
INTERSECTIONS OF LINE
SEGMENTS AND
AXIS ALIGNED RECTANGLES,
OVERLAY OF SUBDIVISIONS
PETR FELKEL
FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Mount], [Kukral], and [Drtina]

Version from 19.11.2020

Talk overview

 Intersections of line segments (Bentley-Ottmann)
– Motivation
– Sweep line algorithm recapitulation
– Sweep line intersections of line segments

 Intersection of polygons or planar subdivisions
– See assignment [21] or [Berg, Section 2.3]

 Intersection of axis parallel rectangles
– See assignment [26]

Felkel: Computational geometry

(2 / 96)

Geometric intersections – what are they for?
One of the most basic problems in computational geometry
 Solid modeling

– Intersection of object boundaries in CSG

 Overlay of subdivisions, e.g. layers in GIS
– Bridges on intersections of roads and rivers
– Maintenance responsibilities (road network X county boundaries)

 Robotics
– Collision detection and collision avoidance

 Computer graphics
– Rendering via ray shooting (intersection of the ray with objects)

 …

Felkel: Computational geometry

(3 / 96)

Line segment intersection

Felkel: Computational geometry

(4 / 96)

Line segment intersection
 Intersection of complex shapes is often reduced to simpler

and simpler intersection problems
 Line segment intersection is the most basic intersection

algorithm
 Problem statement:

Given n line segments in the plane, report all points where
a pair of line segments intersect.

 Problem complexity
– Worst case – I = O(n2) intersections
– Practical case – only some intersections
– Use an output sensitive algorithm

• O(n log n + I) optimal randomized algorithm
• O(n log n + I log n) sweep line algorithm - % [Berg]

Felkel: Computational geometry

(5 / 96)

Plane sweep line algorithm recapitulation

 Horizontal line (sweep line, scan line) l moves
top-down (or vertical line: left to right) over the set of objects

 The move is not continuous, but l jumps from one
event point to another

– Event points are in priority queue or sorted list (~y)
– The (left) top-most event point is removed first
– New event points may be created

(usually as interaction of neighbors on the sweep line)
and inserted into the queue

 Scan-line status
– Stores information about the objects intersected by l
– It is updated while stopping on event point

P
os

tu
po

vý
 p

lá
n

S
ta

tu
s

Felkel: Computational geometry

(6 / 96)

Line segment intersection - Sweep line alg.
 Avoid testing of pairs of segments far apart
 Compute intersections of neighbors on the sweep line only
 O(n log n + I log n) time in O(n) memory

– 2n steps for end points,
– I steps for intersections,

– log n search the status tree

 Ignore “degenerate cases” (most of them will be solved later on)
– No segment is parallel to the sweep line
– Segments intersect in one point and do not overlap
– No three segments meet in a common point

Felkel: Computational geometry

(7 / 96)

Line segment intersections

Status = ordered sequence of segments
intersecting the sweep line l

Events (waiting in the priority queue)
= points, where the algorithm actually does something

– Segment end-points

• known at algorithm start

– Segment intersections between neighboring segments
along SL

• discovered as the sweep executes

Postupový plán

Stav

Felkel: Computational geometry

(8 / 96)

Detecting intersections

[Berg]

 Intersection events must be detected and inserted
to the event queue before they occur

 Given two segments a, b intersecting in point p,
there must be a placement of sweep line l prior
to p, such that segments a, b are adjacent along l
(only adjacent will be tested for intersection)

– segments a, b are not adjacent when the alg. starts
– segments a, b are adjacent just before p
=> there must be an event point when a,b become

adjacent and therefore are tested for intersection
=> All intersections are found

Felkel: Computational geometry

(9 / 96)

Data structures
Sweep line l status = order of segments along l
 Balanced binary search tree of segments
 Coords of intersections with l vary as l moves

=> store pointers to line segments in tree nodes
– Position of l is plugged in the y=mx+b to get the x-key

[Berg]

Felkel: Computational geometry

(10 / 96)

Data structures

Event queue (postupový plán, časový plán)

 Define: Order (top-down, lexicographic)

iff or and
top-down, left-right approach
(points on l treated left to right)

 Operations
– Insertion of computed intersection points
– Fetching the next event

(highest below l or the leftmost right of e)
– Test, if the segment is already present in the queue

(Locate and delete intersection event in the queue)

top-down

Felkel: Computational geometry

(11 / 96)

Data structures

Event queue (postupový plán, časový plán)

 Define: Order (top-down, lexicographic)

iff or and
top-down, left-right approach
(points on l treated left to right)

 Operations
– Insertion of computed intersection points
– Fetching the next event

(highest below l or the leftmost right of e)
– Test, if the segment is already present in the queue

(Locate and delete intersection event in the queue)

top-down

must have

Felkel: Computational geometry

(11 / 96)

Data structures

Event queue (postupový plán, časový plán)

 Define: Order (top-down, lexicographic)

iff or and
top-down, left-right approach
(points on l treated left to right)

 Operations
– Insertion of computed intersection points
– Fetching the next event

(highest below l or the leftmost right of e)
– Test, if the segment is already present in the queue

(Locate and delete intersection event in the queue)

top-down

must have

may
have

Felkel: Computational geometry

(11 / 96)

Problem with duplicities of intersections

Intersection may be detected many times

Felkel: Computational geometry

(12 / 96)

Problem with duplicities of intersections

Intersection may be detected many times

Felkel: Computational geometry

(12 / 96)

Problem with duplicities of intersections

Intersection may be detected many times

Felkel: Computational geometry

(12 / 96)

Problem with duplicities of intersections

1

Intersection may be detected many times

Felkel: Computational geometry

(12 / 96)

Problem with duplicities of intersections

1

Intersection may be detected many times

Felkel: Computational geometry

(12 / 96)

Problem with duplicities of intersections

1

Intersection may be detected many times

Felkel: Computational geometry

(12 / 96)

Problem with duplicities of intersections

1
2

Intersection may be detected many times

Felkel: Computational geometry

(12 / 96)

Problem with duplicities of intersections

1
2

Intersection may be detected many times

Felkel: Computational geometry

(12 / 96)

Problem with duplicities of intersections

1
2

Intersection may be detected many times

Felkel: Computational geometry

(12 / 96)

Problem with duplicities of intersections

1
2

Intersection may be detected many times

Felkel: Computational geometry

(12 / 96)

Problem with duplicities of intersections

1
2

3

Intersection may be detected many times

Felkel: Computational geometry

(12 / 96)

Problem with duplicities of intersections

3x detected
intersection

1
2

3

Intersection may be detected many times

Felkel: Computational geometry

(12 / 96)

Problem with duplicities of intersections

3x detected
intersection

1
2

3

Intersection may be detected many times

Felkel: Computational geometry

(12 / 96)

Data structures

Event queue data structure
a) Heap

– Problem: can not check duplicated intersection events
(reinvented & stored more than once)

– Intersections processed twice or even more times
– Memory complexity up to O(n2)

b) Ordered dictionary (balanced binary tree)
– Can check duplicated events (adds just constant factor)
– Nothing inserted twice
– If non-neighbor intersections are deleted

i.e., if only intersections of neighbors along l are stored
then memory complexity just O(n)

3x detected
intersection

1
2

3

Felkel: Computational geometry

(13 / 96)

Input:
Output:

Line segment intersection algorithm
FindIntersections(S)

A set S of line segments in the plane
The set of intersection points + pointers to segments in each

1. init an empty event queue Q and insert the segment endpoints
2. init an empty status structure T
3. while Q in not empty
4. remove next event p from Q
5. handleEventPoint(p)

Note: Upper-endpoint events store info about the segment

Upper endpoint
Intersection
Lower endpoint

top-down

Input:
Output:

Line segment intersection algorithm
FindIntersections(S)

A set S of line segments in the plane
The set of intersection points + pointers to segments in each

1. init an empty event queue Q and insert the segment endpoints
2. init an empty status structure T
3. while Q in not empty
4. remove next event p from Q
5. handleEventPoint(p)

Note: Upper-endpoint events store info about the segment

Upper endpoint
Intersection
Lower endpoint

Improved algorithm:
Handles all in p
in a single step

top-down

handleEventPoint() principle

 Upper endpoint U(p)
– insert p (on sj) to status T
– add intersections with left and

right neighbors to Q

 Intersection C(p)
– switch order of segments in T
– add intersections with nearest left

and nearest right neighbor to Q

 Lower endpoint L(p)
– remove p (on sl) from T
– add intersections of left and right

neighbors to Q

[Berg]

Felkel: Computational geometry

(15 / 96)

More than two segments incident

U(p) = {s2} start here
C(p) = {s1, s3} cross on l
L(p) = {s4, s5} end here [Berg]

Felkel: Computational geometry

(16 / 96)

Handle Events [modified Berg, page 25]

handleEventPoint(p) // precisely: handle all events with point p
1. Let U(p) = set of segments whose Upper endpoint is p.

