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Talk overview

◼ Incremental construction 

◼ Voronoi diagram of line segments

◼ VD of order k

◼ Farthest-point VD
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Summary of the VD terms

◼ Site = input point, line segment, …

◼ Cell = area belonging to the site, 

in VD1 locus of points nearest to the site

◼ Edge, arc = part of Voronoi diagram

(border between cells)

◼ Vertex = intersection of VD edges
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Summary of the VD terms
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Edge (Arc)

Site (given point)

Vertex 

Region belonging to

the site is cell

(in VD1 around the site)
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Incremental construction – bounded cell
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Incremental construction – unbounded cell
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Input:
Output:

Incremental construction algorithm

InsertPoint(S, Vor(S), y )        … y = a new site
Point set S, its Voronoi diagram, and inserted point y S

VD after insertion of y

1. Find the site x in which cell point y falls, …O(log n)

2. Detect the intersections {a,b} of bisector L(x,y) with cell x boundary 

=> create the first edge e = ab on the border of site x   …O(n)

3. site z = neighbor site across the border with intersection b …O(1)

4. Set start intersection point p = b, set new intersection c = undef
5. while( exists(p) and c a )  // trace the bisectors from b in one direction

a. Detect intersection c of  L(y,z) with border of cell z

b. Report Voronoi edge pc …O(n2)

c. p = c, z = neighbor site across border with intersec. c
5. if( c a ) then // open site → trace the bisectors from a in other direction

a. p = a

b. Similarly as in steps 3,4,5 with a

O(n2) worst-case, O(n) expected time for some distributions
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Voronoi diagram of line segments

Distance measured

perpendicularly to the 

line segment interior

Input: S = {s1, …, sn} = set of n disjoint line segments (sites)

VD: line segments 

parabolic arcs
Type 1

Type 2

Type 3

[Berg]
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VD of line segments with bounding box

BBOX

=>

standard

DCEL

[Berg]
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VD of 2 line-segments in detail 

VD consists of line segments and parabolic arcs 

– Line segment – bisector of end-points(1) or of interiors(2)

– Parabolic arc – of point and interior(3) of a line segment

Distance from point-to-object (line segment) is measured to the closest 

point on the object (perpendicularly to the object silhouette)

Bisector of two disjoint 

line segments has ≤7 parts

Input line segments

[Berg]

Type 1

Type 2

Type 3
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VD in greater details

Bisector of two 

line segment interiors

(in intersection of perpendicular slabs only)

Bisector of (end-)point and 

line segment interior

[Reiberg]

Type 2 Type 3
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VD of points and line segments examples

[Reiberg]

2 points Point & segment 2 line segments

E2
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Type 1 Type 1

Type 3

Type 1

Type 2

Type 3
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Voronoi diagram of line segments

◼ Has more complex bisectors of line segments

– VD contains line segments and parabolic arcs

◼ Still 𝑂(𝑛) combinatorial complexity

◼ Assumptions on the input line segments:

– non-crossing

– strictly disjoint end-points (slightly shorten the segm.)

[Berg]
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if(we allow touching segments) 

Shared endpoints cause complication: 

The whole region is equally close

to two line segments
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Shape of beach line for line segments

Beach line =   points with distance to the closest site above 

sweep line l equal to the distance to l

Beach line contains

– parabolic arcs when closest to a site end-point

– straight line segments when closest to a site interior 

(or just the part of the site interior above l if the site s intersects l)

[Berg]

(This is the shape of the beach line)
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Beach line breakpoints types

Breakpoint p on the beach line is equidistant from l

and equidistant and closest to:

1. two site end-points => p traces a VD line segment

2. two site interiors => p traces a VD line segment

3. end-point and interior => p traces a VD parabolic arc

4. one site end-point     => p traces a line segment

(border of the slab

perpendicular to the site)

5. site interior intersects => p = intersection, traces 

the scan line l the input line segment

Cases 4 and 5 involve only one site and therefore do 

not form a Voronoi diagram edge (are used by alg.only)
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points

segments

site = line segment
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Breakpoints types - what they trace on VD

◼ 1,2 trace a Voronoi line segment    (part of VD edge)   DRAW

◼ 3 traces a Voronoi parabolic arc  (part of VD edge) DRAW

◼ 4,5 trace a line segment    (used only by the algorithm) MOVE

– 4 limits the slab perpendicular to the line segment

– 5 traces the intersection of input segment with a sweep line

1
24

5

3
4

4 4 4

4

3

3

2

Traced VD parabolic arcParabolic arc on the 

beach line

[Berg]

