DEPARTMENT OF COMPUTER GRAPHICS AND INTERACTION

VORONOI DIAGRAM PART II

PETR FELKEL

FEL CTU PRAGUE

felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Reiberg] and [Nandy]

Version from 10.11.2022

Talk overview

- Incremental construction
- Voronoi diagram of line segments
- VD of order k
- Farthest-point VD

Summary of the VD terms

- Site = input point, line segment, ...
- Cell = area belonging to the site, in VD_{1} locus of points nearest to the site
- Edge, arc = part of Voronoi diagram (border between cells)
- Vertex = intersection of VD edges

Summary of the VD terms

Incremental construction

Incremental construction - bounded cell

Felkel: Computational geometry

Incremental construction - bounded cell

Felkel: Computational geometry

Incremental construction - bounded cell

Felkel: Computational geometry

Incremental construction - bounded cell

Incremental construction - bounded cell

$$
\begin{aligned}
& x+x+x+ \\
& x+x+1
\end{aligned}
$$

Felkel: Computational geometry

Incremental construction - bounded cell

$$
\begin{aligned}
& x+x+x+ \\
& x+x+1
\end{aligned}
$$

Felkel: Computational geometry

Incremental construction - bounded cell

Incremental construction - unbounded cell

Incremental construction algorithm

InsertPoint(S, Vor(S), y) ... y = a new site

Input: Point set S, its Voronoi diagram, and inserted point yal
Output: VD after insertion of \boldsymbol{y}

1. Find the site x in which cell point y falls, $\ldots \mathrm{O}(\log n)$
2. Detect the intersections $\{a, b\}$ of bisector $L(x, y)$ with cell x boundary => create the first edge $e=a b$ on the border of site x
3. site $z=$ neighbor site across the border with intersection b
4. Set start intersection point $p=b$, set new intersection $c=$ undef
5. while(exists(p) and c 回 a) // trace the bisectors from b in one direction
a. Detect intersection c of $L(y, z)$ with border of cell z
b. Report Voronoi edge pc
c. $p=c, z=$ neighbor site across border with intersec. c
6. if (c 回 a) then // open site \rightarrow trace the bisectors from a in other direction
a. $p=a$
b. Similarly as in steps $3,4,5$ with a
${ }^{+}+\mathrm{O}\left(n^{2}\right)$ worst-case, $\mathrm{O}(n)$ expected time for some distributions
DCGI

Voronoi diagram of line segments

Voronoi diagram of line segments

Input: $S=\left\{s_{1}, \ldots, s_{n}\right\}=$ set of n disjoint line segments (sites)

Voronoi diagram of line segments

Input: $S=\left\{s_{1}, \ldots, s_{n}\right\}=$ set of n disjoint line segments (sites)
VD : line segments
parabolic arcs

Voronoi diagram of line segments

Input: $S=\left\{s_{1}, \ldots, s_{n}\right\}=$ set of n disjoint line segments (sites)
VD : line segments
parabolic arcs

Distance measured
perpendicularly to the
line segment interior

Voronoi diagram of line segments

Input: $S=\left\{s_{1}, \ldots, s_{n}\right\}=$ set of n disjoint line segments (sites)
VD : line segments

perpendicularly to the
line segment interior

Voronoi diagram of line segments

Input: $S=\left\{s_{1}, \ldots, s_{n}\right\}=$ set of n disjoint line segments (sites)
VD : line segments

perpendicularly to the
line segment interior

Voronoi diagram of line segments

Input: $S=\left\{s_{1}, \ldots, s_{n}\right\}=$ set of n disjoint line segments (sites)

Voronoi diagram of line segments

Input: $S=\left\{s_{1}, \ldots, s_{n}\right\}=$ set of n disjoint line segments (sites)

$$
\begin{gathered}
x+ \pm+\underset{x+1}{x+y}+ \\
x+\text { DCS }
\end{gathered}
$$

