

TRIANGULATIONS

PETR FELKEL

FEL CTU PRAGUE felkel@fel.cvut.cz https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg] and [Mount]

Version from 21.11.2021

Talk overview

Polygon triangulation

- Monotone polygon triangulation
- Monotonization of non-monotone polygon
- Delaunay triangulation (DT) of points
 - Input: set of 2D points
 - Properties
 - Incremental Algorithm
 - Relation of DT in 2D and lower envelope (CH) in 3D and relation of VD in 2D to upper envelope in 3D

elkel: Computational geome

Polygon triangulation problem

- Triangulation (in general)
 = subdividing a spatial domain into simplices
- Application
 - decomposition of complex shapes into simpler shapes
 - art gallery problem (how many cameras and where)
- We will discuss
 - Triangulation of a simple polygon
 - without demand on triangle shapes
- Complexity of polygon triangulation
 - O(n) alg. exists [Chazelle91], but it is too complicated

Felkel: Computational geome

= practical algorithms run in O(*n* log *n*)

Simple polygon

- = region enclosed by a closed polygonal chain that does not intersect itself
- Visible points
- = two points on the boundary are visible if the interior of the line segment joining them lies entirely in the interior of the polygon
- Diagonal
- = line segment joining any pair of visible vertices

Felkel: Computational geome

- A polygonal chain C is <u>strictly monotone</u> with respect to line L, if any line orthogonal to L intersects C in at most one <u>point</u>
- A chain C is <u>monotone</u> with respect to line L, if any line orthogonal to L intersects C in at most one connected component (point, line segment,...)

■ Polygon P is monotone with respect to line L, if its boundary (bnd(P), ∂P) can be split into two chains, each of which is monotone with respect to L

elkel: Computational geon

- Horizontally monotone polygon
 = monotone with respect to x-axis
 - Can be tested in O(n)
 - Find leftmost and rightmost point in O(n)
 - Split boundary to upper and lower chain
 - Walk left to right, verifying that x-coord are nondecreasing

x-monotone polygon

Felkel: Computational geome

- Every simple polygon can be triangulated
- Simple polygon with n vertices consists of
 - exactly n 2 triangles
 - exactly n 3 diagonals
 - Each diagonal is added once $\Rightarrow O(n)$ sweep line algorithm exist

Simple polygon triangulation

Simple polygon can be triangulated in 2 steps:

- 1. Partition the polygon into x-monotone pieces
- 2. Triangulate all monotone pieces

(we will discuss the steps in the reversed order)

x-monotone polygon triangulation principle

- Sweep left to right in O(n) steps
- Triangulate everything you can by adding diagonals between visible points (left from the sweep line)

Event queue

Sweep line event queue

 x-sorted vertices of the polygon with lower/upper flag (2-bits, extremes to both)

Construction -O(n)

- Find min *x* and max *x*
- Extract lower and upper chain (between min and max x)
 Both are sorted in increasing order of their x-coords

Felkel: Computational geomet

Merge chains in O(n) keeping lower/upper flag

Regions on the left from the sweep line

- a) triangulated points were visible DONE
- b) untriangulated points were not visible
 - characterized by an invariant

(= a condition that is true after each step)

Reflex vertex and reflex chain

Untriangulated region is bounded by a reflex chain

- = a sequence of reflex vertices along the not-triangulated part of the polygon
- in the alg. is stored in stack

Reflex vertex interior angle $\geq \pi$

Main invariant of untriangulated region left from SL

i starts from 1, first vertex is v_1

- Let v_i , $i \ge 2$ be the vertex just being processed
- The untriangulated region left of v_i consists of two x-monotone chains (upper and lower) each containing at least one edge

If the chain from v_i to u has more than one edge

Felkel: Computational geom

- these edges form a reflex chain O
- the other chain consist of single edge
 - from u to vertex v_{i+k} right of v_i

The remaining regions are triangulated

Elsewhere, it would have been triangulated in this step

Triangulation algorithm

Data structures

- Event queue with merged upper and lower chain

6

5

4

2

 v_{i-1}

TOS

- Status
 - Current vertex v_i (sweep line position i)
 - Reflex vertices chain in the stack
 - Upper/lower chain flag
 all vertices except *u* are from the same chain
 u is from the opposite chain (bottom of stack)