(This is the shape of the traced VD arcs)
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Site event – sweep line reaches an endpoint

I. At upper endpoint of

– Arc above is split into two 1-1

– four new arcs are created 

(2 segments + 2 parabolas)

– Breakpoints for two segments

are of type 4-5-4

– Breakpoints for parabolas

depend on the surrounding

sites

• Type 1 for two end-points

• Type 3 for endpoint and interior

• etc… 4 5

4

1

1 (1 or 3 or even 2

depending on 

mutual positions)

dangling 

VD edge 

(for 1 – 1 )

4 5

4

beach line

sweep line

1 1

4-5, 5-4 1-4, 4-1

4

4

[Berg]
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Site event – sweep line reaches an endpoint

II. At lower endpoint of

– Intersection with interior 

(breakpoint of type 5)

– is replaced by two breakpoints

(of type 4) 

with parabolic arc between them

4 5

5
4

4

4

4

l

l

l
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Circle event – lower point of circle of 3 sites

◼ Two breakpoints meet (on the beach-line) 

◼ Solution depends on their type

– Any of first three types (1,2,or 3) meet (circle event)

– 3 sites involved – Voronoi vertex created

– Type 4 (segment interiors) with something else 

– two sites involved – breakpoint changes its type

– Voronoi vertex not created

(Voronoi edge may change its shape) 

– Type 5 (on segment) with something else 

– never happens for disjoint segments

(meet with type 4 happens before) 
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Breakpoints types - what they trace on VD

◼ 1,2 trace a Voronoi line segment    (part of VD edge)   DRAW

◼ 3 traces a Voronoi parabolic arc  (part of VD edge) DRAW

◼ 4,5 trace a line segment    (used only by the algorithm) MOVE

– 4 limits the slab perpendicular to the line segment

– 5 traces the intersection of input segment with a sweep line

1
24

5

3
4

4 4 4

4

3

3

2

Traced VD parabolic arcParabolic arc on the 

beach line

[Berg]

(This is the shape of the traced VD arcs)
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Motion planning example - retraction

qend qstart

Find path for a circular robot of radius r from 𝑞𝑠𝑡𝑎𝑟𝑡 to 𝑞𝑒𝑛𝑑

Rušení hran

[Berg]
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Motion planning example - retraction

Find path for a circular robot of radius r from 𝑞𝑠𝑡𝑎𝑟𝑡 to 𝑞𝑒𝑛𝑑

◼ Create Voronoi diagram of line segments, 

take it as a graph

◼ Project 𝑞𝑠𝑡𝑎𝑟𝑡 and 𝑞𝑒𝑛𝑑 to 𝑃𝑠𝑡𝑎𝑟𝑡 and 𝑃𝑒𝑛𝑑on the VD

◼ Remove segments with distance to sites smaller than 

radius r of a robot 

◼ Depth first search if path from 𝑃𝑠𝑡𝑎𝑟𝑡 to 𝑃𝑒𝑛𝑑 exists

◼ Report path 𝑞𝑠𝑡𝑎𝑟𝑡 𝑃𝑠𝑡𝑎𝑟𝑡… path … 𝑃𝑒𝑛𝑑 𝑞𝑒𝑛𝑑

◼ O(n log n) time using O(n) storage

Rušení hran
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Order-2 Voronoi diagram (nearest to two sites)

Cell 𝑉(𝑝𝑖 , 𝑝𝑗): the set of points

of the plane closer

to each of 𝑝𝑖 and 𝑝𝑗
than to any other site

Property

The order-2 Voronoi

regions are convex

[Nandy]
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𝑉(1,2)

𝑉(1,3)

𝑉(1,4) 𝑉(4,6)

𝑉(6,7)

𝑉(5,7)

𝑉(3,5)

𝑉(3,6)

𝑉(2,5)

𝑉(3,4)

𝑉(2,3)
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[Nandy]

𝑉 3,5 =ሩ

𝑥≠5

ℎ(3, 𝑥) ∩ሩ

𝑥≠3

ℎ(5, 𝑥)
Intersection of all halfplanes

except ℎ(3,5) and ℎ 5,3 :

Construction of V(3,5) = V(5,3)

Felkel: Computational geometry
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Order-2 Voronoi edges

Question

Which are the regions

on both sides of cp(s,t) ?