VD of line segments with bounding box

VD of 2 line-segments in detail

VD consists of line segments and parabolic arcs

- Line segment - bisector of end-points ${ }_{(1)}$ or of interiors ${ }_{(2)}$
- Parabolic arc - of point and interior ${ }_{(3)}$ of a line segment

Distance from point-to-object (line segment) is measured to the closest point on the object (perpendicularly to the object silhouette)

VD of 2 line-segments in detail

VD consists of line segments and parabolic arcs

- Line segment - bisector of end-points ${ }_{(1)}$ or of interiors(2)
- Parabolic arc - of point and interior ${ }_{(3)}$ of a line segment

Distance from point-to-object (line segment) is measured to the closest point on the object (perpendicularly to the object silhouette)

VD of 2 line-segments in detail

VD consists of line segments and parabolic arcs

- Line segment - bisector of end-points ${ }_{(1)}$ or of interiors (2)
- Parabolic arc - of point and interior ${ }_{(3)}$ of a line segment

Distance from point-to-object (line segment) is measured to the closest point on the object (perpendicularly to the object silhouette)

VD of 2 line-segments in detail

VD consists of line segments and parabolic arcs

- Line segment - bisector of end-points ${ }_{\left({ }^{1}\right)}$ or of interiors ${ }_{(2)}$
- Parabolic arc - of point and interior ${ }_{(3)}$ of a line segment

Distance from point-to-object (line segment) is measured to the closest point on the object (perpendicularly to the object silhouette)

VD of 2 line-segments in detail

VD consists of line segments and parabolic arcs

- Line segment - bisector of end-points ${ }_{(1)}$ or of interiors ${ }_{(2)}$
- Parabolic arc - of point and interior ${ }_{(3)}$ of a line segment

Distance from point-to-object (line segment) is measured to the closest point on the object (perpendicularly to the object silhouette)

VD in greater details

Bisector of two line segment interiors

Bisector of (end-)point and line segment interior
(in intersection of perpendicular slabs only)

VD in greater details

Bisector of two
line segment interiors

Bisector of (end-)point and line segment interior
(in intersection of perpendicular slabs only)

VD in greater details

Bisector of two line segment interiors

Bisector of (end-)point and line segment interior
(in intersection of perpendicular slabs only)

VD in greater details

Bisector of (end-)point and line segment interior
(in intersection of perpendicular slabs only)

VD in greater details

Bisector of (end-)point and line segment interior
(in intersection of perpendicular slabs only)

VD in greater details

Bisector of (end-)point and line segment interior
(in intersection of perpendicular slabs only)

VD in greater details

Bisector of two line segment interiors

Bisector of (end-)point and line segment interior
(in intersection of perpendicular slabs only)

VD of points and line segments examples

2 points

Type 1

$x+\underset{x+1}{x+1}+$ $x+$ DCS

2 line segments

${ }^{+}$Type ${ }^{+}{ }^{+}$
Type 3
type 3

Voronoi diagram of line segments

- Has more complex bisectors of line segments
- VD contains line segments and parabolic arcs
- Still $O(n)$ combinatorial complexity
- Assumptions on the input line segments:
- non-crossing

- strictly disjoint end-points (slightly shorten the segm.)

Fortune's algorithm for line segments

Shape of beach line for line segments

Beach line $=$ points with distance to the closest site above sweep line l equal to the distance to l
Beach line contains

- parabolic arcs when closest to a site end-point
- straight line segments when closest to a site interior (or just the part of the site interior above l if the site s intersects l)

(This is the shape of the beach line)

Beach line breakpoints types site = line segment

Breakpoint p on the beach line is equidistant from l and equidistant and closest to:
points 1. two site end-points $\quad \Rightarrow p$ traces a VD line segment
segments
2. two site interiors
=> p traces a VD line segment
3. end-point and interior $\Rightarrow>p$ traces a VD parabolic arc
4. one site end-point $\quad=>p$ traces a line segment (border of the slab perpendicular to the site)
5. site interior intersects $=>p=$ intersection, traces the scan line l the input line segment
Cases 4 and 5 involve only one site and therefore do not form a Voronoi diagram edge (are used by alg.only)

