundaries
- Graph
- Node for each cycle (3) inner
(2) outer (C)unbounded

- Arc if inner cycle has half-edge immediately to the left of the leftmost vertex
- Each connected component - set of cycles of one face

Graph \mathcal{G} of faces and their relations

Graph \mathcal{G} construction

Idea - during sweep line, we know the nearest left edge for every vertex v (and half-edge with origin v)

1. Make node for every cycle (graph traversal)
2. During plane sweep,

- store pointer to graph node for each edge
- remember the leftmost vertex and its nearest left edge

3. Create arc between cycles of the leftmost vertex an its nearest left edge

Face label determination

For intersection v of two edges:
During the sweep-line

- In both new pieces, remember the face of half-edge being split into two
After
- Label the face by both labels

For face in other face:
Known half-edge label only from S_{1}
Use graph \mathcal{G} to locate outer boundary label for face from S_{2}
(or store containing face f of other subdivision for each vertex)

Map overlay algorithm

MapOverlay $\left(S_{1}, S_{2}\right)$
Input：Two planar subdivisions S_{1} and S_{2} stored in DCEL
Output：The overlay of S_{1} and S_{2} stored in DCEL \mathcal{D}
Copy both DCELs for of S_{1} and S_{2} into DCEL \mathcal{D}
Use plane sweep to compute intersections of edges from S_{1} and S_{2}
－Update vertex and edge records in \mathcal{D} when the event involves edges of binthersection）
－Store the half－edge to the left of the event point at the vertex in \mathcal{D}
3．Traverse \mathcal{D}（depth－first search）to determine the boundary cycles
4．Construct the graph \mathcal{G}（boundary and hole cycles，immediately to the left of hole），
5．for each connected component in \mathcal{G} do

$C \leftarrow$ the unique outer boundary cycle
$f \leftarrow$ the face bounded by the cycle C ．
Create a face record for f
OuterComponent $(f) \leftarrow$ some half－edge of C ，© \subset_{i}
InnerComponents $(f) \leftarrow$ list of pointers to one half－edge e in each hole \mathcal{C}_{1} ．C_{k}
IncidentFace $(e) \leftarrow f$ for all half－edges bounding cycle C and the holes
12．Label each face of $O\left(S_{1}, S_{2}\right)$ with the names of the faces of S_{1} and S_{2} containing it

Map overlay algorithm

MapOverlay $\left(S_{1}, S_{2}\right)$
Input：Two planar subdivisions S_{1} and S_{2} stored in DCEL／／complexity n
Output：The overlay of S_{1} and S_{2} stored in DCEL \mathcal{D}
Copy both DCELs for of S_{1} and S_{2} into DCEL \mathcal{D}
Use plane sweep to compute intersections of edges from S_{1} and S_{2}
－Update vertex and edge records in \mathcal{D} when the event involves edges of binthersection）
－Store the half－edge to the left of the event point at the vertex in \mathcal{D}
3．Traverse \mathcal{D}（depth－first search）to determine the boundary cycles
4．Construct the graph \mathcal{G}（boundary and hole cycles，immediately to the left of hole），
5．for each connected component in \mathcal{G} do

$C \leftarrow$ the unique outer boundary cycle
$f \leftarrow$ the face bounded by the cycle C ．
Create a face record for f
OuterComponent $(f) \leftarrow$ some half－edge of C ，© \subset_{i}
InnerComponents $(f) \leftarrow$ list of pointers to one half－edge e in each hole \mathcal{C}_{1} ．C_{k}
IncidentFace $(e) \leftarrow f$ for all half－edges bounding cycle C and the holes
12．Label each face of $O\left(S_{1}, S_{2}\right)$ with the names of the faces of S_{1} and S_{2} containing it

Map overlay algorithm

MapOverlay $\left(S_{1}, S_{2}\right)$
Input：Two planar subdivisions S_{1} and S_{2} stored in DCEL／／complexity n
Output：The overlay of S_{1} and S_{2} stored in DCEL \mathcal{D}
Copy both DCELs for of S_{1} and S_{2} into DCEL $\mathcal{D} / / O(n)$
Use plane sweep to compute intersections of edges from S_{1} and S_{2}
－Update vertex and edge records in \mathcal{D} when the event involves edges of binthersection）
－Store the half－edge to the left of the event point at the vertex in \mathcal{D}
3．Traverse \mathcal{D}（depth－first search）to determine the boundary cycles
4．Construct the graph \mathcal{G}（boundary and hole cycles，immediately to the left of hole），
5．for each connected component in \mathcal{G} do