These segments are stored with the event point p (will be added to T)
2. Search T for all segments S(p) that contain p (are adjacent in T):

Let L(p) ∪ S(p) = segments whose Lower endpoint is p
Let C(p) ∪ S(p) = segments that Contain p in interior

3. if(L(p) ∪ U(p) ∪ C(p) contains more than one segment)
4. report p as intersection together with L(p), U(p), C(p)
5. Delete the segments in L(p) ∪ C(p) from T
6. if(U(p) ∪ C(p) = ∅) then findNewEvent(sl, sr, p)
7. else Insert the segments in U(p) ∪ C(p) into T

(order as below l, horizontal segment as the last)
8. s’ = leftmost segm. of U(p) ∪ C(p); findNewEvent(sl , s’, p)
9. s’’ = rightmost segm. of U(p) ∪ C(p); findNewEvent(s’’, sr , p)

// reverse order of C(p) in T

p
C(p)

p
L(p)

// left & right neighbors

p srsl l

p

p

U(p)
l

Felkel: Computational geometry

(17 / 96)

Handle Events [modified Berg, page 25]

handleEventPoint(p) // precisely: handle all events with point p
1. Let U(p) = set of segments whose Upper endpoint is p.

These segments are stored with the event point p (will be added to T)
2. Search T for all segments S(p) that contain p (are adjacent in T):

Let L(p) ∪ S(p) = segments whose Lower endpoint is p
Let C(p) ∪ S(p) = segments that Contain p in interior

3. if(L(p) ∪ U(p) ∪ C(p) contains more than one segment)
4. report p as intersection together with L(p), U(p), C(p)
5. Delete the segments in L(p) ∪ C(p) from T
6. if(U(p) ∪ C(p) = ∅) then findNewEvent(sl, sr, p)
7. else Insert the segments in U(p) ∪ C(p) into T

(order as below l, horizontal segment as the last)
8. s’ = leftmost segm. of U(p) ∪ C(p); findNewEvent(sl , s’, p)
9. s’’ = rightmost segm. of U(p) ∪ C(p); findNewEvent(s’’, sr , p)

// reverse order of C(p) in T

p
C(p)

p
L(p)

// left & right neighbors

p srsl l

p
s’

s’’

p

U(p)
l

Felkel: Computational geometry

(17 / 96)

Handle Events [modified Berg, page 25]

handleEventPoint(p) // precisely: handle all events with point p
1. Let U(p) = set of segments whose Upper endpoint is p.

These segments are stored with the event point p (will be added to T)
2. Search T for all segments S(p) that contain p (are adjacent in T):

Let L(p) ∪ S(p) = segments whose Lower endpoint is p
Let C(p) ∪ S(p) = segments that Contain p in interior

3. if(L(p) ∪ U(p) ∪ C(p) contains more than one segment)
4. report p as intersection together with L(p), U(p), C(p)
5. Delete the segments in L(p) ∪ C(p) from T
6. if(U(p) ∪ C(p) = ∅) then findNewEvent(sl, sr, p)
7. else Insert the segments in U(p) ∪ C(p) into T

(order as below l, horizontal segment as the last)
8. s’ = leftmost segm. of U(p) ∪ C(p); findNewEvent(sl , s’, p)
9. s’’ = rightmost segm. of U(p) ∪ C(p); findNewEvent(s’’, sr , p)

// reverse order of C(p) in T

p
C(p)

p
L(p)

// left & right neighbors

p srsl l

psl

s’
s’’

p

U(p)
l

Felkel: Computational geometry

(17 / 96)

Handle Events [modified Berg, page 25]

handleEventPoint(p) // precisely: handle all events with point p
1. Let U(p) = set of segments whose Upper endpoint is p.

These segments are stored with the event point p (will be added to T)
2. Search T for all segments S(p) that contain p (are adjacent in T):

Let L(p) ∪ S(p) = segments whose Lower endpoint is p
Let C(p) ∪ S(p) = segments that Contain p in interior

3. if(L(p) ∪ U(p) ∪ C(p) contains more than one segment)
4. report p as intersection together with L(p), U(p), C(p)
5. Delete the segments in L(p) ∪ C(p) from T
6. if(U(p) ∪ C(p) = ∅) then findNewEvent(sl, sr, p)
7. else Insert the segments in U(p) ∪ C(p) into T

(order as below l, horizontal segment as the last)
8. s’ = leftmost segm. of U(p) ∪ C(p); findNewEvent(sl , s’, p)
9. s’’ = rightmost segm. of U(p) ∪ C(p); findNewEvent(s’’, sr , p)

// reverse order of C(p) in T

p
C(p)

p
L(p)

// left & right neighbors

p srsl l

psl
srs’
s’’

p

U(p)
l

Felkel: Computational geometry

(17 / 96)

Input:
Output:

Detection of new intersections
findNewEvent(sl , sr , p) // with handling of horizontal segments

two segments (left & right from p in T) and a current event point p
updated event queue Q with new intersection

1. if [(sl and sr intersect below the sweep line l) // intersection below l
or (sr intersect s’’ on l and to the right of p)] // horizontal segment
and(the intersection is not present in Q)

2. then
insert intersection as a new event into Q

sl and sr intersect below
sr and s’’ intersect on l,
s’’ is horizontal and to the right of p

Non-overlapping

p

srsl

p
s’’

s’

srsl
psl

s’ = leftmost from U(p) � C(p)
s’’ = rightmost from U(p) � C(p)

s’’

srs’

Reported intersection - line 4

New intersection to Q - line 6,8,9

l

line 8line 6

line 9 line 9

line 8

Line segment intersections

 Memory O(I) = O(n2) with duplicities in Q
or O(n) with duplicities in Q deleted

 Operational complexity
– n + I stops
– log n each
=> O(I + n) log n total

 The algorithm is by Bentley-Ottmann
Bentley, J. L.; Ottmann, T. A. (1979), "Algorithms for reporting and counting geometric intersections", IEEE
Transactions on Computers C-28 (9): 643-647, doi:10.1109/TC.1979.1675432 .

See also http://wapedia.mobi/en/Bentley%E2%80%93Ottmann_algorithm

Felkel: Computational geometry

(19 / 96)

Overlay of two subdivisions
(intersection of DCELs)

Felkel: Computational geometry

(20 / 96)

Overlay of two subdivisions

DCEL

hole

Felkel: Computational geometry

(21 / 96)

Overlay of two subdivisions

DCEL DCEL

Felkel: Computational geometry

(21 / 96)

Overlay is a new planar subdivision

DCEL (,)

Felkel: Computational geometry

(22 / 96)

Sweep line overlay algorithm

DCEL DCEL

Compute new planar subdivision

 Felkel: Computational geometry

(23 / 96)

Sweep line overlay algorithm

DCEL DCEL

Compute new planar subdivision
Re-use not intersected half-edge records

 Felkel: Computational geometry

(23 / 96)

Sweep line overlay algorithm

DCEL DCEL

Compute new planar subdivision
Re-use not intersected half-edge records
Compute intersections and new half-edge records

 Felkel: Computational geometry

(23 / 96)

Sweep line overlay algorithm

DCEL DCEL

Compute new planar subdivision
Re-use not intersected half-edge records
Compute intersections and new half-edge records
Compute labels of new facesFelkel: Computational geometry

(23 / 96)

Sweep line overlay algorithm

DCEL DCEL

Compute new planar subdivision
Re-use not intersected half-edge records
Compute intersections and new half-edge records
Compute labels of new facesFelkel: Computational geometry

(23 / 96)