Felkel: Computational geometry

Breakpoints types - what they trace on VD

Parabolic arc on the beach line

- 1,2 trace a Voronoi line segment (part of VD edge) draw
- 3 traces a Voronoi parabolic arc (part of VD edge) draw
- 4,5 trace a line segment (used only by the algorithm) моvе
- 4 limits the slab perpendicular to the line segment
- 5 traces the intersection of input segment with a sweep line
(This is the shape of the traced VDarcs)

Breakpoints types - what they trace on VD

- 1,2 trace a Voronoi line segment (part of VD edge) draw
- 3 traces a Voronoi parabolic arc (part of VD edge) draw
- 4,5 trace a line segment (used only by the algorithm) move
- 4 limits the slab perpendicular to the line segment
- 5 traces the intersection of input segment with a sweep line
(This is the shape of the traced VD arcs)

Site event - sweep line reaches an endpoint

I. At upper endpoint of $\boldsymbol{\gamma}$

- Arc above is split into two ${ }^{1-1}$
- four new arcs are created (2 segments +2 patrábolas)
- Breakpoints for two segments are of type 4-5-4
- Breakpoints for parabolas depend on the surrounding sites
- Type 1 for two end-points
- Type 3 for endpoint and interior
- etc...

Site event - sweep line reaches an endpoint

II. At lower endpoint of 9 .

- Intersection with interior (breakpoint of type 5)
- is replaced by two breakpoints (of type 4) with parabolic arc between them

Circle event - lower point of circle of 3 sites

- Two breakpoints meet (on the beach-line)
- Solution depends on their type
- Any of first three types (1,2,or 3) meet (circle event)
-3 sites involved - Voronoi vertex created
- Type 4 (segment interiors) with something else
- two sites involved - breakpoint changes its type
- Voronoi vertex not created
(Voronoi edge may change its shape)
- Type 5 (on segment) with something else
- never happens for disjoint segments (meet with type 4 happens before)

Breakpoints types - what they trace on VD

Parabolic arc on the beach line

- 1,2 trace a Voronoi line segment (part of VD edge) draw
- 3 traces a Voronoi parabolic arc (part of VD edge) draw
- 4,5 trace a line segment (used only by the algorithm) моvе
- 4 limits the slab perpendicular to the line segment
- 5 traces the intersection of input segment with a sweep line
(This is the shape of the traced VD.arcs)

Motion planning example

Motion planning example - retraction Ruseni hran

Find path for a circular robot of radius r from $q_{\text {start }}$ to $q_{\text {end }}$

Motion planning example - retraction Ruseni hran

Find path for a circular robot of radius r from $q_{\text {start }}$ to $q_{\text {end }}$

Motion planning example - retraction Ruseni hran

Motion planning example - retraction Ruseni hran

Motion planning example - retraction Ruseni hran

Motion planning example - retraction Ruseni hran

Find path for a circular robot of radius r from $q_{\text {start }}$ to $q_{\text {end }}$

Motion planning example - retraction Ruseni hran

Find path for a circular robot of radius r from $q_{\text {start }}$ to $q_{\text {end }}$

- Create Voronoi diagram of line segments, take it as a graph
- Project $q_{\text {start }}$ and $q_{\text {end }}$ to $P_{\text {start }}$ and $P_{\text {end }}$ on the VD
- Remove segments with distance to sites smaller than radius r of a robot
- Depth first search if path from $P_{\text {start }}$ to $P_{\text {end }}$ exists
- Report path $q_{\text {start }} P_{\text {start }} \ldots$ path $\ldots P_{\text {end }} q_{\text {end }}$
- $O(n \log n)$ time using $O(n)$ storage

Higher order VD

Felkel: Computational geometry

Order-2 Voronoi diagram (nearest to two sites)

?
5

${ }^{\bullet} 4$

Order-2 Voronoi diagram (nearest to two sites)