$C \leftarrow$ the unique outer boundary cycle
$f \leftarrow$ the face bounded by the cycle C ．
Create a face record for f
OuterComponent $(f) \leftarrow$ some half－edge of C ，© \subset_{i}
InnerComponents $(f) \leftarrow$ list of pointers to one half－edge e in each hole \mathcal{C}_{1} ．C_{k}
IncidentFace $(e) \leftarrow f$ for all half－edges bounding cycle C and the holes
12．Label each face of $O\left(S_{1}, S_{2}\right)$ with the names of the faces of S_{1} and S_{2} containing it

Map overlay algorithm

MapOverlay $\left(S_{1}, S_{2}\right)$

Input：Two planar subdivisions S_{1} and S_{2} stored in DCEL／／complexity n
Output：The overlay of S_{1} and S_{2} stored in DCEL \mathcal{D}
Copy both DCELs for of S_{1} and S_{2} into DCEL $\mathcal{D} / / O(n) \quad / / O(n \log n+k \log n)$
Use plane sweep to compute intersections of edges from S_{1} and S_{2}（intersection）
－Update vertex and edge records in \mathcal{D} when the event involves edges of both S_{1}, S_{2}
－Store the half－edge to the left of the event point at the vertex in \mathcal{D}
3．Traverse \mathcal{D}（depth－first search）to determine the boundary cycles
4．Construct the graph \mathcal{G}（boundary and hole cycles，immediately to the left of hole），
5．for each connected component in \mathcal{G} do

$C \leftarrow$ the unique outer boundary cycle
$f \leftarrow$ the face bounded by the cycle C ．
Create a face record for f
OuterComponent $(f) \leftarrow$ some half－edge of C ，$\left(_{i}\right.$
InnerComponents $(f) \leftarrow$ list of pointers to one half－edge e in each hole \mathcal{C}_{1} ． \mathfrak{C}_{k}
IncidentFace $(e) \leftarrow f$ for all half－edges bounding cycle C and the holes
12．Label each face of $O\left(S_{1}, S_{2}\right)$ with the names of the faces of S_{1} and S_{2} containing it

Map overlay algorithm

MapOverlay $\left(S_{1}, S_{2}\right)$

Input：Two planar subdivisions S_{1} and S_{2} stored in DCEL／／complexity n
Output：The overlay of S_{1} and S_{2} stored in DCEL \mathcal{D}
Copy both DCELs for of S_{1} and S_{2} into DCEL $\mathcal{D} / / O(n) / / O(n \log n+k \log n)$
Use plane sweep to compute intersections of edges from S_{1} and S_{2}（intersection）
－Store the half－edge to the left of the event point at the vertex in \mathcal{D}
3．Traverse \mathcal{D}（depth－first search）to determine the boundary cycles／／O（ n ）
4．Construct the graph \mathcal{G}（boundary and hole cycles，immediately to the left of hole），
5．for each connected component in \mathcal{G} do

$C \leftarrow$ the unique outer boundary cycle
$f \leftarrow$ the face bounded by the cycle C ．
Create a face record for f
OuterComponent $(f) \leftarrow$ some half－edge of C ，$\left(_{i}\right.$
InnerComponents $(f) \leftarrow$ list of pointers to one half－edge e in each hole \mathcal{C}_{1} ．C_{k}
IncidentFace $(e) \leftarrow f$ for all half－edges bounding cycle C and the holes
12．Label each face of $O\left(S_{1}, S_{2}\right)$ with the names of the faces of S_{1} and S_{2} containing it

Map overlay algorithm

MapOverlay $\left(S_{1}, S_{2}\right)$

Input：Two planar subdivisions S_{1} and S_{2} stored in DCEL／／complexity n
Output：The overlay of S_{1} and S_{2} stored in DCEL \mathcal{D}
Copy both DCELs for of S_{1} and S_{2} into DCEL $\mathcal{D} / / O(n) / / O(n \log n+k \log n)$
Use plane sweep to compute intersections of edges from S_{1} and S_{2}（intersection）
－Update vertex and edge records in \mathcal{D} when the event involves edges of both S_{1}, S_{2}
－Store the half－edge to the left of the event point at the vertex in \mathcal{D}