Sweep line overlay algorithm

DCEL DCEL

Compute new planar subdivision
Re-use not intersected half-edge records
Compute intersections and new half-edge records
Compute labels of new facesFelkel: Computational geometry

(23 / 96)

Sweep line overlay algorithm

DCEL DCEL

Compute new planar subdivision
Re-use not intersected half-edge records
Compute intersections and new half-edge records
Compute labels of new faces

(,)

Felkel: Computational geometry

(23 / 96)

The algorithm principle

Copy DCELs of both subdivisions to invalid DCEL
Transform the result into a valid DCEL for the
subdivision overlay

– Compute the intersection of edges
(from different subdivisions ∩)

– Link together appropriate parts of the two DCELs
• Vertex and half-edge records
• Face records

Felkel: Computational geometry

(24 / 96)

At an Event point

 Update queue (pop, delete intersections of separated edges below)

and sweep line status tree (add/remove/swap edges,
compute intersections with neighbors)

as in line segment intersection algorithm
(cross pointers between edges in and to access part of when
processing an intersection)

 For vertex from one subdivision
– No additional work

 For Intersection of edges from different subdivisions
– Link both DCELs
– Handle all possible cases

Felkel: Computational geometry

(25 / 96)

Three types of intersections

vertex – vertex: overlap of vertices

New are intersections of different subdivisions

vertex – edge: edge passes through a vertex

edge – edge: edges intersect in their interior

Felkel: Computational geometry

(26 / 96)

Three types of intersections

vertex – vertex: overlap of vertices

New are intersections of different subdivisions

vertex – edge: edge passes through a vertex

edge – edge: edges intersect in their interior

Let’s discuss this case,
the other two are similar

Felkel: Computational geometry

(26 / 96)

vertex – edge update – the principle

Before:
two half-edges

After:
four half-edges

(two shorter
and

two new)

Before:
The geometry

update

Felkel: Computational geometry

(27 / 96)

Pointers around the end-points of edge
1. Edge = , splits into two edges ′ and ′′ at intersection= (,) ′ = (,)

2. Shorten half-edge (,) to ,
Shorten half-edge (,) to ,

3. Create their twin (,) for ,
Create their twin (,) for ,

4. Set new twin’s next to former edge nextnext , = next , now in next ,next , = next , now in next ,
5. Set prev pointers to new twinsprev(next ,) = ,prev(next ,) = ,

half-edge , =
shortened ,
Its new twin

Felkel: Computational geometry

(28 / 96)

Pointers around the end-points of edge
1. Edge = , splits into two edges ′ and ′′ at intersection= (,) ′ = (,)

2. Shorten half-edge (,) to ,
Shorten half-edge (,) to ,

3. Create their twin (,) for ,
Create their twin (,) for ,

4. Set new twin’s next to former edge nextnext , = next , now in next ,next , = next , now in next ,
5. Set prev pointers to new twinsprev(next ,) = ,prev(next ,) = ,

half-edge , =
shortened ,
Its new twin

Felkel: Computational geometry

(28 / 96)

Pointers around the end-points of edge
1. Edge = , splits into two edges ′ and ′′ at intersection= (,) ′ = (,)

2. Shorten half-edge (,) to ,
Shorten half-edge (,) to ,

3. Create their twin (,) for ,
Create their twin (,) for ,

4. Set new twin’s next to former edge nextnext , = next , now in next ,next , = next , now in next ,
5. Set prev pointers to new twinsprev(next ,) = ,prev(next ,) = ,

half-edge , =
shortened ,
Its new twin

Felkel: Computational geometry

(28 / 96)

Pointers around the end-points of edge
1. Edge = , splits into two edges ′ and ′′ at intersection= (,) ′ = (,)

2. Shorten half-edge (,) to ,
Shorten half-edge (,) to ,

3. Create their twin (,) for ,
Create their twin (,) for ,

4. Set new twin’s next to former edge nextnext , = next , now in next ,next , = next , now in next ,
5. Set prev pointers to new twinsprev(next ,) = ,prev(next ,) = ,

half-edge , =
shortened ,
Its new twin

Felkel: Computational geometry

(28 / 96)

Pointers around the end-points of edge
1. Edge = , splits into two edges ′ and ′′ at intersection= (,) ′ = (,)

2. Shorten half-edge (,) to ,
Shorten half-edge (,) to ,

3. Create their twin (,) for ,
Create their twin (,) for ,

4. Set new twin’s next to former edge nextnext , = next , now in next ,next , = next , now in next ,
5. Set prev pointers to new twinsprev(next ,) = ,prev(next ,) = ,

half-edge , =
shortened ,
Its new twin

Felkel: Computational geometry

(28 / 96)

Pointers around intersection

6. Find the next edge for from half-edge ,
= first CW half-edge from ′ with as originnext , =prev = ,

7. Find the prev edge for from half-edge ,
= first CCW half-edge from ′ with as destination next, prev similarly

8. Find the next edge for from half-edge ,
= first CW half-edge from ′′ with as originnext, prev similarly

9. Find the prev edge for from half-edge ,
= first CCW half-edge from ′ with as destinationnext, prev similarly

Felkel: Computational geometry

(29 / 96)

Pointers around intersection

6. Find the next edge for from half-edge ,
= first CW half-edge from ′ with as originnext , =prev = ,

7. Find the prev edge for from half-edge ,
= first CCW half-edge from ′ with as destination next, prev similarly

8. Find the next edge for from half-edge ,
= first CW half-edge from ′′ with as originnext, prev similarly

9. Find the prev edge for from half-edge ,
= first CCW half-edge from ′ with as destinationnext, prev similarly

first CW half-edge
from ′

Felkel: Computational geometry

(29 / 96)

Pointers around intersection

6. Find the next edge for from half-edge ,
= first CW half-edge from ′ with as originnext , =prev = ,

7. Find the prev edge for from half-edge ,
= first CCW half-edge from ′ with as destination next, prev similarly

8. Find the next edge for from half-edge ,
= first CW half-edge from ′′ with as originnext, prev similarly

9. Find the prev edge for from half-edge ,
= first CCW half-edge from ′ with as destinationnext, prev similarly

first CW half-edge
from ′

Felkel: Computational geometry

(29 / 96)

Pointers around intersection

6. Find the next edge for from half-edge ,
= first CW half-edge from ′ with as originnext , =prev = ,

7. Find the prev edge for from half-edge ,
= first CCW half-edge from ′ with as destination next, prev similarly

8. Find the next edge for from half-edge ,
= first CW half-edge from ′′ with as originnext, prev similarly

9. Find the prev edge for from half-edge ,
= first CCW half-edge from ′ with as destinationnext, prev similarly

first CW half-edge
from ′

Felkel: Computational geometry

(29 / 96)

Pointers around intersection

6. Find the next edge for from half-edge ,
= first CW half-edge from ′ with as originnext , =prev = ,

7. Find the prev edge for from half-edge ,
= first CCW half-edge from ′ with as destination next, prev similarly

8. Find the next edge for from half-edge ,
= first CW half-edge from ′′ with as originnext, prev similarly

9. Find the prev edge for from half-edge ,
= first CCW half-edge from ′ with as destinationnext, prev similarly

first CW half-edge
from ′

Felkel: Computational geometry

(29 / 96)

Pointers around intersection

6. Find the next edge for from half-edge ,
= first CW half-edge from ′ with as originnext , =prev = ,

7. Find the prev edge for from half-edge ,
= first CCW half-edge from ′ with as destination next, prev similarly

8. Find the next edge for from half-edge ,
= first CW half-edge from ′′ with as originnext, prev similarly

9. Find the prev edge for from half-edge ,
= first CCW half-edge from ′ with as destinationnext, prev similarly

first CW half-edge
from ′

Felkel: Computational geometry

(29 / 96)

Pointers around intersection

6. Find the next edge for from half-edge ,
= first CW half-edge from ′ with as originnext , =prev = ,

7. Find the prev edge for from half-edge ,
= first CCW half-edge from ′ with as destination next, prev similarly

8. Find the next edge for from half-edge ,
= first CW half-edge from ′′ with as originnext, prev similarly

9. Find the prev edge for from half-edge ,
= first CCW half-edge from ′ with as destinationnext, prev similarly

first CW half-edge
from ′

Felkel: Computational geometry

(29 / 96)

