
VORONOI DIAGRAM

PART II

PETR FELKEL
FEL CTU PRAGUE

felkel@fel.cvut.cz

https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Reiberg] and [Nandy]

Version from 10.11.2022

https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Talk overview

◼ Incremental construction

◼ Voronoi diagram of line segments

◼ VD of order k

◼ Farthest-point VD

Felkel: Computational geometry

(2 / 57)

Summary of the VD terms

◼ Site = input point, line segment, …

◼ Cell = area belonging to the site,

in VD1 locus of points nearest to the site

◼ Edge, arc = part of Voronoi diagram

(border between cells)

◼ Vertex = intersection of VD edges

Felkel: Computational geometry

(3 / 57)

Summary of the VD terms

Felkel: Computational geometry

Edge (Arc)

Site (given point)

Vertex

Region belonging to

the site is cell

(in VD1 around the site)

(4 / 57)

Felkel: Computational geometry

Incremental construction

(5 / 57)

Incremental construction – bounded cell

b

a

c

d

x

y

Felkel: Computational geometry

(6 / 57)

Incremental construction – unbounded cell

x

y
b

a

Felkel: Computational geometry

(7 / 57)

Input:
Output:

Incremental construction algorithm

InsertPoint(S, Vor(S), y) … y = a new site
Point set S, its Voronoi diagram, and inserted point y S

VD after insertion of y

1. Find the site x in which cell point y falls, …O(log n)

2. Detect the intersections {a,b} of bisector L(x,y) with cell x boundary

=> create the first edge e = ab on the border of site x …O(n)

3. site z = neighbor site across the border with intersection b …O(1)

4. Set start intersection point p = b, set new intersection c = undef
5. while(exists(p) and c a) // trace the bisectors from b in one direction

a. Detect intersection c of L(y,z) with border of cell z

b. Report Voronoi edge pc …O(n2)

c. p = c, z = neighbor site across border with intersec. c
5. if(c a) then // open site → trace the bisectors from a in other direction

a. p = a

b. Similarly as in steps 3,4,5 with a

O(n2) worst-case, O(n) expected time for some distributions

Felkel: Computational geometry

Voronoi diagram of

line segments

(10 / 57)

Voronoi diagram of line segments

Distance measured

perpendicularly to the

line segment interior

Input: S = {s1, …, sn} = set of n disjoint line segments (sites)

VD: line segments

parabolic arcs
Type 1

Type 2

Type 3

[Berg]

Felkel: Computational geometry

(11 / 57)

VD of line segments with bounding box

BBOX

=>

standard

DCEL

[Berg]

Felkel: Computational geometry

(12 / 57)

VD of 2 line-segments in detail

VD consists of line segments and parabolic arcs

– Line segment – bisector of end-points(1) or of interiors(2)

– Parabolic arc – of point and interior(3) of a line segment

Distance from point-to-object (line segment) is measured to the closest

point on the object (perpendicularly to the object silhouette)

Bisector of two disjoint

line segments has ≤7 parts

Input line segments

[Berg]

Type 1

Type 2

Type 3

Felkel: Computational geometry

(13 / 57)

VD in greater details

Bisector of two

line segment interiors

(in intersection of perpendicular slabs only)

Bisector of (end-)point and

line segment interior

[Reiberg]

Type 2 Type 3

Felkel: Computational geometry

(14 / 57)

VD of points and line segments examples

[Reiberg]

2 points Point & segment 2 line segments

E2

Felkel: Computational geometry

Type 1 Type 1

Type 3

Type 1

Type 2

Type 3

(15 / 57)

Voronoi diagram of line segments

◼ Has more complex bisectors of line segments

– VD contains line segments and parabolic arcs

◼ Still 𝑂(𝑛) combinatorial complexity

◼ Assumptions on the input line segments:

– non-crossing

– strictly disjoint end-points (slightly shorten the segm.)