5．for each connected component in \mathcal{G} do
$C \leftarrow$ the unique outer boundary cycle
$f \leftarrow$ the face bounded by the cycle C ．
Create a face record for f
OuterComponent $(f) \leftarrow$ some half－edge of C ，©
－$/ / O(k)$
InnerComponents $(f) \leftarrow$ list of pointers to one half－edge e in each hole \mathfrak{C}_{1} ．\complement_{k}
IncidentFace $(e) \leftarrow f$ for all half－edges bounding cycle C and the holes
Label each face of $O\left(S_{1}, S_{2}\right)$ with the names of the faces of S_{1} and S_{2} containing it

Map overlay algorithm

MapOverlay $\left(S_{1}, S_{2}\right)$

Input：Two planar subdivisions S_{1} and S_{2} stored in DCEL／／complexity n
Output：The overlay of S_{1} and S_{2} stored in DCEL \mathcal{D}
Copy both DCELs for of S_{1} and S_{2} into DCEL $\mathcal{D} / / O(n) / / O(n \log n+k \log n)$
Use plane sweep to compute intersections of edges from S_{1} and S_{2}（（intersection）
－Update vertex and edge records in \mathcal{D} when the event involves edges of both S_{1}, S_{2}
－Store the half－edge to the left of the event point at the vertex in \mathcal{D}

5．for each connected component in \mathcal{G} do
$C \leftarrow$ the unique outer boundary cycle
$f \leftarrow$ the face bounded by the cycle C ．
Create a face record for f
OuterComponent $(f) \leftarrow$ some half－edge of C, © $_{i}$
－$/ / O(k)$
InnerComponents $(f) \leftarrow$ list of pointers to one half－edge e in each hole \mathfrak{C}_{1} ．\complement_{k}
IncidentFace $(e) \leftarrow f$ for all half－edges bounding cycle C and the holes
12．Label each face of $O\left(S_{1}, S_{2}\right)$ with the names of the faces of S_{1} and S_{2} containing it
UルリI

Running time

The overlay of two planar subdivisions with total complexity n can be constructed in

$$
O(n \log n+k \log n)
$$

where $k=$ complexity of the overlay (\approx intersections)

Axis parallel rectangles intersection

Intersection of axis parallel rectangles

- Given the collection of n isothetic rectangles, report all intersecting parts

Alternate sides
 belong to two pencils of lines (trsy přímek)
(often used with points in infinity
= axis parallel) 2D => 2 pencils

Brute force intersection

Brute force algorithm

Input: set S of axis parallel rectangles
Output: pairs of intersected rectangles

1. For every pair $\left(r_{i}, r_{j}\right)$ of rectangles $\in S, i \neq j$
2. if $\left(r_{i} \cap r_{j} \neq \varnothing\right)$ then
3. report $\left(r_{i}, r_{j}\right)$

Analysis

Preprocessing: None.
Query: $O\left(N^{2}\right) \quad\binom{N}{2}=\frac{N(N-1)}{2} \in O\left(N^{2}\right)$.
Storage: $O(N)$

Plane sweep intersection algorithm

- Vertical sweep line moves from left to right
- Stops at every x-coordinate of a rectangle (either at its left side or at its right side).
- active rectangles - a set
= rectangles currently intersecting the sweep line
- left side event of a rectangle \square - start
=> the rectangle is added to the active set.
- right side \square - end
=> the rectangle is deleted from the active set.
- The active set used to detect rectangle intersection

Example rectangles and sweep line

Interval tree as sweep line status structure

- Vertical sweep-line => only y-coordinates along it
- The status tree is drawn horizontal - turn 90° right as if the sweep line (y-axis) is horizontal