Pointers around intersection

6. Find the next edge for from half-edge ,
= first CW half-edge from ′ with as originnext , =prev = ,

7. Find the prev edge for from half-edge ,
= first CCW half-edge from ′ with as destination next, prev similarly

8. Find the next edge for from half-edge ,
= first CW half-edge from ′′ with as originnext, prev similarly

9. Find the prev edge for from half-edge ,
= first CCW half-edge from ′ with as destinationnext, prev similarly

first CW half-edge
from ′

Felkel: Computational geometry

(29 / 96)

Pointers around intersection

6. Find the next edge for from half-edge ,
= first CW half-edge from ′ with as originnext , =prev = ,

7. Find the prev edge for from half-edge ,
= first CCW half-edge from ′ with as destination next, prev similarly

8. Find the next edge for from half-edge ,
= first CW half-edge from ′′ with as originnext, prev similarly

9. Find the prev edge for from half-edge ,
= first CCW half-edge from ′ with as destinationnext, prev similarly

first CW half-edge
from ′

Felkel: Computational geometry

(29 / 96)

Pointers around intersection

6. Find the next edge for from half-edge ,
= first CW half-edge from ′ with as originnext , =prev = ,

7. Find the prev edge for from half-edge ,
= first CCW half-edge from ′ with as destination next, prev similarly

8. Find the next edge for from half-edge ,
= first CW half-edge from ′′ with as originnext, prev similarly

9. Find the prev edge for from half-edge ,
= first CCW half-edge from ′ with as destinationnext, prev similarly

first CW half-edge
from ′

Felkel: Computational geometry

(29 / 96)

Time cost for updating half-edge records

 All operations with splitting of edges in
intersections and reconnecting of ,
pointers take time

 Locating of edge position in cyclic order
– around single vertex takes (deg ())
– which sums to = number of edges processed by

the edge intersection algorithm =
– The overall complexity is not increased(log + log)= S + S
Complexity of input subdivisions

= complexity of the overlay (≈intersections)

Felkel: Computational geometry

(30 / 96)

Face records for the overlay subdivision

 Create face records for each face in
– Each face has it unique outer boundary (CCW)

(except the background that has none)
– Each face has its OuterComponent() – store edge of it
– Together faces = #outer boundaries + 1

 InnerComponents() – list of edges of holes (cw)
 Label of in
 Label of in

Used for Boolean operations
such as ∩ , ∪ , \

Felkel: Computational geometry

(31 / 96)

Polygon examples:

Extraction of faces

 Traverse cycles in DCEL (Tarjan alg. DFS) ...O(n)
 Decide, if the cycle is outer or inner boundary

– Find leftmost vertex of the cycle (bottom leftmost)
– Incident face lies to the left of edges
– Angle < 180° ⇒ outer
– Angle > 180° ⇒ inner (hole)

outer

inner

Felkel: Computational geometry

(32 / 96)

Which boundary cycles bound same face?

 Single outer boundary shares the face with its
holes – inner boundaries

 Graph
– Node for each cycle

inner
outer unbounded

– Arc if inner cycle has half-edge immediately to the left
of the leftmost vertex

– Each connected component – set of cycles of one face

Felkel: Computational geometry

(33 / 96)

Graph of faces and their relations

 inner (cw) outer (ccw)

unbounded

Connected component in
─ represents a face
─ connects outer face with its holes

InnerComponents()

Felkel: Computational geometry

(34 / 96)

Graph construction

1. Make node for every cycle
(graph traversal)

2. During plane sweep,
– store pointer to graph node for

each edge
– remember the leftmost vertex and

its nearest left edge

3. Create arc between cycles of the
leftmost vertex an its nearest left
edge

4.

Idea – during sweep line, we know the nearest left
edge for every vertex (and half-edge with origin)

Felkel: Computational geometry

(35 / 96)

Face label determination

a b
(a,b)

b
a a

For intersection of two edges:
During the sweep-line
• In both new pieces, remember the

face of half-edge being split into two
After
• Label the face by both labels

a

b
(a,b)

a

b

For face in other face:
Known half-edge label only from
Use graph to locate outer boundary
label for face from
(or store containing face of other
subdivision for each vertex)

Felkel: Computational geometry

(36 / 96)

MapOverlay(,)
Input: Two planar subdivisions and stored in DCEL
Output: The overlay of and stored in DCEL
1. Copy both DCELs for of and into DCEL
2. Use plane sweep to compute intersections of edges from and

• Update vertex and edge records in when the event involves edges of both ,
• Store the half-edge to the left of the event point at the vertex in

3. Traverse (depth-first search) to determine the boundary cycles
4. Construct the graph (boundary and hole cycles, immediately to the left of hole),
5. for each connected component in do
6. ← the unique outer boundary cycle
7. ← the face bounded by the cycle .
8. Create a face record for
9. OuterComponent() ← some half-edge of ,
10. InnerComponents() ← list of pointers to one half-edge in each hole
11. IncidentFace() ← for all half-edges bounding cycle and the holes
12. Label each face of (,) with the names of the faces of and containing it

Map overlay algorithm

 …

(intersection)

 …

Felkel: Computational geometry

(37 / 96)

MapOverlay(,)
Input: Two planar subdivisions and stored in DCEL
Output: The overlay of and stored in DCEL
1. Copy both DCELs for of and into DCEL
2. Use plane sweep to compute intersections of edges from and

• Update vertex and edge records in when the event involves edges of both ,
• Store the half-edge to the left of the event point at the vertex in

3. Traverse (depth-first search) to determine the boundary cycles
4. Construct the graph (boundary and hole cycles, immediately to the left of hole),
5. for each connected component in do
6. ← the unique outer boundary cycle
7. ← the face bounded by the cycle .
8. Create a face record for
9. OuterComponent() ← some half-edge of ,
10. InnerComponents() ← list of pointers to one half-edge in each hole
11. IncidentFace() ← for all half-edges bounding cycle and the holes
12. Label each face of (,) with the names of the faces of and containing it

Map overlay algorithm

 …

(intersection)

 …

// complexity

Felkel: Computational geometry

(37 / 96)

MapOverlay(,)
Input: Two planar subdivisions and stored in DCEL
Output: The overlay of and stored in DCEL
1. Copy both DCELs for of and into DCEL
2. Use plane sweep to compute intersections of edges from and

• Update vertex and edge records in when the event involves edges of both ,
• Store the half-edge to the left of the event point at the vertex in

3. Traverse (depth-first search) to determine the boundary cycles
4. Construct the graph (boundary and hole cycles, immediately to the left of hole),
5. for each connected component in do
6. ← the unique outer boundary cycle
7. ← the face bounded by the cycle .
8. Create a face record for
9. OuterComponent() ← some half-edge of ,
10. InnerComponents() ← list of pointers to one half-edge in each hole
11. IncidentFace() ← for all half-edges bounding cycle and the holes
12. Label each face of (,) with the names of the faces of and containing it

Map overlay algorithm

 …

(intersection)

 …

// complexity

// ()

Felkel: Computational geometry

(37 / 96)

MapOverlay(,)
Input: Two planar subdivisions and stored in DCEL
Output: The overlay of and stored in DCEL
1. Copy both DCELs for of and into DCEL
2. Use plane sweep to compute intersections of edges from and

• Update vertex and edge records in when the event involves edges of both ,
• Store the half-edge to the left of the event point at the vertex in

3. Traverse (depth-first search) to determine the boundary cycles
4. Construct the graph (boundary and hole cycles, immediately to the left of hole),
5. for each connected component in do
6. ← the unique outer boundary cycle
7. ← the face bounded by the cycle .
8. Create a face record for
9. OuterComponent() ← some half-edge of ,
10. InnerComponents() ← list of pointers to one half-edge in each hole
11. IncidentFace() ← for all half-edges bounding cycle and the holes
12. Label each face of (,) with the names of the faces of and containing it

Map overlay algorithm

 …

(intersection)

 …

// (log + log)
// complexity

// ()

Felkel: Computational geometry

(37 / 96)

MapOverlay(,)
Input: Two planar subdivisions and stored in DCEL
Output: The overlay of and stored in DCEL
1. Copy both DCELs for of and into DCEL
2. Use plane sweep to compute intersections of edges from and