[Berg]

Felkel: Computational geometry

if(we allow touching segments)

Shared endpoints cause complication:

The whole region is equally close

to two line segments

(16 / 57)

Felkel: Computational geometry

Fortune’s algorithm

for line segments

(18 / 57)

Shape of beach line for line segments

Beach line = points with distance to the closest site above

sweep line l equal to the distance to l

Beach line contains

– parabolic arcs when closest to a site end-point

– straight line segments when closest to a site interior

(or just the part of the site interior above l if the site s intersects l)

[Berg]

(This is the shape of the beach line)

Felkel: Computational geometry

(19 / 57)

Beach line breakpoints types

Breakpoint p on the beach line is equidistant from l

and equidistant and closest to:

1. two site end-points => p traces a VD line segment

2. two site interiors => p traces a VD line segment

3. end-point and interior => p traces a VD parabolic arc

4. one site end-point => p traces a line segment

(border of the slab

perpendicular to the site)

5. site interior intersects => p = intersection, traces

the scan line l the input line segment

Cases 4 and 5 involve only one site and therefore do

not form a Voronoi diagram edge (are used by alg.only)

Felkel: Computational geometry

points

segments

site = line segment

(20 / 57)

Breakpoints types - what they trace on VD

◼ 1,2 trace a Voronoi line segment (part of VD edge) DRAW

◼ 3 traces a Voronoi parabolic arc (part of VD edge) DRAW

◼ 4,5 trace a line segment (used only by the algorithm) MOVE

– 4 limits the slab perpendicular to the line segment

– 5 traces the intersection of input segment with a sweep line

1
24

5

3
4

4 4 4

4

3

3

2

Traced VD parabolic arcParabolic arc on the

beach line

[Berg]

(This is the shape of the traced VD arcs)

Felkel: Computational geometry

(21 / 57)

Site event – sweep line reaches an endpoint

I. At upper endpoint of

– Arc above is split into two 1-1

– four new arcs are created

(2 segments + 2 parabolas)

– Breakpoints for two segments

are of type 4-5-4

– Breakpoints for parabolas

depend on the surrounding

sites

• Type 1 for two end-points

• Type 3 for endpoint and interior

• etc… 4 5

4

1

1 (1 or 3 or even 2

depending on

mutual positions)

dangling

VD edge

(for 1 – 1)

4 5

4

beach line

sweep line

1 1

4-5, 5-4 1-4, 4-1

4

4

[Berg]

Felkel: Computational geometry

(22 / 57)

Site event – sweep line reaches an endpoint

II. At lower endpoint of

– Intersection with interior

(breakpoint of type 5)

– is replaced by two breakpoints

(of type 4)

with parabolic arc between them

4 5

5
4

4

4

4

l

l

l

Felkel: Computational geometry

(23 / 57)

Circle event – lower point of circle of 3 sites

◼ Two breakpoints meet (on the beach-line)

◼ Solution depends on their type

– Any of first three types (1,2,or 3) meet (circle event)

– 3 sites involved – Voronoi vertex created

– Type 4 (segment interiors) with something else

– two sites involved – breakpoint changes its type

– Voronoi vertex not created

(Voronoi edge may change its shape)

– Type 5 (on segment) with something else

– never happens for disjoint segments

(meet with type 4 happens before)

Felkel: Computational geometry

(24 / 57)

Breakpoints types - what they trace on VD

◼ 1,2 trace a Voronoi line segment (part of VD edge) DRAW

◼ 3 traces a Voronoi parabolic arc (part of VD edge) DRAW

◼ 4,5 trace a line segment (used only by the algorithm) MOVE

– 4 limits the slab perpendicular to the line segment

– 5 traces the intersection of input segment with a sweep line

1
24

5

3
4

4 4 4

4

3

3

2

Traced VD parabolic arcParabolic arc on the

beach line

[Berg]

(This is the shape of the traced VD arcs)

Felkel: Computational geometry

(25 / 57)

Felkel: Computational geometry

Motion planning

example

(26 / 57)

Motion planning example - retraction

qend qstart

Find path for a circular robot of radius r from 𝑞𝑠𝑡𝑎𝑟𝑡 to 𝑞𝑒𝑛𝑑

Rušení hran

[Berg]

Felkel: Computational geometry

(27 / 57)

Motion planning example - retraction

Find path for a circular robot of radius r from 𝑞𝑠𝑡𝑎𝑟𝑡 to 𝑞𝑒𝑛𝑑

◼ Create Voronoi diagram of line segments,

take it as a graph

◼ Project 𝑞𝑠𝑡𝑎𝑟𝑡 and 𝑞𝑒𝑛𝑑 to 𝑃𝑠𝑡𝑎𝑟𝑡 and 𝑃𝑒𝑛𝑑on the VD

◼ Remove segments with distance to sites smaller than

radius r of a robot

◼ Depth first search if path from 𝑃𝑠𝑡𝑎𝑟𝑡 to 𝑃𝑒𝑛𝑑 exists

◼ Report path 𝑞𝑠𝑡𝑎𝑟𝑡 𝑃𝑠𝑡𝑎𝑟𝑡… path … 𝑃𝑒𝑛𝑑 𝑞𝑒𝑛𝑑

◼ O(n log n) time using O(n) storage

Rušení hran

Felkel: Computational geometry

(28 / 57)