Construction of $\mathrm{V}(3,5)=\mathrm{V}(5,3)$

2 。
. 5

3 。

- 4

Construction of $\mathrm{V}(3,5)=\mathrm{V}(5,3)$

2 。
. 5

$\bullet 4$

Construction of $\mathrm{V}(3,5)=\mathrm{V}(5,3)$

2 。

$$
05
$$

${ }^{\bullet} 4$

Construction of $\mathrm{V}(3,5)=\mathrm{V}(5,3)$

Order-2 Voronoi edges

Felkel: Computational geometry

Order-2 Voronoi edges

$$
\begin{align*}
& x+x+x+ \tag{32/57}\\
& x+ \pm+
\end{align*}
$$

Felkel: Computational geometry

Order-2 Voronoi edges

Order-2 Voronoi edges

+ [Nandy]
Felkel: Computational geometry

Order-2 Voronoi edges

Order-2 Voronoi edges

Order-2 Voronoi edges

Order-2 Voronoi edges

Order-2 Voronoi edges

Order-2 Voronoi edges

Order-2 Voronoi edges

Order-2 Voronoi edges

edge $:$ set of centers of
circles passing through
2 sites s and t and
containing site p
$=>\mathrm{C}_{\mathrm{p}}(\mathrm{s}, \mathrm{t})$
(Edge splits the cell for $p)$

Order-2 Voronoi vertices

Felkel: Computational geometry

Order-2 Voronoi vertices

Order-2 Voronoi vertices

Order-2 Voronoi vertices

(circle circumscribed to Q)

Order-2 Voronoi vertex $u_{p}(Q)$

vertex : center of a circle passing through at least 3 sites Q and containing eithersite por nothing

Case $u_{p}(Q)$

$$
u_{5}(2,3,7)
$$

Cell 5 is inside for all incident edges:
$C_{5}(2,3)$
$C_{5}(2,7)$
$C_{5}(3,7)$
=> 5 is inside for the circle
with center in Voronoi vertex
Felkel: Computational geometry

Order-2 Voronoi vertex $u_{\varnothing}(Q \cup p)$

Order-2 Voronoi vertex $u_{\varnothing}(Q \cup p)$

vertex : center of a circle passing through at least 3 sites and containing either site p or nothing

Case $u_{\varnothing}(Q \cup p)$

$$
u_{\varnothing}(3,5,6,7)
$$

Cell 5 is not inside for all incident edges:
$C_{5}(3,7)$
$C_{6}(3,7)$
$C_{3}(5,6)$
$C_{7}(5,6)$

$=>5$ is on circle with center in Voronoi vertex

Order-k Voronoi Diagram

Single step $V_{k} \rightarrow V_{k+1}$
The order- k diagram can be constructed from the order- $(k-1)$ diagram in $O(k n \log n)$ time

Globally

$$
\sum_{i=1}^{k-1} O(i n \log n)=O\left(k^{2} n \log n\right)
$$

From $V_{1} \rightarrow V_{k}$
The order- k diagram can be iteratively constructed in $O\left(k^{2} n \log n\right)$ time from the pointset of size n

Order n-1 VD (Farthest-point Voronoi diagram)

1

- 4
$x+x+x+$
$x+x+1$

Farthest-point Voronoi diagram

$\mathrm{V}_{-1}\left(p_{i}\right)$ cell
= set of points in the plane farther from p_{i} than from any other site

Vor $_{-1}(\mathrm{P})$ diagram = partition of the plane formed by the farthest point Voronoi regions, their edges, and vertices

Farthest-point Voronoi region (cell)

Computed as intersection

 of halfplanes, but we take"other sides" of bisectors

Construction of $\mathrm{V}_{-1}(7)$
2

- 5
$V_{-1}(y)=\bigcap_{x=1}^{n} h(y, x), y \neq x$

${ }^{\bullet} 4$

Farthest-point Voronoi region (cell)

Farthest-point Voronoi region (cell)

Computed as intersection of halfplanes, but we take "other sides" of bisectors

Construction of $\mathrm{V}_{-1}(7)$ $V_{-1}(y)=\bigcap_{x=1}^{n} h(y, x), y \neq x$

Farthest-point Voronoi region (cell)