=> cells V(p,s) and V(p,t)

c3(1,2)

V(3,2)

V(3,1)

edge : set of centers of

circles passing through

2 sites s and t and

containing site  p

=> cp(s,t)

[Nandy]

V(5,7)
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Order-2 Voronoi vertices
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u5(2,3,7)

(circle circumscribed to Q)

or 𝑢(𝑄 ∪ 𝑝)
𝑢(3,6,7,5)

 𝑢𝑝(𝑄)

𝑢5(2,3,7),

vertex : center of a circle

passing through at least 

3 sites Q and containing

either site 𝑝 or nothing
𝑢(3,6,7,5)
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𝑉(5,7)

𝑉(3,5)

𝑉(2,5) C5(2,7)

C5(3,7)

C5(2,3)
u5(2,3,7)

Case 𝑢𝑝(𝑄)

𝑢5(2,3,7)

Cell 5 is inside for all 

incident edges:

𝐶5(2,3)
𝐶5(2,7)
𝐶5(3,7)

=> 5 is inside for the circle 

with center in Voronoi vertex

vertex : center of a circle

passing through at least 

3 sites 𝑄 and containing

either site p or nothing

Order-2 Voronoi vertex 𝑢𝑝(𝑄)



Order-2 Voronoi vertex 𝑢(𝑄 ∪ 𝑝)
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𝑢(3,5,6,7)
C6(3,7)

C3(5,6)

C7(5,6)
C5(3,7)

Case 𝑢(𝑄 ∪ 𝑝)
𝑢(3,5,6,7)

vertex : center of a circle

passing through at least 

3 sites and containing

either site p or nothing

Cell 5 is not inside 

for all incident edges:

𝐶5(3,7)
𝐶6(3,7)
𝐶3(5,6)
𝐶7(5,6)

=> 5 is on circle with center in Voronoi vertex

𝑉(6,7)

𝑉(5,7)

𝑉(3,5)

𝑉(3,6)



Order-k Voronoi Diagram

Single step   𝑉𝑘 → 𝑉𝑘+1
The order-𝑘 diagram can be constructed from the order-(𝑘 − 1) diagram

in 𝑂(𝑘𝑛 log 𝑛 ) time

From 𝑉1 → 𝑉𝑘
The order-𝑘 diagram can be iteratively constructed in 𝑂(𝑘2𝑛 log𝑛) time

from the pointset of size 𝑛

[Preparata]
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𝑖=1

𝑘−1

𝑂 𝑖𝑛 log 𝑛 = O(𝑘2𝑛 log 𝑛)
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Farthest-point Voronoi diagram

V-1(pi)  cell 

= set of points in the 

plane farther from pi

than from any other 

site

Vor-1(P) diagram

= partition of the plane 

formed by the farthest 

point Voronoi regions, 

their edges, and 

vertices

[Nandy]

Felkel: Computational geometry

(41 / 57)



Farthest-point Voronoi region (cell)

Computed as intersection 

of halfplanes, but we take 

“other sides” of bisectors

Construction of V-1(7)

Property

The farthest point Voronoi 

regions are convex 

and unbounded

[Nandy]

𝑉−1(𝑦) = 𝑥=1ځ
𝑛 ℎ 𝑦, 𝑥 , 𝑦 ≠ 𝑥
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Farthest-point Voronoi region 

Properties: 

◼ Only vertices of the  convex hull have their cells in farthest 

Voronoi diagram

◼ The farthest point 

Voronoi regions 

are unbounded

◼ The farthest point 

Voronoi edges and 

vertices form a tree

(in the graph sense)

[Nandy]
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x

Farthest point Voronoi edges and vertices

V-1(1)

V-1(4)

V-1(2)

V-1(4)

V-1(7)

edge : set of points equidistant    

from 2 sites and closer to 

all the other sites     

vertex : point equidistant from 

at least 3 sites and closer to 

all the other sites 

– Enclosing circle    

[Nandy]
Felkel: Computational geometry
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𝑢−1(2,4,7)



Application of Vor-1(P) : Smallest enclosing circle

◼ Construct Vor-1(P) and find minimal circle with 

center in   Vor-1(P) vertices or on edges

V-1(2)

V-1(4)

V-1(7)

[Nandy]
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a) 3 in – 1 out 

Farthest-point Voronoi diagrams example

Roundness of manufactured objects

◼ Input: set of measured points in 2D

◼ Output: width of the smallest-width annulus mezikruží s nejmenší šířkou

(region between two concentric circles Cinner and Couter)

Three cases to test – one will win:

b) 1 point in – 3 out c) 2 in – 2 out
[Berg]
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Smallest width annulus – cases with 3 pts

a) Cinner contains at least 3 points 

◼ Center is the vertex of normal Voronoi

diagram (1st order VD)