Intersection test - between pair of intervals

- Given two intervals I $=\left[\mathrm{y}_{1}, \mathrm{y}_{2}\right]$ and $\mathrm{I}{ }^{\prime}=\left[\mathrm{y}^{\prime}, \mathrm{y}^{\prime}{ }_{2}\right]$ the condition $I \cap l^{\prime}$ is equivalent to one of these mutually exclusive conditions:

$$
\text { a) } y_{1} \leq y_{1}^{\prime} \leq y_{2}
$$

OR
b) ${ }^{\prime}{ }_{1} \leq y_{1} \leq y^{\prime}{ }_{2}$

Intersection test - between pair of intervals

- Given two intervals I = $\left[\mathrm{y}_{1}, \mathrm{y}_{2}\right]$ and $\mathrm{I}{ }^{\prime}=\left[\mathrm{y}^{\prime}, \mathrm{y}^{\prime}{ }_{2}\right]$ the condition $\mathrm{I} \cap \mathrm{l}$ ' is equivalent to both of these conditions simultaneously:

2nd variant

2) $y_{1} \leq y^{\prime}{ }_{2}$

Intervals along the sweep line

Static interval tree - stores all end point y_{s}

- Let $v=y_{\text {med }}$ be the median of end-points of segments
- S_{l} : segments of S that are completely to the left of $y_{\text {med }}$
- $S_{\text {med }}$: segments of S that contain $y_{\text {med }}$
- $S_{r} \quad$: segments of S that are completely to the right of $y_{\text {med }}$

Static interval tree - Example

Static interval tree [Edelsbrunner80]

Primary structure - static tree for endpoints

Secondary lists of incident interval end-pts.

Active nodes - intersected by the sweep line

Entries in the event queue

$$
\begin{aligned}
& \left(x_{i}, \dot{y}_{i l}, \dot{y}_{i r}, t\right) \\
& \left(x_{1}, 1,3, \text { left }\right) \\
& \left(x_{2}, 2,4, \text { left }\right) \\
& \left(x_{3}, 1,3, \text { right }\right) \\
& \left(x_{4}, 2,4, \text { right }\right)
\end{aligned}
$$

Static nodes in the SL status tree 1,2,3,4

Query = sweep and report intersections

RectangleIntersections(S)

Input: Set S of rectangles
Output: Intersected rectangle pairs
$\begin{aligned} \text { 1. Preprocess }(S) & / / \text { create the interval tree } T \text { (for } y \text {-coords) } \\ & / / \text { and event queue } Q\end{aligned}$ (for x-coords)
2. while ($Q \neq \varnothing$) do

5. a) QueryInterval $\left(y_{i L}, y_{i R}, \operatorname{root}(T)\right) / /$ report intersections
6. b) InsertInterval $\left(y_{i L}, y_{i R}, \operatorname{root}(T)\right)$ // insert new interval
7. else $/ /$ right edge \square
8. c) DeleteInterval $\left(y_{i L}, y_{i R}, \operatorname{root}(T)\right)$

Preprocessing

Preprocess(S)

Input: \quad Set S of rectangles
Output: Primary structure of the interval tree T and the event queue Q

1. $\quad T=\operatorname{PrimaryTree}(S) \quad / /$ Construct the static primary structure // of the interval tree -> sweep line STATUS T
2. // Init event queue Q with vertical rectangle edges in ascending order $\sim x$ // Put the left edges with the same x ahead of right ones
3. for $i=1$ to n
4. insert $\left(\left(x_{i L}, y_{i L}, y_{i R}\right.\right.$, left $\left.), Q\right) / /$ left edges of i-th rectangle
5. insert $\left(\left(x_{i R}, y_{i L}, y_{i R}\right.\right.$, right $\left.), Q\right) \quad / /$ right edges

Interval tree - primary structure construction

PrimaryTree(S) I/ only the y-tree structure, without intervals Input: \quad Set S of rectangles
Output: Primary structure of an interval tree T

1. $S_{y}=$ Sort endpoints of all segments in S according to y-coordinate
2. $T=\operatorname{BST}\left(S_{y}\right)$
3. return T

BST(S_{y})

1. if $\left(\left|S_{y}\right|=0\right)$ return null
2. y Med $=$ median of $S_{y} \quad / /$ the smaller item for even S_{y}. size
3. $L=$ endpoints $p_{y} \leq y M e d$
4. $\mathrm{R}=$ endpoints $p_{y}>y \mathrm{Med}$
5. $t=$ new IntervalTreeNode(y Med)
6. t.left $=\mathrm{BST}(L)$
7. t.right $=\mathrm{BST}(R)$
8. return t