Computed as intersection of halfplanes, but we take "other sides" of bisectors

Construction of $\mathrm{V}_{-1}(7)$ $V_{-1}(y)=\bigcap_{x=1}^{n} h(y, x), y \neq x$

Farthest-point Voronoi region (cell)

Computed as intersection of halfplanes, but we take "other sides" of bisectors

Construction of $\mathrm{V}_{-1}(7)$ $V_{-1}(y)=\bigcap_{x=1}^{n} h(y, x), y \neq x$

Farthest-point Voronoi region (cell)

Computed as intersection of halfplanes, but we take "other sides" of bisectors

Construction of $\mathrm{V}_{-1}(7)$ $V_{-1}(y)=\bigcap_{x=1}^{n} h(y, x), y \neq x$

Farthest-point Voronoi region (cell)

Computed as intersection of halfplanes, but we take "other sides" of bisectors

Construction of $\mathrm{V}_{-1}(7)$ $V_{-1}(y)=\bigcap_{x=1}^{n} h(y, x), y \neq x$

Farthest-point Voronoi region (cell)

Computed as intersection of halfplanes, but we take "other sides" of bisectors

Construction of $\mathrm{V}_{-1}(7)$ $V_{-1}(y)=\bigcap_{x=1}^{n} h(y, x), y \neq x$

Farthest-point Voronoi region (cell)

Computed as intersection of halfplanes, but we take "other sides" of bisectors

Construction of $\mathrm{V}_{-1}(7)$ $V_{-1}(y)=\bigcap_{x=1}^{n} h(y, x), y \neq x$

Property

The farthest point Voronoi regions are convex and unbounded

Farthest-point Voronoi region

Properties:

Farthest-point Voronoi region

Properties:

- Only vertices of the convex hull have their cells in farthest

Farthest-point Voronoi region

Properties:

- Only vertices of the convex hull have their cells in farthest

Farthest-point Voronoi region

Properties:

- Only vertices of the convex hull have their cells in farthest Voronoi diagram
- The farthest point Voronoi regions are unbounded

Felkel: Computational geometry

Farthest-point Voronoi region

Properties:

- Only vertices of the convex hull have their cells in farthest Voronoi diagram
- The farthest point Voronoi regions are unbounded

Felkel: Computational geometry

Farthest-point Voronoi region

Properties:

- Only vertices of the convex hull have their cells in farthest Voronoi diagram
- The farthest point Voronoi regions are unbounded

Felkel: Computational geometry

Farthest-point Voronoi region

Properties:

- Only vertices of the convex hull have their cells in farthest Voronoi diagram
- The farthest point Voronoi regions are unbounded
- The farthest point Voronoi edges and vertices form a tree (in the graph sense)

Farthest point Voronoi edges and vertices

edge : set of points equidistant from 2 sites and closer to all the other sites

Felkel: Computational geometry

Farthest point Voronoi edges and vertices

edge : set of points equidistant from 2 sites and closer to all the other sites

Farthest point Voronoi edges and vertices

edge : set of points equidistant from 2 sites and closer to all the other sites

Farthest point Voronoi edges and vertices

edge : set of points equidistant from 2 sites and closer to all the other sites

Farthest point Voronoi edges and vertices

edge : set of points equidistant from 2 sites and closer to all the other sites

Farthest point Voronoi edges and vertices

edge : set of points equidistant from 2 sites and closer to all the other sites

vertex : point equidistant from at least 3 sites and closer to all the other sites

- Enclosing circle

Farthest point Voronoi edges and vertices

edge : set of points equidistant from 2 sites and closer to all the other sites

vertex : point equidistant from at least 3 sites and closer to all the other sites

- Enclosing circle

Application of Vor $_{-1}(\mathrm{P})$: Smallest enclosing circle

- Construct Vor $_{-1}(P)$ and find minimal circle with center in $\operatorname{Vor}_{-1}(P)$ vertices or on edges