Felkel: Computational geometry

Orientation test

- reflex(TOS, SOS, v_i)

Monotone polygon triangulation algorithm

Monotone polygon triangulation algorithm

Left vertex of the last added opposite diagonal is *u* Vertices between *u* and *v_i* are waiting in the stack

elkel: Computational geor

[Moun

Triangulation cases for V_i (vertex being just processed)

Case 1: v_i lies on the opposite chain than v_{i-1}

- Add diagonals from next(u) to v_{i-1} (empty the stack-pop)
- Set $u = v_{i-1}$. Last diagonal (invariant) is $v_{i-1}v_i$
- push $u = v_{i-1}$ and v_i to stack

Triangulation cases for V_i (vertex being just processed)

Case 2a: v_i is on the same chain as v_{i-1}

- walk back, adding diagonals joining v_i to prior vertices until the angle becomes > 180° or *u* is reached - pop
- push v_i to stack

Triangulation cases for V_i (vertex being just processed)

Case 2b: v_i is on the same chain as v_{i-1} - push v_i to stack

Polygon with n vertices has n-3 diagonals $\Rightarrow O(n)$ total time Algorithm sorted list of vertices through merging - O(n)stack operations $-\max n$ times O(1) - O(n)orientation test - v_i and top two entries - O(1) per diagonal (add diagonal or push)

Felkel: Computational geometr

Simple polygon triangulation

• Simple polygon can be triangulated in 2 steps:

- 1. Partition the polygon into x-monotone pieces
- 2. Triangulate all monotone pieces

(we discuss the steps in the reversed order)

1. Polygon subdivision into monotone pieces

X-monotonicity breaks the polygon in vertices with edges directed both left or both right (inner angle > 180°)

 The monotone polygons parts are separated by the splitting diagonals (joining vertex and helper)

Sweep line algorithm

Data structures for subdivision

- Events
 - Endpoints of edges, known from the beginning
 - Can be stored in sorted list no priority queue
- Sweep status
 - List of edges intersecting the sweep line (top to bottom)
 - Stored in O(log n) time dictionary (such as balanced tree)
- Event processing
 - Six event types based on local structure of edges around vertex v

Felkel: Computational geometr

Adding a diagonal

Find edges $e_a \& e_b$ (above and below v) the SL status

Use the rightmost visible vertex from edge e_a

Helper – definition

 $helper(e_a)$

- = the rightmost vertically visible processed vertex u on or below edge e_a on polygonal chain between edges $e_a \& e_b$
- is visible to every point along the sweep line between $e_a \& e_b$

Helper variants

helper(e_a) is defined only for edges intersected by the sweep line

Fix-up function

Fix-up(v, e)

- Gets vertex v and edge e above or incident to v
- if(helper(e) is merge vertex)
 add diagonal from v to helper(e)

Six event types of vertex v

splits the polygon 1. Split vertex

- Find edge e above v (along the SL), connect v with helper(e) by diagonal helper h(e)
- Add 2 new edges starting in v into SL status mark lower of them as e'
- Set new helper(e) = helper(e') = v
- 2. Merge vertex
 - Find two edges incident with v in SL status

Felkel: Computational geometr

- Delete both from SL status, the lower is e'
- Let e is edge immediately above v
- Make helper(e) = v
- \neq Fix-up(v, e) and Fix-up(v, e'

out

in

е

Polygon

interior is

white

Previous

Six event types of vertex v

3. Start vertex *

- Both incident edges lie right from v
- But interior angle <180°
- Insert both edges to SL status
- Set helper(upper edge) = v
- 4. End vertex

- Both incident edges lie left from v,
 e is the upper. Fix-up(v, e)
- Delete both edges from SL status
- No helper set we are out of the polygon

Felkel: Computational geome

Six event types of vertex v

- 5. Upper chain-vertex in
 - one side is to the left, one side to the right,
 interior is below, Fix-up(v, e)
 - replace the left edge with the right edge in the SL status
 - Make v helper of the new (upper) edge
- 6. Lower chain-vertex _____in
 - one side is to the left, one side to the right, interior is above
 - replace the left edge with the right edge in the SL status

- Make v helper of the edge e above, Fix-up(v, e)

Felkel: Computational geom

е

in

Polygon subdivision complexity

- Simple polygon with *n* vertices can be partitioned into x-monotone polygons in
 - $O(n \log n)$ time sort
 - $O(n \log n)$ time (*n* steps of SL, $\log n$ search each)
 - O(n) storage