• Update vertex and edge records in when the event involves edges of both ,
• Store the half-edge to the left of the event point at the vertex in

3. Traverse (depth-first search) to determine the boundary cycles
4. Construct the graph (boundary and hole cycles, immediately to the left of hole),
5. for each connected component in do
6. ← the unique outer boundary cycle
7. ← the face bounded by the cycle .
8. Create a face record for
9. OuterComponent() ← some half-edge of ,
10. InnerComponents() ← list of pointers to one half-edge in each hole
11. IncidentFace() ← for all half-edges bounding cycle and the holes
12. Label each face of (,) with the names of the faces of and containing it

Map overlay algorithm

 …

(intersection)

 …

// (log + log)
// complexity

// ()
// ()

Felkel: Computational geometry

(37 / 96)

MapOverlay(,)
Input: Two planar subdivisions and stored in DCEL
Output: The overlay of and stored in DCEL
1. Copy both DCELs for of and into DCEL
2. Use plane sweep to compute intersections of edges from and

• Update vertex and edge records in when the event involves edges of both ,
• Store the half-edge to the left of the event point at the vertex in

3. Traverse (depth-first search) to determine the boundary cycles
4. Construct the graph (boundary and hole cycles, immediately to the left of hole),
5. for each connected component in do
6. ← the unique outer boundary cycle
7. ← the face bounded by the cycle .
8. Create a face record for
9. OuterComponent() ← some half-edge of ,
10. InnerComponents() ← list of pointers to one half-edge in each hole
11. IncidentFace() ← for all half-edges bounding cycle and the holes
12. Label each face of (,) with the names of the faces of and containing it

Map overlay algorithm

 …

(intersection)

 …

// (log + log)

// ()

// complexity

// ()
// ()

Felkel: Computational geometry

(37 / 96)

MapOverlay(,)
Input: Two planar subdivisions and stored in DCEL
Output: The overlay of and stored in DCEL
1. Copy both DCELs for of and into DCEL
2. Use plane sweep to compute intersections of edges from and

• Update vertex and edge records in when the event involves edges of both ,
• Store the half-edge to the left of the event point at the vertex in

3. Traverse (depth-first search) to determine the boundary cycles
4. Construct the graph (boundary and hole cycles, immediately to the left of hole),
5. for each connected component in do
6. ← the unique outer boundary cycle
7. ← the face bounded by the cycle .
8. Create a face record for
9. OuterComponent() ← some half-edge of ,
10. InnerComponents() ← list of pointers to one half-edge in each hole
11. IncidentFace() ← for all half-edges bounding cycle and the holes
12. Label each face of (,) with the names of the faces of and containing it

Map overlay algorithm

 …

(intersection)

 …

// (log + log)

// (log + log)
// ()

// complexity

// ()
// ()

Felkel: Computational geometry

(37 / 96)

Running time

The overlay of two planar subdivisions with total
complexity can be constructed in

where complexity of the overlay (intersections)

Felkel: Computational geometry

(38 / 96)

Axis parallel rectangles
intersection

Felkel: Computational geometry

(39 / 96)

Intersection of axis parallel rectangles

 Given the collection of n isothetic rectangles,
report all intersecting parts

r7

r2

r8

r6

r5
r4

r3

r1

Answer: (r1, r2) (r1, r3) (r1, r8) (r3, r4) (r3, r5) (r3, r9) (r4, r5) (r7, r8)

r9

Overlap

Inclusion

[?]

Alternate sides
belong to two
pencils of lines

(trsy přímek)

(often used with
points in infinity
= axis parallel)

2D => 2 pencils

Felkel: Computational geometry

(40 / 96)

Input:
Output:

Brute force intersection
Brute force algorithm

set of axis parallel rectangles
pairs of intersected rectangles

1. For every pair (,) of rectangles ∈ , ≠
2. if (∩ ≠ ∅) then
3. report (,)
Analysis
Preprocessing: None.
Query: 2 = () ∈ .
Storage:

Plane sweep intersection algorithm

 Vertical sweep line moves from left to right
 Stops at every x-coordinate of a rectangle

(either at its left side or at its right side).
 active rectangles – a set

= rectangles currently intersecting the sweep line
– left side event of a rectangle – start

=> the rectangle is added to the active set.
– right side – end

=> the rectangle is deleted from the active set.

 The active set used to detect rectangle intersection

Felkel: Computational geometry

(42 / 96)

Example rectangles and sweep line

not active
rectangle

active
rectangle

sweep line
[Drtina]

y

x

Felkel: Computational geometry

(43 / 96)

Interval tree as sweep line status structure

 Vertical sweep-line => only y-coordinates along it
 The status tree is drawn horizontal - turn 90° right

as if the sweep line (y-axis) is horizontal

y
L Rsweep line [Drtina]

y

not active
rectangle

active
rectangle

x
1 2 3 4 5 6

1 3 5

2
4

Felkel: Computational geometry

(44 / 96)

Intersection test – between pair of intervals

 Given two intervals I = [y1, y2] and I’ = [y’1, y’2]
the condition I I’ is equivalent to one of these
mutually exclusive conditions:

a) y1 y ’1 y2

b) y ’1 y1 y ’2
y’1 y’2

y1 y2

y1 y2

y ’1 y ’2

a) b) b)Intervals along the sweep line

Intersection (fork)

OR

1st variant

Felkel: Computational geometry

(45 / 96)

Intersection test – between pair of intervals

 Given two intervals I = [y1, y2] and I’ = [y’1, y’2]
the condition I I’ is equivalent to both of these
conditions simultaneously:

1) y ’1 y2

2) y1 y ’2
y’1 y’2

y1 y2

y1 y2

y ’1 y ’2

1,2) 1,2) 1,2)
Intervals along the sweep line

Intersection (fork)

2nd variant

y ’1 y’2
AND

2) 1)

Felkel: Computational geometry

(46 / 96)

Static interval tree – stores all end point
 Let = be the median of end-points of segments
 : segments of S that are completely to the left of
 : segments of S that contain
 : segments of S that are completely to the right of

[Vigneron]

y

Felkel: Computational geometry

(47 / 96)

Static interval tree – Example

L(v)
R(v)

[Vigneron]

Left ends – ascending
Right ends – descending

Felkel: Computational geometry

(48 / 96)

Static interval tree [Edelsbrunner80]

1 2 3 4 5 6

1 3 5

2

4

2,4 6,5

1 3
5 6

[Kukral]

 Stores intervals along y sweep
line

 3 kinds of information
- end points
- incident
intervals

- active nodes

Felkel: Computational geometry

(49 / 96)

Primary structure – static tree for endpoints

1 2 3 4 5 6

1 3 5

2

4

2,4 6,5

1 3

v = midpoint of all
segment endpoints

H(v) = value (y-coord) of v

5 6

[Kukral]

Static – known
from beginning

Felkel: Computational geometry

(50 / 96)

ML(v) – left endpoints of interval containing v
(sorted ascending)

MR(v) – right endpoints
(descending)

Secondary lists of incident interval end-pts.