Farthest-point Voronoi diagrams example

Roundness of manufactured objects

- Input: set of measured points in 2D
- Output: width of the smallest-width annulus mezikuü' s nemmensis sifiou (region between two concentric circles $\mathrm{C}_{\text {inner }}$ and $\mathrm{C}_{\text {outer }}$)
Three cases to test - one will win:

b) 1 point in -3 out

c) 2 in - 2 out ow

Smallest width annulus - cases with 3 pts

a) $\mathrm{C}_{\text {inner }}$ contains at least 3 points

- Center is the vertex of normal Voronoi diagram ($1^{\text {st }}$ order VD)
- The remaining point on $\mathrm{C}_{\text {outer }}$ in $\mathrm{O}(\mathrm{n})$ for each vertex \Rightarrow not the largest (inscribed) empty circle - as discussed on seminar as we must test all VD vertices in combination with point on C outer

Felkel: Computational geometry

Smallest width annulus - case with 2+2 pts

c) $\mathrm{C}_{\text {inner }}$ and $\mathrm{C}_{\text {outer }}$ contain 2 points each

- Generate vertices of overlay of Voronoi (__) and farthest-point Voronoi (- - -) diagrams => $\mathrm{O}\left(\mathrm{n}^{2}\right)$ candidates for centers (we need only vertices, not the complete overlay)
- annulus computed in O(1) from center and 4 points (same for all 3 cases)
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Smallest width annulus - case with 2+2 pts

c) $\mathrm{C}_{\text {inner }}$ and $\mathrm{C}_{\text {outer }}$ contain 2 points each

- Generate vertices of overlay of Voronoi (__) and farthest-point Voronoi (- - -) diagrams => $\mathrm{O}\left(\mathrm{n}^{2}\right)$ candidates for centers (we need only vertices, not the complete overlay)
- annulus computed in O(1) from center and 4 points (same for all 3 cases)
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Smallest width annulus - case with 2+2 pts

c) $\mathrm{C}_{\text {inner }}$ and $\mathrm{C}_{\text {outer }}$ contain 2 points each

- Generate vertices of overlay of Voronoi (__) and farthest-point Voronoi (- - -) diagrams => $\mathrm{O}\left(\mathrm{n}^{2}\right)$ candidates for centers (we need only vertices, not the complete overlay)
- annulus computed in O(1) from center and 4 points (same for all 3 cases)
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Smallest width annulus - case with 2+2 pts

c) $\mathrm{C}_{\text {inner }}$ and $\mathrm{C}_{\text {outer }}$ contain 2 points each

- Generate vertices of overlay of Voronoi (__) and farthest-point Voronoi (---) diagrams => $\mathrm{O}\left(\mathrm{n}^{2}\right)$ candidates for centers (we need only vertices, not the complete overlay)
- annulus computed in O(1) from center and 4 points (same for all 3 cases)
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Smallest width annulus

Smallest-Width-Annulus

Input: \quad Set P of n points in the plane
Output: Smallest width annulus center and radii r and R (roundness)

1. Compute Voronoi diagram $\operatorname{Vor}(P)$
and farthest-point $\operatorname{Voronoi~diagram~} \operatorname{Vor}_{-1}(P)$ of P
2. For each vertex of $\operatorname{Vor}(P)(r)$ determine the farthest point (R) from P => $O(n)$ sets of four points defining candidate annuli - case a)
3. For each vertex of $\operatorname{Vor}_{-1}(P)(R)$ determine the closest point (r) from P => $O(n)$ sets of four points defining candidate annuli - case b)
4. For every pair of edges $\operatorname{Vor}(P)$ and $\operatorname{Vor}_{-1}(P)$ test if they intersect $=>$ another set of four points defining candidate annulus $-c)_{1 .} \quad O(n \log n)$
5. For all candidates of all three types
6. $O\left(n^{2}\right)$ chose the smallest-width annulus
$O\left(n^{2}\right)$ time using $O(n)$ storage