Complete simple polygon triangulation 0(n log n) time for partitioning into monotone polygons 0(n) time for triangulation 0(n) storage

Delone triangulation

(Delaunay - de Launay)

Dual graph G for a Voronoi diagram

Delone graph DG(P)

Delaunay graph and Delaunay triangulation

- Delone graph DG(P) has convex polygonal faces (with number of vertices ≥3, equal to the degree of Voronoi vertex)
 - Triangulate faces with more vertices
 DG(P) sites not in general position
 such triangulation is not unique
- Delone triangulation DT(P)
 - = Delone graph for sites in general position
 - No four sites on a circle

DT is unique

Faces are triangles (Voronoi vertices have degree = 3)

elkel: Computational geor

Delone triangulation properties 1/2

Circumcircle property

- The circumcircle of any triangle in DT is empty (no sites) Proof: It's center is the Voronoi vertex
- Three points *a,b,c* are vertices of the same face of DG(P) iff circle through *a,b,c* contains no point of P in its interior
- Empty circle property and legal edge
- Two points *a*,*b* form an edge of DG(P) it is a legal edge iff \exists closed disc with *a*,*b* on its boundary that contains no other point of *P* in its interior ... disc minimal diameter = dist(a,b)

Felkel: Computational geome

- **Closest pair property**
- The closest pair of points in *P* are neighbors in *DT*(*P*)

Delone triangulation properties 2/2

- DT edges do not intersect
- Triangulation T is legal, iff T is a Delone triangulation (i.e., if it does not contain illegal edges)
- Edge in DT that was legal before may become illegal if one of the triangles incident to it changes
 Non-convex quad has only one diagonal
- In convex quadrilateral abcd (abcd do not lie on common circle) exactly one of ac, bd is an illegal edge and the other edge is legal principle of edge flip operation

Edge flip operation

Edge flipflips illegal edge \rightarrow legal edge

- = a local operation, that increases the angle vector
- Given two adjacent triangles △abc and △cda such that their union forms a convex quadrilateral, the edge flip operation replaces the diagonal ac with bd.

Delone triangulation

- Let *T* be a triangulation with *m* triangles (and 3*m* angles)
- Angle-vector
 - = non-decreasing ordered sequence ($\alpha_1, \alpha_2, \ldots, \alpha_{3m}$) inner angles of triangles, $\alpha_i \leq \alpha_j$, for i < j
- In the plane, Delaunay triangulation has the lexicographically largest angle sequence
 - It maximizes the minimal angle (the first angle in angle-vector)

Felkel: Computational geometry

(41 / 95)

- It maximizes the second minimal angle, ...
- It maximizes all angles
- It is an angle sequence optimal triangulation

Delone triangulation

It maximizes the minimal angle

- The smallest angle in the DT is at least as large as the smallest angle in any other triangulation.
- Minimum spanning tree is a subset of DT min. kostra
- However, the Delaunay triangulation
 - does not necessarily minimize the maximum angle.
 - does not necessarily minimize the length of the edges.

Felkel: Computational geometr

DT and minimal weight triangulation

Respective Central Angle Theorem

- Let C = circle,
 - *l* =line intersecting *C* in points a, *b*
 - p, q, r, s = points on the same side of l
 - p,q on C, r is in, s is out

http://www.mathopenref.com/arccentralangletheorem.html

Felkel: Computational geometry

Edge flip of illegal edge and angle vector

The minimum angle increases after the edge flip

Incremental DT algorithm

 $= \frac{1}{46 + 95}$

Incremental algorithm principle

- Create a large triangle containing all points (to avoid problems with unbounded cells)
 - must be larger than the largest circle through 3 points
 - will be discarded at the end
- 2. Insert the points in random order
 - Find triangle with inserted point *p*
 - Add edges to its vertices
 (these new edges are correct)
 - Check correctness of the old edges (triangles)
 "around *p*" and legalize (flip) potentially illegal edges

elkel: Computational geor

3. Discard the large triangle and incident edges

Incremental algorithm in detail

Incremental algorithm – insertion of a point

Incremental algorithm – edge legalization

LegalizeEdge(p, ab, T)

Input: Edge *ab* being checked after insertion of point *p* to triangulation *T Output:* Delaunay triangulation of $p \cup T$

- if (ab is edge on the exterior face) return 1.
- let *d* be the vertex to the right of edge *ab* 2.
- 3. if(inCircle(p, a, b, d)) // d is in the circle around pab => d is illegal
- 4. Flip edge *ab* for *pd*
- 5. LegalizeEdge(p, ad, T)
- LegalizeEdge(p, db, T) 6.