◼ The remaining point on Couter in O(n) for 

each vertex

3 in – 1 out 

1 point in – 3 out

Cinner
Couter b) Couter contains at least 3 points

◼ Center is the vertex of the

farthest Voronoi diagram

◼ The remaining point on Cinner in 

O(n)

[Berg]

[Berg]

 not the largest (inscribed) empty circle - as discussed on seminar

as we must test all VD vertices in combination with point on C outer

 O(n2)

 not the smallest enclosing circle - as discussed on seminar

as we must test all vertices in combination with point on C inner

 O(n2)
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[Berg]

3 in – 1 out

1 in 

– 3 out

2 in – 2 out

Smallest width annulus – case with 2+2 pts

c) Cinner and Couter contain 2 points each

◼ Generate vertices of overlay of Voronoi (__)

and farthest-point Voronoi (- - -) diagrams

=> O(n2) candidates for centers

(we need only vertices, 

not the complete overlay)

◼ annulus computed in O(1) 

from center and 4 points

(same for all 3 cases)

◼ O(n2)

2 in – 2 out
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Input:
Output:

Smallest width annulus

Smallest-Width-Annulus 

Set P of n points in the plane

Smallest width annulus center and radii r and R (roundness)

1. Compute Voronoi diagram Vor(P)

and farthest-point Voronoi diagram Vor-1(P) of P

2. For each vertex of Vor(P) (r) determine the farthest point (R) from P 

=> O(n) sets of four points defining candidate annuli – case a)

3. For each vertex of Vor-1(P) (R) determine the closest point (r) from P

=> O(n) sets of four points defining candidate annuli – case b)

4. For every pair of edges Vor(P) and Vor-1(P) test if they intersect 

=> another set of four points defining candidate annulus – c)

5. For all candidates of all three types

chose the smallest-width annulus

O(n2) time using O(n) storage

1. O(n log n)

2. O(n2)

3. O(n2)

4. O(n2)

5. O(n2)



Felkel: Computational geometry

Order n-1 VD construction

(52 / 57)



Modified DCEL  for farthest-point Voronoi d

◼ Half-infinite edges -> we adapt DCEL

◼ Half-edges with origin in infinity

– Special vertex-like record for origin in infinity

– Store direction instead of coordinates

– Next(e) or Prev(e) pointers undefined

◼ For each inserted site 𝑝𝑗
– store a pointer to the most 

CCW half-infinite half-edge 

of its cell in DCEL
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Idea of the algorithm

1. Create the convex hull 

and number the CH points randomly

2. Remove the points starting in the last of this 

random order and store cw(𝑝𝑖) and ccw(𝑝𝑖) points 

at the time of removal. 

3. Include the points back and compute 𝑉−1

𝑝4

𝑝2

𝑝5
𝑝6

𝑝3

𝑝1
𝑝4

𝑝2

𝑝5
𝑝6

𝑝3

𝑝1

𝑝𝑖 𝑐𝑐𝑤(𝑝𝑖) 𝑐𝑤(𝑝𝑖)

𝑝6 𝑝3 𝑝5

𝑝5 𝑝3 𝑝2

…
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Input:
Output:

Farthest-point Voronoi d. construction

Farthest-pointVoronoi 𝑂(𝑛 log 𝑛) expected time in 𝑂(𝑛) storage

Set of points P in plane

Farthest-point VD Vor-1(P)

1. Compute convex hull of P

2. Put points in CH(P) of P in random order 𝑝1, … , 𝑝ℎ
3. Remove 𝑝ℎ, … , 𝑝4 from the cyclic order (around the CH). 

When removing 𝑝𝑖, store the neighbors: cw(𝑝𝑖) and ccw(𝑝𝑖) at the time 

of removal. (This is done to know the neighbors needed in step 6.)

4. Compute Vor-1( {𝑝1, 𝑝2, 𝑝3} ) as init

5. for  i = 4  to h do 

6. Add site pi to Vor-1({𝑝1, 𝑝2, … , 𝑝𝑖−1}) between site cw(𝑝𝑖) and ccw(𝑝𝑖)

7. - start at most CCW edge of the cell ccw(𝑝𝑖) 

8. - continue CW to find intersection with bisector( ccw(𝑝𝑖), 𝑝𝑖 )

9. - trace borders of Voronoi cell pi in CCW order, add edges

10. - remove invalid edges inside of Voronoi cell 𝑝𝑖



Farthest-point Voronoi d. construction

Insertion of site 𝑝𝑖
Start  with site ccw(𝑝𝑖)

and ccw edge of its cell

Felkel: Computational geometry

CW search of intersection
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Farthest-point Voronoi d. construction

After insertion of site pi
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