Interval tree - search the intersections

QueryInterval (b, e, T)
Input: Interval of the edge and current tree T
Output: Report the rectangles that intersect [b, e]

1. if($T=$ null) return
2. $\mathrm{i}=0$; if($\mathrm{b}<\mathrm{H}(\mathrm{v})<\mathrm{e})$ // forks at this node
3. while $(\operatorname{MR}(v) \cdot[i]>=b) \& \&(i<\operatorname{Count}(v))$ // Report all intervals inM
4. ReportIntersection; i++
5. QueryInterval(b,e,T.LPTR) • • // jump to active !
6. QueryInterval(b,e,T.RPTR) $-\quad / /$ node below
7. else if $(H(v) \leq b<e) \quad / / ~ s e a r c h ~ R I G H T ~(\leftarrow)$
8. while (MR(v).[i] >= b) \&\& (i < Count(v))
9. ReportIntersection; i++
10. QueryInterval(b,e,T.RPTR) - -
11. else $/ / \mathrm{b}<\mathrm{e} \leq \mathrm{H}(\mathrm{v}) / /$ search $\operatorname{LEFT}(\rightarrow)$ Crosses c
12. while (ML(v).[i] <=e)
13. ReportIntersection; i++
14. 卉 +QueryInterval (b,e, T.LPTR

DCGI

Interval tree - interval insertion

InsertInterval (b, e, T)
Input: Interval [b,e] and interval tree T
Output: T after insertion of the interval

1. $v=\operatorname{root}(T)$
2. while(v != null) // find the fork node
3. if $(H(v)<b<e)$
4. $\quad v=v . r i g h t \quad / /$ continue right
5. else if $(b<e<H(v))$
6. $\quad v=$ v.left $/ /$ continue left
7.
8.
9.
10.
11.
12. else // $\mathrm{b} \leq \mathrm{H}(\mathrm{v}) \leq e / /$ insert interval set v node to active connect LPTR resp. RPTR to its parent (active node above) insert [b,e] into list $M L(v)$ - sorted in ascending order of b's insert $[b, e]$ into list $M R(v)$ - sorted in descending order of e 's break
13. endwhile
14. return T

DCGI

Example 1

Example 1 - static tree on endpoints

$H(v)$ - value of node v

Interval insertion [1,3]
 a) Query Interval

Interval insertion [1,3] b) Insert Interval

DCGI

Interval insertion [1,3]

b) Insert Interval

DCGI

Interval insertion [2,4]

\square Active rectangle
Current node

DCGI

Search MR(v) only: $\longleftarrow \quad H(v) \leq b<e$
(2) $\leq 2<4$

Felkel: Computational geometry
(64/96)

Interval insertion [2,4]

b) Insert Interval

- Active node
[Drtina]
DCGI

Interval delete [1,3]

- Active node

Interval delete [1,3]

DCGI

Interval delete [2,4]

Active node
DCGI

Interval delete [2,4]

Example 2

Query = sweep and report intersections

RectangleIntersections(S)

 Input: Set S of rectanglesI/ this is a copy of the slide before II just to remember the algorithm

Output: Intersected rectangle pairs

1. Preprocess (S)	$/ /$ create the interval tree T (for y-coords)
	$/ /$ and event queue Q

2. while ($Q \neq \emptyset$) do

3. a) QueryInterval $\left(y_{i L}, y_{i R}, \operatorname{root}(T)\right) / /$ report intersections
4. b) InsertInterval $\left(y_{i L}, y_{i R}, \operatorname{root}(T)\right)$ // insert new interval
5. else $/ /$ right edge \square
6. c) DeleteInterval $\left(y_{i L}, y_{i R}, \operatorname{root}(T)\right)$

Example 2 - tree created by PrimaryTree(S)