Correctness of edge flip of illegal edge

- Assume point p is in C (it violates DT criteria for adb)
- adb was a triangle of DT => C was an empty circle
- Create circle C' trough point p, C' is inscribed to $C, C' \subset C$ => C' is also an empty circle $(a, b \notin C)$

DT- point insert and mesh legalization

Correctness of the algorithm

- Every new edge (created due to insertion of p)
 - is incident to p
 - must be legal
 - => no need to test them
- Edge can only become illegal if one of its incident triangle changes
 - Algorithm tests any edge that may become illegal

elkel: Computational geom

- => the algorithm is correct
- Every edge flip makes the angle-vector larger => algorithm can never get into infinite loop

- For finding a triangle $abc \in T$ containing p
 - Leaves for active (current) triangles
 - Internal nodes for destroyed triangles
 - Links to new triangles
- Search p: start in root (initial triangle)
 - In each inner node of *T*:
 - Check all children (max three)
 - Descend to child containing p

Felkel: Computational geometr

Simplified

- it should also contain the root node Δ_1 of the large triangle

New point p_r inserted to tr. 1

 Δ_2

 $\Delta 3$

InCircle test

- *a,b,c* are counterclockwise in the plane
- Test, if *d* lies to the left of the oriented circle through *a,b,c*

Creation of the initial triangle

Idea: For given points set P:

- Initial triangle $p_{-2}p_{-1}p_0$
 - Must contain all points of P
 - Must not be (none of its points) in any circle defined by non-collinear points of P
- *I*₋₂ = horizontal line above *P*
- $I_{-1} = horizontal line below P$

- p_{-2} = lies on I_{-2} as far left that p_{-2} lies outside every circle
- p₋₁ = lies on I₋₁ as far right that p₋₁ lies outside every circle defined by 3 non-collinear points of P

Felkel: Computational geom

Replaced by symbolical tests with this triangle => p_{-1} and p_{-2} always out

Complexity of incremental DT algorithm

- Delaunay triangulation of a pointset P in the plane can be computed in
 - $O(n \log n)$ expected time
 - using O(n) storage
- For details see [Berg, Section 9.4]

Idea

 expected number of created triangles is 9n + 1
 expected search O(log n) in the search structure done n times for n inserted points

Delaunay triangulations and Convex hulls

- Delaunay triangulation in R^d can be computed as part of the convex hull in R^{d+1} (lower CH)
- 2D: Connection is the paraboloid: $z = x^2 + y^2$

Vertical projection of points to paraboloid

- Vertical projection of 2D point to paraboloid in 3D $(x, y) \rightarrow (x, y, x^2 + y^2)$
- Lower convex hull forms Delone triangulation = portion of CH visible from $z = -\infty$

Relation between CH and DT

Delaunay condition (2D) Points $p,q,r \in S$ form a Delone triangle iff the circumcircle of p,q,r is empty (contains no point) Convex hull condition (3D) Points $p',q',r' \in S'$ form a face of CH(S') iff the plane passing through p',q',r' is supporting S' - all other points lie to one side of the plane - plane passing through p',q',r' is a supporting hyperplane of the convex hull CH(S') Felkel: Computational geometry

Relation between CH and DT

4 distinct points p, q, r, s in the plane, and

p', q', r', s' be their projections onto the paraboloid $z = x^2 + y^2$

The point *s* lies within the circumcircle of pqr iff *s*' lies on the lower side of the secant plane passing through p', q', r'

- Point s'cannot belong to CH, as the secant plane must be a supporting plane

Felkel: Computational geometr

Tangent and secant planes

Tangent plane to paraboloid

Plane intersecting the paraboloid (secant plane)