Felkel: Computational geometry

Higher order VD

(29 / 57)

Order-2 Voronoi diagram (nearest to two sites)

Cell 𝑉(𝑝𝑖 , 𝑝𝑗): the set of points

of the plane closer

to each of 𝑝𝑖 and 𝑝𝑗
than to any other site

Property

The order-2 Voronoi

regions are convex

[Nandy]

Felkel: Computational geometry

(30 / 57)

𝑉(1,2)

𝑉(1,3)

𝑉(1,4) 𝑉(4,6)

𝑉(6,7)

𝑉(5,7)

𝑉(3,5)

𝑉(3,6)

𝑉(2,5)

𝑉(3,4)

𝑉(2,3)

(31 / 57)

[Nandy]

𝑉 3,5 =ሩ

𝑥≠5

ℎ(3, 𝑥) ∩ሩ

𝑥≠3

ℎ(5, 𝑥)
Intersection of all halfplanes

except ℎ(3,5) and ℎ 5,3 :

Construction of V(3,5) = V(5,3)

Felkel: Computational geometry

𝑉
3
,5

Order-2 Voronoi edges

Question

Which are the regions

on both sides of cp(s,t) ?

=> cells V(p,s) and V(p,t)

c3(1,2)

V(3,2)

V(3,1)

edge : set of centers of

circles passing through

2 sites s and t and

containing site p

=> cp(s,t)

[Nandy]

V(5,7)

Felkel: Computational geometry

(32 / 57)

(Edge splits the cell for 𝑝)

Order-2 Voronoi vertices

Felkel: Computational geometry

(33 / 57)

u5(2,3,7)

(circle circumscribed to Q)

or 𝑢(𝑄 ∪ 𝑝)
𝑢(3,6,7,5)

 𝑢𝑝(𝑄)

𝑢5(2,3,7),

vertex : center of a circle

passing through at least

3 sites Q and containing

either site 𝑝 or nothing
𝑢(3,6,7,5)

Felkel: Computational geometry

(34 / 57)

𝑉(5,7)

𝑉(3,5)

𝑉(2,5) C5(2,7)

C5(3,7)

C5(2,3)
u5(2,3,7)

Case 𝑢𝑝(𝑄)

𝑢5(2,3,7)

Cell 5 is inside for all

incident edges:

𝐶5(2,3)
𝐶5(2,7)
𝐶5(3,7)

=> 5 is inside for the circle

with center in Voronoi vertex

vertex : center of a circle

passing through at least

3 sites 𝑄 and containing

either site p or nothing

Order-2 Voronoi vertex 𝑢𝑝(𝑄)

Order-2 Voronoi vertex 𝑢(𝑄 ∪ 𝑝)

Felkel: Computational geometry

(35 / 57)

𝑢(3,5,6,7)
C6(3,7)

C3(5,6)

C7(5,6)
C5(3,7)

Case 𝑢(𝑄 ∪ 𝑝)
𝑢(3,5,6,7)

vertex : center of a circle

passing through at least

3 sites and containing

either site p or nothing

Cell 5 is not inside

for all incident edges:

𝐶5(3,7)
𝐶6(3,7)
𝐶3(5,6)
𝐶7(5,6)

=> 5 is on circle with center in Voronoi vertex

𝑉(6,7)

𝑉(5,7)

𝑉(3,5)

𝑉(3,6)

Order-k Voronoi Diagram

Single step 𝑉𝑘 → 𝑉𝑘+1
The order-𝑘 diagram can be constructed from the order-(𝑘 − 1) diagram

in 𝑂(𝑘𝑛 log 𝑛) time

From 𝑉1 → 𝑉𝑘
The order-𝑘 diagram can be iteratively constructed in 𝑂(𝑘2𝑛 log𝑛) time

from the pointset of size 𝑛

[Preparata]

Felkel: Computational geometry

Globally

𝑖=1

𝑘−1

𝑂 𝑖𝑛 log 𝑛 = O(𝑘2𝑛 log 𝑛)

(38 / 57)

Felkel: Computational geometry

Order n-1 VD

(Farthest-point Voronoi diagram)

(39 / 57)

Farthest-point Voronoi diagram

V-1(pi) cell

= set of points in the

plane farther from pi

than from any other

site

Vor-1(P) diagram

= partition of the plane

formed by the farthest

point Voronoi regions,

their edges, and

vertices

[Nandy]