Example 2 - slightly unbalanced tree

Insert [2,3] - empty => b) Insert Interval $\quad b \leq H(v) \leq e$

Insert [2,3] - empty => b) Insert Interval $\quad b \leq H(v) \leq e$

Insert [2,3] - empty => b) Insert Interval $\quad b \leq H(v) \leq e$

Insert [2,3] - empty => b) Insert Interval $\quad b \leq H(v) \leq e$

Insert [2,3] - empty => b) Insert Interval $\quad b \leq H(v) \leq e$

Insert [2,3] - empty => b) Insert Interval $\quad b \leq H(v) \leq e$

Insert [2,3] - empty => b) Insert Interval $\quad b \leq H(v) \leq e$

Insert [2,3] - empty => b) Insert Interval $\quad b \leq H(v) \leq e$

Insert [3,7]

Insert [3,7]

Insert [3,7]

Insert [3,7]

$$
H(v) \leq b<e
$$

Insert [3,7] b) Insert Interval

$$
b \leq H(v) \leq e
$$

Insert [3,7] b) Insert Interval

$$
\mathrm{b} \leq \mathrm{H}(\mathrm{v}) \leq \mathrm{e}
$$

Insert [0,2] b) Insert Interval 2/2

$$
b \leq H(v) \leq e
$$

Insert [1,5] a) Query Interval $1 / 2$

b $<\mathrm{H}(\mathrm{v})<\mathrm{e}$

Insert [1,5] a) Query Interval $1 / 2$

b $<\mathrm{H}(\mathrm{v})<\mathrm{e}$

Insert [1,5] a) Query Interval $1 / 2$

b $<\mathrm{H}(\mathrm{v})<\mathrm{e}$

Insert [1,5] a) Query Interval $1 / 2$
 $$
\mathrm{b}<\mathrm{H}(\mathrm{v})<\mathrm{e}
$$

Insert [1,5] a) Query Interval $1 / 2$
 $$
\mathrm{b}<\mathrm{H}(\mathrm{v})<\mathrm{e}
$$

Insert [1,5] a) Query Interval $2 / 2$

$$
H(v) \leq b<e
$$

$$
\begin{aligned}
& \text { for (all in } \mathrm{MR}(\mathrm{v}) \text {) test } \mathrm{MR}(\mathrm{v})[\mathrm{i}] \geq 1 \\
& => \\
& \text { report intersectión al } \\
& \text { go right, nil, stón }
\end{aligned}
$$

Insert [1,5] a) Query Interval $2 / 2$

$$
H(v) \leq b<e
$$

$$
\begin{aligned}
& \text { for (all in } \mathrm{MR}(\mathrm{v}) \text {) test } \mathrm{MR}(\mathrm{v})[\mathrm{i}] \geq 1 \\
& => \\
& \text { report intersection a } \\
& \text { go right, nil, stón }
\end{aligned}
$$

Insert [1,5] b) Insert Interval
 $$
\mathrm{b} \leq \mathrm{H}(\mathrm{v}) \leq \mathrm{e}
$$

Insert [7,8] a) Query Interval

$$
H(v) \leq b<e
$$

Insert [7,8] b) Insert Interval
 $\mathrm{b} \leq \mathrm{H}(\mathrm{v}) \leq \mathrm{e}$

Insert [7,8] b) Insert Interval

$$
b \leq H(v) \leq e
$$

Insert [7,8] b) Insert Interval

$$
b \leq H(v) \leq e
$$

Insert [7,8] b) Insert Interval
$b \leq H(v) \leq e$

Insert [7,8] b) Insert Interval
$\mathrm{b} \leq \mathrm{H}(\mathrm{v}) \leq \mathrm{e}$

Insert [7,8] b) Insert Interval
$\mathrm{b} \leq \mathrm{H}(\mathrm{v}) \leq \mathrm{e}$

Insert [7,8] b) Insert Interval
$\mathrm{b} \leq \mathrm{H}(\mathrm{v}) \leq \mathrm{e}$