- Non-vertical tangent plane through $(a, b, a^2 + b^2)$ $z = 2ax + 2by - (a^2 + b^2)$
- Shift this plane t² upwards -> secant plane intersects the paraboloid in an ellipse in 3D
 z = 2ax + 2by (a² + b²)+t²
- Eliminate *z* (project to 2D) $z = x^2 + y^2$ $x^2 + y^2 = 2ax + 2by - (a^2 + b^2) + t^2$

This is a circle projected to 2D with center (a, b):

 $(x-a)^{2} + (y-b)^{2} = t^{2}$ and radius t

Felkel: Computational geome

Secant plane defined by three points

Test inCircle – meaning in 3D

- Points p,q,r are counterclockwise in the plane
- Test, if *s* lies in the circumcircle of $\triangle pqr$ is equal to
 - = test, weather s' lies within a lower half space of the plane passing through p',q',r' (3D)
 - = test, if quadruple p',q',r',s' is positively oriented (3D)
 - = test, if *s lies* to the left of the oriented circle through *pqr*(2D)

Delaunay triangulation and inCircle test

- DT splits each quadrangle by one of its two diagonals
- For a valid diagonal, the fourth point is not inCircle
 - => the fourth point is right from the oriented circumcircle (outside)

S

- => inCircle(....) < 0 for CCW orientation
- inCircle(P,Q,R,S) = inCircle(P,R,S,Q) = inCircle(P,Q,S,R) = inCircle(S,Q,R,P)

inCircle test detail

Point *P* moves right toward point *R* We test position of *R* in relation to oriented circle (*P*,*Q*,*S*)

inCircle(P,Q,S,R) = 0

R is on the circle

both QS and PR are valid

inCircle(P,Q,S,R) < 0 R is right (out) diagonal QS is valid

Invalid diagonal

Felkel: Computational geometry

CCW Ρ R Q inCircle(P,Q,S,R) R is left (in) QS is invalio Valid diagonal

S

inCircle test detail

An the Voronoi diagram?

- VD and DT are dual structures
- Points and lines in the plane are dual to points and planes in 3D space
- VD of points in the plane can be transformed to intersection of halfspaces in 3D space

Voronoi diagram as upper envelope in R^{d+1}

- For each point p = (a, b) a tangent plane H(p) to the paraboloid is $z = 2ax + 2by (a^2 + b^2)$
- $H^+(p)$ is the set of points above this tangent plane $H^+(p) = \{(x, y, z) \mid z \ge 2ax + 2by - (a^2 + b^2)\}$

VD of points in the plane can be computed as intersection of halfspaces $H^+(p_i)$ in 3D This intersection of halfspaces = unbounded convex polyhedron = upper envelope of halfspaces Felkel: Computational geomet

Upper envelope of planes (a 2D cross section)

Projection to 2D

- Upper envelope of tangent hyperplanes (through sites projected upwards to the cone)
- Projected to 2D gives
 Voronoi diagram

Voronoi diagram as upper envelope in 3D

Derivation of projected Voronoi edge

- **2** points: p = (a, b) and q = (c, d) in the plane **2** tangent planes $z = 2ax + 2by (a^2 + b^2)$ to paraboloid $z = 2cx + 2dy (c^2 + d^2)$ /(-)
- Intersect the planes, project onto xy (eliminate z) $x(2a-2c) + y(2b-2d) = (a^2 c^2) + (b^2 d^2)$
- This line passes through midpoint between p and q $\frac{a+c}{2}(2a-2c) + \frac{b+d}{2}(2b-2d) = (a^2-c^2) + (b^2-d^2)$ It is perpendicular bisector with slope $\frac{-(a-c)/(b-d)}{Felke: Computational geometry}$

References

[Berg]	Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:
	Computational Geometry: Algorithms and Applications, Springer-
	Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
	77973-5, Chapters 3 and 9, http://www.cs.uu.nl/geobook/

- [Mount] Mount, D.: Computational Geometry Lecture Notes for Fall 2016, University of Maryland, Lectures 6, 12, 13, 16, and 22. http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf
- [Rourke] Joseph O'Rourke: .: Computational Geometry in C, Cambridge University Press, 1993, ISBN 0-521- 44592-2 http://maven.smith.edu/~orourke/books/compgeom.html
- [Fukuda] Komei Fukuda: Frequently Asked Questions in Polyhedral Computation. Version June 18, 2004

http://www.ifor.math.ethz.ch/~fukuda/polyfaq/polyfaq.html

Felkel: Computational geometry