Order n-1 VD construction

Modified DCEL for farthest-point Voronoi d

- Half-infinite edges -> we adapt DCEL
- Half-edges with origin in infinity
- Special vertex-like record for origin in infinity
- Store direction instead of coordinates
- Next(e) or Prev(e) pointers undefined
- For each inserted site p_{j}
- store a pointer to the most CCW half-infinite half-edge of its cell in DCEL

Modified DCEL for farthest-point Voronoi d

- Half-infinite edges -> we adapt DCEL
- Half-edges with origin in infinity
- Special vertex-like record for origin in infinity
- Store direction instead of coordinates
- Next(e) or Prev(e) pointers undefined
- For each inserted site p_{j}
- store a pointer to the most CCW half-infinite half-edge of its cell in DCEL

Modified DCEL for farthest-point Voronoi d

- Half-infinite edges -> we adapt DCEL
- Half-edges with origin in infinity
- Special vertex-like record for origin in infinity
- Store direction instead of coordinates
- Next(e) or Prev(e) pointers undefined
- For each inserted site p_{j}
- store a pointer to the most CCW half-infinite half-edge of its cell in DCEL

Idea of the algorithm

1. Create the convex hull and number the CH points randomly
2. Remove the points starting in the last of this random order and store $\operatorname{cw}\left(p_{i}\right)$ and $\operatorname{ccw}\left(p_{i}\right)$ points at the time of removal.
3. Include the points back and compute V_{-1}

p_{i}	$\operatorname{ccw}\left(p_{i}\right)$	$\operatorname{cw}\left(p_{i}\right)$
p_{6}	p_{3}	p_{5}
p_{5}	p_{3}	p_{2}
\cdots		

Farthest-point Voronoi d. construction

Farthest-pointVoronoi

Input: Set of points P in plane
Output: Farthest-point VD $\operatorname{Vor}_{-1}(P)$

1. Compute convex hull of P
2. Put points in $\mathrm{CH}(P)$ of P in random order p_{1}, \ldots, p_{h}
3. Remove p_{h}, \ldots, p_{4} from the cyclic order (around the CH).

When removing p_{i}, store the neighbors: $\operatorname{cw}\left(p_{i}\right)$ and $\operatorname{ccw}\left(p_{i}\right)$ at the time of removal. (This is done to know the neighbors needed in step 6.)
4. Compute $\operatorname{Vor}_{-1}\left(\left\{p_{1}, p_{2}, p_{3}\right\}\right)$ as init
5. for $i=4$ to h do
6. Add site p_{i} to $\operatorname{Vor}_{-1}\left(\left\{p_{1}, p_{2}, \ldots, p_{i-1}\right\}\right)$ between site $\operatorname{cw}\left(p_{i}\right)$ and $\operatorname{ccw}\left(p_{i}\right)$
7. - start at most CCW edge of the cell $\operatorname{ccw}\left(p_{i}\right)$
8. - continue CW to find intersection with bisector $\left(\operatorname{ccw}\left(p_{i}\right), p_{i}^{+}\right)$
9. - trace borders of Voronoi cell p_{i} in CCW order, add edges
10. - remove invalid edges inside of Voronoi cell p_{i}

Farthest-point Voronoi d. construction

Farthest-point Voronoi d. construction

${ }^{c w}\left(p_{i}\right.$ Start with site $\operatorname{ccw}(p i) i i i$
cell of
cell of
$C \operatorname{CW}\left(p_{i}\right)$
$x+x+$
$x+\infty$
$\operatorname{ccw}\left(p_{i}\right)$

Farthest-point Voronoi d. construction

cell of
$\underset{x+\infty+\infty}{ } C+$
\because O O $_{i}$ Insertion of site p_{i}
\ddots O $p_{i} \quad$ Insertion of site p_{i}
${ }^{c w}\left(p_{i}\right)$ and ccw edge of its cell

-

Farthest-point Voronoi d. construction

Farthest-point Voronoi d. construction

Farthest-point Voronoi d. construction

Farthest-point Voronoi d. construction

\ddots O O $_{i} \quad$ Insertion of site p_{i}

- $c w\left(p_{i}\right)$ and ccw edge of its cell

CW search of intersection
cell of

$$
\begin{array}{r}
C W\left(P_{i}\right) \\
+\infty+\infty+\infty
\end{array}
$$