Felkel: Computational geometry

(41 / 57)

Farthest-point Voronoi region (cell)

Computed as intersection

of halfplanes, but we take

“other sides” of bisectors

Construction of V-1(7)

Property

The farthest point Voronoi

regions are convex

and unbounded

[Nandy]

𝑉−1(𝑦) = 𝑥=1ځ
𝑛 ℎ 𝑦, 𝑥 , 𝑦 ≠ 𝑥

Felkel: Computational geometry

(42 / 57)

Farthest-point Voronoi region

Properties:

◼ Only vertices of the convex hull have their cells in farthest

Voronoi diagram

◼ The farthest point

Voronoi regions

are unbounded

◼ The farthest point

Voronoi edges and

vertices form a tree

(in the graph sense)

[Nandy]

Felkel: Computational geometry

(43 / 57)

x

Farthest point Voronoi edges and vertices

V-1(1)

V-1(4)

V-1(2)

V-1(4)

V-1(7)

edge : set of points equidistant

from 2 sites and closer to

all the other sites

vertex : point equidistant from

at least 3 sites and closer to

all the other sites

– Enclosing circle

[Nandy]
Felkel: Computational geometry

(44 / 57)

𝑐−1(1,4)

𝑢−1(2,4,7)

Application of Vor-1(P) : Smallest enclosing circle

◼ Construct Vor-1(P) and find minimal circle with

center in Vor-1(P) vertices or on edges

V-1(2)

V-1(4)

V-1(7)

[Nandy]

Felkel: Computational geometry

(47 / 57)

a) 3 in – 1 out

Farthest-point Voronoi diagrams example

Roundness of manufactured objects

◼ Input: set of measured points in 2D

◼ Output: width of the smallest-width annulus mezikruží s nejmenší šířkou

(region between two concentric circles Cinner and Couter)

Three cases to test – one will win:

b) 1 point in – 3 out c) 2 in – 2 out
[Berg]

Felkel: Computational geometry

Couter

Cinner

(48 / 57)

Smallest width annulus – cases with 3 pts

a) Cinner contains at least 3 points

◼ Center is the vertex of normal Voronoi

diagram (1st order VD)

◼ The remaining point on Couter in O(n) for

each vertex

3 in – 1 out

1 point in – 3 out

Cinner
Couter b) Couter contains at least 3 points

◼ Center is the vertex of the

farthest Voronoi diagram

◼ The remaining point on Cinner in

O(n)

[Berg]

[Berg]

 not the largest (inscribed) empty circle - as discussed on seminar

as we must test all VD vertices in combination with point on C outer

 O(n2)

 not the smallest enclosing circle - as discussed on seminar

as we must test all vertices in combination with point on C inner

 O(n2)

Felkel: Computational geometry

(49 / 57)

[Berg]

3 in – 1 out

1 in

– 3 out

2 in – 2 out

Smallest width annulus – case with 2+2 pts

c) Cinner and Couter contain 2 points each

◼ Generate vertices of overlay of Voronoi (__)

and farthest-point Voronoi (- - -) diagrams

=> O(n2) candidates for centers

(we need only vertices,

not the complete overlay)

◼ annulus computed in O(1)

from center and 4 points

(same for all 3 cases)

◼ O(n2)

2 in – 2 out

Felkel: Computational geometry

(50 / 57)

Input:
Output:

Smallest width annulus

Smallest-Width-Annulus

Set P of n points in the plane

Smallest width annulus center and radii r and R (roundness)

1. Compute Voronoi diagram Vor(P)

and farthest-point Voronoi diagram Vor-1(P) of P

2. For each vertex of Vor(P) (r) determine the farthest point (R) from P

=> O(n) sets of four points defining candidate annuli – case a)

3. For each vertex of Vor-1(P) (R) determine the closest point (r) from P

=> O(n) sets of four points defining candidate annuli – case b)

4. For every pair of edges Vor(P) and Vor-1(P) test if they intersect

=> another set of four points defining candidate annulus – c)

5. For all candidates of all three types

chose the smallest-width annulus

O(n2) time using O(n) storage

1. O(n log n)

2. O(n2)

3. O(n2)

4. O(n2)

5. O(n2)

Felkel: Computational geometry

Order n-1 VD construction

(52 / 57)

Modified DCEL for farthest-point Voronoi d

◼ Half-infinite edges -> we adapt DCEL

◼ Half-edges with origin in infinity

– Special vertex-like record for origin in infinity

– Store direction instead of coordinates

– Next(e) or Prev(e) pointers undefined

◼ For each inserted site 𝑝𝑗
– store a pointer to the most

CCW half-infinite half-edge

of its cell in DCEL

Felkel: Computational geometry

(53 / 57)

Idea of the algorithm

1. Create the convex hull

and number the CH points randomly

2. Remove the points starting in the last of this

random order and store cw(𝑝𝑖) and ccw(𝑝𝑖) points

at the time of removal.