1 2 3 4 5 6

1 3 5

2

4

2,4 6,5

1 3
ML(v) MR(v)

5 6

[Kukral]

Dynamic

Felkel: Computational geometry

(51 / 96)

Active nodes – intersected by the sweep line

1 2 3 4 5 6

1 3 5

2

4

2,4 6,5

1 3

Subset of all nodes currently
intersected by the sweep line
(nodes with intervals)

5 6

[Kukral]

RPTR

Active node

Active node

Active node

LPTR Dynamic

Felkel: Computational geometry

(52 / 96)

Entries in the event queue

X

Y

0

1

2

3

4

A

B

1

3

 (, , ,)
(, 1 , 3 , left)
(, 2 , 4 , left)
(, 1 , 3 , right)
(, 2 , 4 , right)

Static nodes in the SL status tree
1,2,3,4

Felkel: Computational geometry

(53 / 96)

Input:
Output:

Query = sweep and report intersections
RectangleIntersections()

Set of rectangles
Intersected rectangle pairs

1. Preprocess() // create the interval tree (for -coords)
// and event queue (for -coords)

2. while (≠ ∅) do
3. Get next entry (, , ,) from // ∈ { left | right }
4. if (= left) // left edge
5. a) QueryInterval (, , root()) // report intersections
6. b) InsertInterval (, , root()) // insert new interval
7. else // right edge
8. c) DeleteInterval (, , root())

Input:
Output:

Preprocessing
Preprocess()

Set of rectangles
Primary structure of the interval tree and the event queue 1. = PrimaryTree() // Construct the static primary structure

// of the interval tree -> sweep line STATUS

2. // Init event queue with vertical rectangle edges in ascending order ~
// Put the left edges with the same x ahead of right ones

3. for i = 1 to n

4. insert , , , left , // left edges of -th rectangle

5. insert , , , , // right edges

Input:
Output:

Interval tree – primary structure construction
PrimaryTree(S) // only the y-tree structure, without intervals

Set S of rectangles
Primary structure of an interval tree T

1. Sy = Sort endpoints of all segments in S according to y-coordinate
2. T = BST(Sy)
3. return T

BST(Sy)
1. if(|Sy | = 0) return null
2. yMed = median of Sy // the smaller item for even Sy.size
3. L = endpoints py yMed
4. R = endpoints py > yMed
5. t = new IntervalTreeNode(yMed)
6. t.left = BST(L)
7. t.right = BST(R)
8. return t

Input:
Output:

Interval tree – search the intersections
QueryInterval (b, e, T)

Interval of the edge and current tree T
Report the rectangles that intersect [b, e]

1. if(T = null) return
2. i=0; if(b < H(v) < e) // forks at this node
3. while (MR(v).[i] >= b) && (i < Count(v)) // Report all intervals inM
4. ReportIntersection; i++
5. QueryInterval(b,e,T.LPTR) // jump to active
6. QueryInterval(b,e,T.RPTR) // node below
7. else if (H(v) b < e) // search RIGHT ()
8. while (MR(v).[i] >= b) && (i < Count(v))
9. ReportIntersection; i++
10. QueryInterval(b,e,T.RPTR)
11. else // b < e H(v) //search LEFT()
12. while (ML(v).[i] <= e)
13. ReportIntersection; i++
14. QueryInterval(b,e,T.LPTR)

H(v) New interval being
tested for intersection

b e

Stored intervals
of active rectangles

T.LPTR T.RPTR

A

C
B

Crosses A,B

Crosses A,B,C Cross.B

Crosses A,B,C

Crosses C

Crosses nothing

Other new interval being
tested for intersection

Input:
Output:

Interval tree - interval insertion
InsertInterval (b, e, T)

Interval [b,e] and interval tree T
T after insertion of the interval

1. v = root(T)
2. while(v != null) // find the fork node
3. if (H(v) < b < e)
4. v = v.right // continue right
5. else if (b < e < H(v))
6. v = v.left // continue left
7. else // bH(v) e // insert interval
8. set v node to active
9. connect LPTR resp. RPTR to its parent (active node above)
10. insert [b,e] into list ML(v) – sorted in ascending order of b’s
11. insert [b,e] into list MR(v) – sorted in descending order of e’s
12. break
13. endwhile
14. return T

H(v)
New interval

being inserted

b e

b e

Example 1

Felkel: Computational geometry

(59 / 96)

Example 1 – static tree on endpoints

X

Y

0
1 2 3 4

1

2

3

4

1 3

2

[Drtina]

A

B

A

B

H(v) – value of node v

Felkel: Computational geometry

(60 / 96)

Interval insertion [1,3] a) Query Interval

X

Y

0
1 2 3 4

1

2

3

4

1 3

2
A

B

A

B

1

3

Current node

Active node

Active rectangle

[Drtina]

b < H(v) < e

1 < 2 < 3

Search MR(v) or ML(v):
MR(v) is empty
No active sons, stop

Felkel: Computational geometry

(61 / 96)

X

Y

0
1 2 3 4

1

2

3

4

1 3

2

Interval insertion [1,3] b) Insert Interval
b H(v) e

? 1 2 3 ?

A

B

Current node

Active node

Active rectangle
A

B

[Drtina]

Felkel: Computational geometry

(62 / 96)

X

Y

0
1 2 3 4

1

2

3

4

1 3

2

1 3

Interval insertion [1,3] b) Insert Interval

fork
=> to lists

A

B

Current node

Active node

Active rectangle
A

B

[Drtina]

b H(v) e

1 2 3

Felkel: Computational geometry

(63 / 96)

X

Y

0
1 2 3 4

1

2

3

4

1 31 3

H(v) b < e

2 2 < 4

Search MR(v) only:
MR(v)[1] = 3 ≥ 2?

=> intersection

Interval insertion [2,4] a) Query Interval

R(v)

A

B

Current node

Active node

Active rectangle

2

A

B

[Drtina]

Felkel: Computational geometry

(64 / 96)

X

Y

0
1 2 3 4

1

2

3

4

1 31,2 4,3

b H(v) e

2 2 4

Interval insertion [2,4] b) Insert Interval

fork
=> to lists

A

B

Current node

Active node

Active rectangle

2

A

B

[Drtina]

Felkel: Computational geometry

(65 / 96)

X

Y

0

1

2

3

4

1 2 3 4

1 31,2 4,3

Interval delete [1,3]

A

B

Current node

Active node

Active rectangle

2

A

B

[Drtina]

Felkel: Computational geometry

(66 / 96)

X

Y

0

1

2

3

4

1 2 3 4

1 32 4

Interval delete [1,3]

A

B

Current node

Active node

Active rectangle

2

A

B

[Drtina]

Felkel: Computational geometry

(67 / 96)

X

Y

0

1

2

3

4

1 2 3 4

1 32 4

Interval delete [2,4]

A

B

Current node

Active node

Active rectangle

2

A

B

[Drtina]

Felkel: Computational geometry

(68 / 96)

X

Y

0

1

2

3

4

1 2 3 4

1 3

2

Interval delete [2,4]

A

B

A

B

[Drtina]

Felkel: Computational geometry

(69 / 96)

Example 2

Felkel: Computational geometry

(70 / 96)

Input:
Output:

Query = sweep and report intersections
RectangleIntersections()

Set of rectangles
Intersected rectangle pairs

1. Preprocess() // create the interval tree (for -coords)
// and event queue (for -coords)

2. while (≠ ∅) do
3. Get next entry (, , ,) from // ∈ { left | right }
4. if (= left) // left edge
5. a) QueryInterval (, , root()) // report intersections
6. b) InsertInterval (, , root()) // insert new interval
7. else // right edge
8. c) DeleteInterval (, , root())

// this is a copy of the slide before
// just to remember the algorithm

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

1

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

1

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

1

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0

1

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0

1

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0

1

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0

1

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0

1

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0

1

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0

31

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0

31

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0

31

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0

31

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0

31

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0

31

6

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0

31

6

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0

31

6

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0

31

6

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

5

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0

31

6

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

5

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0

31

6

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

5

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0

31

6

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

5

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0

31

6

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

5

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0

31 7

6

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

5

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0

31 7

6

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

5

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0

31 7

6

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

5

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0

31 7

6

4

Example 2 – tree created by PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

5

2

Felkel: Computational geometry

(72 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

Example 2 – slightly unbalanced tree

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(73 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

a

b

c

d

e

f

Current node

Active node

Active rectangle

b H(v) eInsert [2,3] – empty => b) Insert Interval

Insert the new interval to secondary lists

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(74 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

a

b

c

d

e

f

Current node

Active node

Active rectangle

b H(v) eInsert [2,3] – empty => b) Insert Interval

Insert the new interval to secondary lists

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(74 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

a

b

c

d

e

f

Current node

Active node

Active rectangle

b H(v) eInsert [2,3] – empty => b) Insert Interval

Insert the new interval to secondary lists

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(74 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

a

b

c

d

e

f

Current node

Active node

Active rectangle

b H(v) e

? 2 3 3 ?