Insert [7,8]
 b) Insert Interval

$\mathrm{b} \leq \mathrm{H}(\mathrm{v}) \leq \mathrm{e}$

Delete [3,7] Delete Interval
 $$
b \leq H(v) \leq e
$$

Insert [4,6] a) Query Interval
$H(v) \leq b<e$

Insert [4,6] a) Query Interval
$H(v) \leq b<e$

Insert [4,6] a) Query Interval
$H(v) \leq b<e$

Insert [4,6] a) Query Interval

$$
H(v) \leq b<e
$$

Insert [4,6] a) Query Interval

$$
H(v) \leq b<e
$$

Insert [4,6] a) Query Interval $\quad H(v) \leq b<e$

Insert [4,6] a) Query Interval $\quad H(v) \leq b<e$

Insert [4,6] a) Query Interval $\quad H(v) \leq b<e$

Insert $[4,6]$ a) Query Interval
 $H(v) \leq b<e$

Insert [4,6] b) Insert Interval

$H(v) \leq b<e$

Insert [4,6] b) Insert Interval

$H(v) \leq b<e$

Delete [1,5] Delete Interval
 $$
b \leq H(v) \leq e
$$

Delete [1,5] Delete Interval
 $$
b \leq H(v) \leq e
$$

Delete [0,2] Delete Interval $2 / 2$

$\mathrm{b} \leq \mathrm{H}(\mathrm{v}) \leq \mathrm{e}$

Delete [0,2] Delete Interval $2 / 2$

$\mathrm{b} \leq \mathrm{H}(\mathrm{v}) \leq \mathrm{e}$

Delete $[7,8]$ Delete Interval

$$
b \leq H(v) \leq e
$$

Delete $[7,8]$ Delete Interval

$$
b \leq H(v) \leq e
$$

Delete [7,8] Delete Interval
 $\mathrm{b} \leq \mathrm{H}(\mathrm{v}) \leq \mathrm{e}$

Delete [7,8] Delete Interval

$\mathrm{b} \leq \mathrm{H}(\mathrm{v}) \leq \mathrm{e}$

Delete $[7,8]$ Delete Interval

$$
b \leq H(v) \leq e
$$

Delete [7,8] Delete Interval
 $\mathrm{b} \leq \mathrm{H}(\mathrm{v}) \leq \mathrm{e}$

Delete $[2,3]$ Delete interval
 $$
b \leq H(v) \leq e
$$

Delete $[2,3]$ Delete interval
 $$
b \leq H(v) \leq e
$$

Delete $[2,3]$ Delete interval
 $$
b \leq H(v) \leq e
$$

Delete $[2,3]$ Delete interval $\mathrm{b} \leq \mathrm{H}(\mathrm{v}) \leq \mathrm{e}$

Delete $[2,3]$ Delete interval $\mathrm{b} \leq \mathrm{H}(\mathrm{v}) \leq \mathrm{e}$

Delete [2,3] Delete Interval
 $b \leq H(v) \leq e$

Delete $[4,6]$ Delete Interval
 $$
b \leq H(v) \leq e
$$

Delete $[4,6]$ Delete interval
 $$
b \leq H(v) \leq e
$$

Delete $[4,6]$ Delete interval
 $$
b \leq H(v) \leq e
$$

Delete $[4,6]$ Delete interval
 $$
b \leq H(v) \leq e
$$

Delete $[4,6]$ Delete interval
 $$
b \leq H(v) \leq e
$$

Empty tree

Complexities of rectangle intersections

- n rectangles, s intersected pairs found
- O($n \log n$) preprocessing time to separately sort
- x-coordinates of the rectangles for the plane sweep
- the y-coordinates for initializing the interval tree.
- The plane sweep itself takes $O(n \log n+s)$ time, so the overall time is $\mathrm{O}(n \log n+s)$
- O(n) space
- This time is optimal for a decision-tree algorithm (i.e., one that only makes comparisons between rectangle coordinates).

References

[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, SpringerVerlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapters 3 and 9, http://www.cs.uu.nil/geobook/
[Mount] Mount, D.: Computational Geometry Lecture Notes for Fall 2016, University of Maryland, Lecture 5. http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf
[Rourke] Joseph O'Rourke: .: Computational Geometry in C, Cambridge University Press, 1993, ISBN 0-521- 44592-2 http://maven.smith.edul~orourke/books/compgeom.html
[Drtina] Tomáš Drtina: Intersection of rectangles. Semestral Assignment. Computational Geometry course, FEL CTU Prague, 2006
[Kukral] Petr Kukrál: Intersection of rectangles. Semestral Assignment. Computational Geometry course, FEL CTU Prague, 2006
[Vigneron] Segment trees and interval trees, presentation, INRA, France, http://w3.jouy.inra.fr/unites/miaj/public/vigneron/cs4235/slides.html