3. Include the points back and compute 𝑉−1

𝑝4

𝑝2

𝑝5
𝑝6

𝑝3

𝑝1
𝑝4

𝑝2

𝑝5
𝑝6

𝑝3

𝑝1

𝑝𝑖 𝑐𝑐𝑤(𝑝𝑖) 𝑐𝑤(𝑝𝑖)

𝑝6 𝑝3 𝑝5

𝑝5 𝑝3 𝑝2

…

Felkel: Computational geometry

(54 / 57)

Input:
Output:

Farthest-point Voronoi d. construction

Farthest-pointVoronoi 𝑂(𝑛 log 𝑛) expected time in 𝑂(𝑛) storage

Set of points P in plane

Farthest-point VD Vor-1(P)

1. Compute convex hull of P

2. Put points in CH(P) of P in random order 𝑝1, … , 𝑝ℎ
3. Remove 𝑝ℎ, … , 𝑝4 from the cyclic order (around the CH).

When removing 𝑝𝑖, store the neighbors: cw(𝑝𝑖) and ccw(𝑝𝑖) at the time

of removal. (This is done to know the neighbors needed in step 6.)

4. Compute Vor-1({𝑝1, 𝑝2, 𝑝3}) as init

5. for i = 4 to h do

6. Add site pi to Vor-1({𝑝1, 𝑝2, … , 𝑝𝑖−1}) between site cw(𝑝𝑖) and ccw(𝑝𝑖)

7. - start at most CCW edge of the cell ccw(𝑝𝑖)

8. - continue CW to find intersection with bisector(ccw(𝑝𝑖), 𝑝𝑖)

9. - trace borders of Voronoi cell pi in CCW order, add edges

10. - remove invalid edges inside of Voronoi cell 𝑝𝑖

Farthest-point Voronoi d. construction

Insertion of site 𝑝𝑖
Start with site ccw(𝑝𝑖)

and ccw edge of its cell

Felkel: Computational geometry

CW search of intersection

(56 / 57)

Farthest-point Voronoi d. construction

After insertion of site pi

Felkel: Computational geometry

(57 / 57)

References

[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:

Computational Geometry: Algorithms and Applications, Springer-

Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-

77973-5, Chapter 7, http://www.cs.uu.nl/geobook/

[Preparata] Preperata, F.P., Shamos, M.I.: Computational Geometry. An

Introduction. Berlin, Springer-Verlag,1985. Chapters 5 and 6

[Reiberg] Reiberg, J: Implementierung Geometrischer Algoritmen.

Berechnung von Voronoi Diagrammen fuer Liniensegmente.
http://www.reiberg.net/project/voronoi/avortrag.ps.gz

[Nandy] Subhas C. Nandy: Voronoi Diagram – presentation. Advanced

Computing and Microelectronics Unit. Indian Statistical Institute.

Kolkata 700108 http://cs.rkmvu.ac.in/~sghosh/subhas-lecture.pdf

[CGAL] http://www.cgal.org/Manual/3.1/doc_html/cgal_manual/Segment

_Voronoi_diagram_2/Chapter_main.html

[applets] http://www.personal.kent.edu/~rmuhamma/Compgeometry/

MyCG/Voronoi/Fortune/fortune.htm a http://www.liefke.com/hartmut/cis677/

Felkel: Computational geometry

(58 / 57)

http://www.win.tue.nl/~mdberg/
http://tclab.kaist.ac.kr/~otfried/
http://www.cs.uu.nl/staff/marc.html
http://www.cs.uu.nl/staff/markov.html
http://www.cs.uu.nl/geobook/
http://www.reiberg.net/project/voronoi/avortrag.ps.gz
http://cs.rkmvu.ac.in/~sghosh/subhas-lecture.pdf
http://www.cgal.org/Manual/3.1/doc_html/cgal_manual/Segment%0b_Voronoi_diagram_2/Chapter_main.html
http://www.personal.kent.edu/~rmuhamma/Compgeometry/%0bMyCG/Voronoi/Fortune/fortune.htm
http://www.liefke.com/hartmut/cis677/