Insert [2,3] – empty => b) Insert Interval

Insert the new interval to secondary lists

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(74 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

a

b

c

d

e

f

Current node

Active node

Active rectangle

b H(v) e

? 2 3 3 ?

fork node => active
=> to lists

Insert [2,3] – empty => b) Insert Interval

Insert the new interval to secondary lists

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(74 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

a

b

c

d

e

f

Current node

Active node

Active rectangle

3

b H(v) e

? 2 3 3 ?

fork node => active
=> to lists

Insert [2,3] – empty => b) Insert Interval

Insert the new interval to secondary lists

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(74 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

a

b

c

d

e

f

2 3

Current node

Active node

Active rectangle

3

b H(v) e

? 2 3 3 ?

fork node => active
=> to lists

Insert [2,3] – empty => b) Insert Interval

Insert the new interval to secondary lists

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(74 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

a

b

c

d

e

f

2 3

Current node

Active node

Active rectangle

3

b H(v) e

? 2 3 3 ?

fork node => active
=> to lists

Insert [2,3] – empty => b) Insert Interval

Insert the new interval to secondary lists

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(74 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

2 3

for (all in MR(v)) test MR(v)[i] >= 3
=> report intersection c

go right, nil, stop

Insert [3,7] a) Query Interval H(v) b < e

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(75 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

2 3

for (all in MR(v)) test MR(v)[i] >= 3
=> report intersection c

go right, nil, stop

Insert [3,7] a) Query Interval H(v) b < e

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(75 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

2 3

for (all in MR(v)) test MR(v)[i] >= 3
=> report intersection c

go right, nil, stop

Insert [3,7] a) Query Interval H(v) b < e

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(75 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

2 3

for (all in MR(v)) test MR(v)[i] >= 3
=> report intersection c

go right, nil, stop

? 3 3 < 7 ?

Insert [3,7] a) Query Interval H(v) b < e

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(75 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

3 3 7

2,3 7,3

Insert [3,7] b) Insert Interval

Insert the new interval to secondary lists

b H(v) e

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(76 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

3 3 7

2,3 7,3

Insert [3,7] b) Insert Interval

Insert the new interval to secondary lists

b H(v) e

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

fork node => active
=> to lists

Felkel: Computational geometry

(76 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

2,3 7,3

? 0 < 2 3 ?

b < e H(v)Insert [0,2] a) Query Interval

for (all in ML(v)) test ML(v).[i] 2
=> report intersection c

go left, nil, stop

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(77 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

2,3 7,3

? 0 < 2 3 ?

b < e H(v)Insert [0,2] a) Query Interval

for (all in ML(v)) test ML(v).[i] 2
=> report intersection c

go left, nil, stop

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(77 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

2,3 7,3

? 0 < 2 < 3 ?
=> insert left

b < e <H(v)Insert [0,2] b) Insert Interval 1/2

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(78 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

2,3 7,3

? 0 1 2 ?

0 2

Insert the new interval to secondary lists
of the left son
link to parent

b H(v) eInsert [0,2] b) Insert Interval 2/2

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

fork node => active
=> to lists

LPTR

Felkel: Computational geometry

(79 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

2,3 7,3

0 2

1

5

b < H(v) < eInsert [1,5] a) Query Interval 1/2

for (all in MR(v))
=> report intersection c,d

go left -> 1
go right - nil

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(80 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

2,3 7,3

0 2

1

5

b < H(v) < eInsert [1,5] a) Query Interval 1/2

for (all in MR(v))
=> report intersection c,d

go left -> 1
go right - nil

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(80 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

2,3 7,3

0 2

1

5

b < H(v) < eInsert [1,5] a) Query Interval 1/2

for (all in MR(v))
=> report intersection c,d

go left -> 1
go right - nil

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(80 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

2,3 7,3

? 1 < 3 < 5 ?

0 2

1

5

b < H(v) < eInsert [1,5] a) Query Interval 1/2

for (all in MR(v))
=> report intersection c,d

go left -> 1
go right - nil

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(80 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

2,3 7,3

? 1 < 3 < 5 ?

0 2

1

5

b < H(v) < eInsert [1,5] a) Query Interval 1/2

for (all in MR(v))
=> report intersection c,d

go left -> 1
go right - nil

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(80 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

? 1 1 < 5 ?

0 2

H(v) b < eInsert [1,5] a) Query Interval 2/2

for (all in MR(v)) test MR(v)[i] 1
=> report intersection a

go right, nil, stop

2,3 7,3

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(81 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

? 1 1 < 5 ?

0 2

H(v) b < eInsert [1,5] a) Query Interval 2/2

for (all in MR(v)) test MR(v)[i] 1
=> report intersection a

go right, nil, stop

2,3 7,3

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(81 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

1,2,3 7,5,3

? 1 3 5 ?

0 2

Insert the new interval to secondary lists

b H(v) eInsert [1,5] b) Insert Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(82 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

1,2,3 7,5,3

0 2

H(v) b < eInsert [7,8] a) Query Interval

for (all in MR(v)) test MR(v).[i] 7
=> report intersection d

go right, nil, stop

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(83 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

1,2,3 7,5,3

0 2

H(v) b < eInsert [7,8] a) Query Interval

for (all in MR(v)) test MR(v).[i] 7
=> report intersection d

go right, nil, stop

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(83 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

1,2,3 7,5,3

0 2

H(v) b < eInsert [7,8] a) Query Interval

for (all in MR(v)) test MR(v).[i] 7
=> report intersection d

go right, nil, stop

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(83 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

? 3 7 < 8 ?

1,2,3 7,5,3

0 2

H(v) b < eInsert [7,8] a) Query Interval

for (all in MR(v)) test MR(v).[i] 7
=> report intersection d

go right, nil, stop

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(83 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

0 2

b H(v) eInsert [7,8] b) Insert Interval

7,5,31,2,3

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(84 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

right <= ? 3 7 < 8 ?

0 2

b H(v) eInsert [7,8] b) Insert Interval

7,5,31,2,3

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(84 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

right <= ? 3 7 < 8 ?

0 2

b H(v) eInsert [7,8] b) Insert Interval

7,5,31,2,3

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(84 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

right <= ? 3 7 < 8 ?
right <= ? 5 7 < 8 ?

0 2

b H(v) eInsert [7,8] b) Insert Interval

7,5,31,2,3

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(84 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

right <= ? 3 7 < 8 ?
right <= ? 5 7 < 8 ?

0 2

b H(v) eInsert [7,8] b) Insert Interval

7,5,31,2,3

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(84 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

right <= ? 3 7 < 8 ?
right <= ? 5 7 < 8 ?

7 7 8

0 2

b H(v) eInsert [7,8] b) Insert Interval

7,5,31,2,3

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(84 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

right <= ? 3 7 < 8 ?
right <= ? 5 7 < 8 ?

7 7 8

0 2

b H(v) eInsert [7,8] b) Insert Interval

7,5,31,2,3

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(84 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

right <= ? 3 7 < 8 ?
right <= ? 5 7 < 8 ?

7 7 8

0 2 7 8

Insert the new interval to secondary lists
link to parent

b H(v) eInsert [7,8] b) Insert Interval

7,5,31,2,3

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(84 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

? 3 7 8 ?

1,2 5,3

0 2 7 8

Delete the interval [3,7] from secondary lists

b H(v) eDelete [3,7] Delete Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

7

Felkel: Computational geometry

(85 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

1,2 5,3

0 2 7 8

H(v) b < eInsert [4,6] a) Query Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(86 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

1,2 5,3

0 2 7 8

H(v) b < eInsert [4,6] a) Query Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(86 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

1,2 5,3

0 2 7 8

H(v) b < eInsert [4,6] a) Query Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(86 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

3 4 < 6 ?

1,2 5,3

0 2 7 8

H(v) b < eInsert [4,6] a) Query Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(86 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

3 4 < 6 ?

1,2 5,3

0 2 7 8

H(v) b < eInsert [4,6] a) Query Interval

for (all in MR(v)) test MR(v).[i] 4 => report intersection b

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(86 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

3 4 < 6 ?

1,2 5,3

0 2 7 8

H(v) b < eInsert [4,6] a) Query Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(86 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

3 4 < 6 ?

1,2 5,3

0 2 7 8

H(v) b < eInsert [4,6] a) Query Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(86 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

3 4 < 6 ?

1,2 5,3

0 2 7 8

H(v) b < eInsert [4,6] a) Query Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(86 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

3 4 < 6 ?
4 < 6 7 ?

1,2 5,3

0 2 7 8

H(v) b < eInsert [4,6] a) Query Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(86 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

3 4 < 6 ?
4 < 6 7 ?

1,2 5,3

0 2 7 8

H(v) b < eInsert [4,6] a) Query Interval

for (all in ML(v)) test ML(v).[i] 6
=> no intersection

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(86 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

1,2 5,3

0 2 7 8

Insert the new interval to secondary lists

Insert [4,6] b) Insert Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

H(v) b < e

Felkel: Computational geometry

(87 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

1,2 5,3

0 2 7 8

Insert the new interval to secondary lists

Insert [4,6] b) Insert Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

H(v) b < e

Felkel: Computational geometry

(87 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

? 3 4 < 6 ?

1,2 5,3

0 2 7 8

Insert the new interval to secondary lists

Insert [4,6] b) Insert Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

H(v) b < e

Felkel: Computational geometry

(87 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

? 3 4 < 6 ?

1,2 5,3

0 2 7 8

Insert the new interval to secondary lists

Insert [4,6] b) Insert Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

H(v) b < e

Felkel: Computational geometry

(87 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

? 3 4 < 6 ?
? 4 5 6 ?

1,2 5,3

0 2 7 8

Insert the new interval to secondary lists

Insert [4,6] b) Insert Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

H(v) b < e

Felkel: Computational geometry

(87 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

? 3 4 < 6 ?
? 4 5 6 ?

1,2 5,3

0 2 7 8

4 6

Insert the new interval to secondary lists

Insert [4,6] b) Insert Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

H(v) b < e

Felkel: Computational geometry

(87 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

? 3 4 < 6 ?
? 4 5 6 ?

1,2 5,3

0 2 7 8

4 6

Insert the new interval to secondary lists

Insert [4,6] b) Insert Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

H(v) b < e

Felkel: Computational geometry

(87 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

? 3 4 < 6 ?
? 4 5 6 ?

1,2 5,3

0 2 7 8

4 6

Insert the new interval to secondary lists

Insert [4,6] b) Insert Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

H(v) b < e

Felkel: Computational geometry

(87 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

? 3 4 < 6 ?
? 4 5 6 ?

1,2 5,3

0 2 7 8

4 6

Insert the new interval to secondary lists

Insert [4,6] b) Insert Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

H(v) b < e

Felkel: Computational geometry

(87 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

2 3

0 2 7 8

? 1 3 5 ?

4 6

b H(v) e

Delete the interval [1,5] from secondary lists

Delete [1,5] Delete Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

1,2 5,3

Felkel: Computational geometry

(88 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

2 3

0 2 7 8

? 1 3 5 ?

4 6

b H(v) e

Delete the interval [1,5] from secondary lists

Delete [1,5] Delete Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(88 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

2 3

0 2 7 8

? 0 < 2 3?

4 6

b < e H(v)

Search for node with interval [0,2]

Delete [0,2] Delete Interval 1/2

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(89 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

2 3

0 2 7 8

? 0 < 2 3?

4 6

b < e H(v)

Search for node with interval [0,2]

Delete [0,2] Delete Interval 1/2

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(89 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

2 3

0 2 7 8

? 0 < 2 3?

4 6

b < e H(v)

Search for node with interval [0,2]

Delete [0,2] Delete Interval 1/2

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(89 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

2 3

0 2 7 8

? 0 1 2 ?

4 6

b H(v) e

Delete the interval [0,2] from secondary lists of node 1

Delete [0,2] Delete Interval 2/2

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(90 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

2 3

7 8

? 0 1 2 ?

4 6

b H(v) e

Delete the interval [0,2] from secondary lists of node 1

Delete [0,2] Delete Interval 2/2

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(90 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

2 3

4 6

b H(v) e

7 8

Search for and delete node with interval [7,8]

Delete [7,8] Delete Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(91 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

2 3

4 6

b H(v) e

7 8

Search for and delete node with interval [7,8]

Delete [7,8] Delete Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(91 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

2 3

? 3 7 < 8 ?

4 6

b H(v) e

7 8

Search for and delete node with interval [7,8]

Delete [7,8] Delete Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(91 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

2 3

? 3 7 < 8 ?
? 5 7 < 8 ?

4 6

b H(v) e

7 8

Search for and delete node with interval [7,8]

Delete [7,8] Delete Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(91 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

2 3

? 3 7 < 8 ?
? 5 7 < 8 ?
? 7 7 8 ?

4 6

b H(v) e

7 8

Search for and delete node with interval [7,8]

Delete [7,8] Delete Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(91 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

2 3

? 3 7 < 8 ?
? 5 7 < 8 ?
? 7 7 8 ?

4 6

b H(v) e

Search for and delete node with interval [7,8]

Delete [7,8] Delete Interval

7

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(91 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

? 2 3 3 ?

b H(v) e

Search for and delete node with interval [2,3]

Delete [2,3] Delete Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

4 6

[Drtina]

2 3

Felkel: Computational geometry

(92 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

? 2 3 3 ?

b H(v) e

Search for and delete node with interval [2,3]

Delete [2,3] Delete Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

4 6

[Drtina]

2 3

Felkel: Computational geometry

(92 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

? 2 3 3 ?

b H(v) e

Search for and delete node with interval [2,3]

Delete [2,3] Delete Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

4 6

[Drtina]

2 3

Felkel: Computational geometry

(92 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

? 2 3 3 ?

b H(v) e

Search for and delete node with interval [2,3]

Delete [2,3] Delete Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

4 6

[Drtina]
Felkel: Computational geometry

(92 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

? 2 3 3 ?

b H(v) e

Search for and delete node with interval [2,3]

Delete [2,3] Delete Interval

3

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

4 6

[Drtina]
Felkel: Computational geometry

(92 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

? 2 3 3 ?

b H(v) e

Search for and delete node with interval [2,3]

Delete [2,3] Delete Interval

3

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

4 6

[Drtina]
Felkel: Computational geometry

(92 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

b H(v) e

Search for and delete node with interval [4,6]

Delete [4,6] Delete Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

4 6

Felkel: Computational geometry

(93 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

? 4 5 6 ?

b H(v) e

Search for and delete node with interval [4,6]

Delete [4,6] Delete Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]

4 6

Felkel: Computational geometry

(93 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

? 4 5 6 ?

b H(v) e

Search for and delete node with interval [4,6]

Delete [4,6] Delete Interval

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(93 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

? 4 5 6 ?

b H(v) e

Search for and delete node with interval [4,6]

Delete [4,6] Delete Interval

5

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(93 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

? 4 5 6 ?

b H(v) e

Search for and delete node with interval [4,6]

Delete [4,6] Delete Interval

5

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(93 / 96)

X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0 2 4 6

1 7

5

3

Search for and delete node with interval [4,6]

Empty tree

5

Current node

Active node

Active rectangle

a

b

c

d

e

f

a

b

c d

e

f

[Drtina]
Felkel: Computational geometry

(94 / 96)

Complexities of rectangle intersections

 n rectangles, s intersected pairs found
 O(n log n) preprocessing time to separately sort

– x-coordinates of the rectangles for the plane sweep
– the y-coordinates for initializing the interval tree.

 The plane sweep itself takes O(n log n + s) time,
so the overall time is O(n log n + s)

 O(n) space
 This time is optimal for a decision-tree algorithm

(i.e., one that only makes comparisons between
rectangle coordinates).

Felkel: Computational geometry

(95 / 96)

References
[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:

Computational Geometry: Algorithms and Applications, Springer-
Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
77973-5, Chapters 3 and 9, http://www.cs.uu.nl/geobook/

[Mount] Mount, D.: Computational Geometry Lecture Notes for Fall 2016,
University of Maryland, Lecture 5.
http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf

[Rourke] Joseph O´Rourke: .: Computational Geometry in C, Cambridge
University Press, 1993, ISBN 0-521- 44592-2
http://maven.smith.edu/~orourke/books/compgeom.html

[Drtina] Tomáš Drtina: Intersection of rectangles. Semestral Assignment.
Computational Geometry course, FEL CTU Prague, 2006

[Kukral] Petr Kukrál: Intersection of rectangles. Semestral Assignment.
Computational Geometry course, FEL CTU Prague, 2006

[Vigneron] Segment trees and interval trees, presentation, INRA, France,
http://w3.jouy.inra.fr/unites/miaj/public/vigneron/cs4235/slides.html

Felkel: Computational geometry

(96 / 96)