Felkel: Computational geometry

Farthest-point Voronoi d. construction

cell of

CW search of intersection

cell of

$\operatorname{ccw}\left(p_{i}\right)$

Farthest-point Voronoi d. construction

- p_{i}

Insertion of site p_{i}
${ }^{c w\left(p_{i}\right)}$ and ccw edge of its cell
CW search of intersection
cell of
$C W\left(P_{i}\right)$
$x+\rightarrow+\infty$
$x+\infty$
Felkel: Computational geometry

Farthest-point Voronoi d. construction

- p_{i}

Insertion of site p_{i}
${ }^{c w\left(p_{i}\right)}$ and ccw edge of its cell
CW search of intersection
cell of
$C W\left(P_{i}\right)$
$x+\rightarrow+\infty$
$x+\infty$
Felkel: Computational geometry

Farthest-point Voronoi d. construction

- p_{i}

Insertion of site p_{i}
${ }^{c w\left(p_{i}\right)}$ and ccw edge of its cell
CW search of intersection
cell of
$C W\left(P_{i}\right)$
$x+\rightarrow+\infty$
$x+\infty$
Felkel: Computational geometry

Farthest-point Voronoi d. construction

- p_{i}

Insertion of site p_{i}
${ }^{c w\left(p_{i}\right)}$ and ccw edge of its cell
CW search of intersection
cell of
$C W\left(P_{i}\right)$
$x+\rightarrow+\infty$
$x+\infty$
Felkel: Computational geometry

Farthest-point Voronoi d. construction

$$
\begin{gathered}
c w\left(p_{i}\right) \\
\cdots+\mathbf{D C G I}
\end{gathered}
$$

Farthest-point Voronoi d. construction

cell of

$c w\left(p_{i}\right)$ and ccw edge of its cell

CW search of intersection

cell of

$\operatorname{ccw}\left(p_{i}\right)$

Farthest-point Voronoi d. construction

cell of

${ }^{c w\left(p_{i}\right)}$ and $c c w$ edge of its cell

CW search of intersection

cell of

$\operatorname{ccw}\left(p_{i}\right)$

Farthest-point Voronoi d. construction

cell of

${ }^{c w\left(p_{i}\right)}$ and $c c w$ edge of its cell

CW search of intersection

cell of

$\operatorname{ccw}\left(p_{i}\right)$

Farthest-point Voronoi d. construction

cell of

- ${ }^{c w\left(p_{i}\right)}$ and $c c w$ edge of its cell

CW search of intersection
$\operatorname{ccw}\left(p_{i}\right)$

Farthest-point Voronoi d. construction

- ${ }^{c w\left(p_{i}\right)}$ and ccw edge of its cell

CW search of intersection
cell of

$$
\begin{aligned}
& \underset{x+\infty+\infty}{ } C+ \\
& \text { DCGI }
\end{aligned}
$$

Farthest-point Voronoi d. construction

${ }^{c w\left(p_{i}\right)}$ and ccw edge of its cell
CW search of intersection

Farthest-point Voronoi d. construction

${ }^{c w\left(p_{i}\right)}$ and ccw edge of its cell
CW search of intersection

Farthest-point Voronoi d. construction

- p_{i}

Insertion of site p_{i}

- ${ }^{c w\left(p_{i}\right)}$ and ccw edge of its cell

CW search of intersection

Farthest-point Voronoi d. construction

Farthest-point Voronoi d. construction

$$
\begin{gathered}
x+\underset{x+1}{x+1}+ \\
\text { t }+ \text { D }+
\end{gathered}
$$

References

[Berg]	Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, SpringerVerlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapter 7, http://www.cs.uu.nl/geobook
[Preparata]	Preperata, F.P., Shamos, M.I.: Computational Geometry. An Introduction. Berlin, Springer-Verlag,1985. Chapters 5 and 6
[Reiberg]	Reiberg, J: Implementierung Geometrischer Algoritmen. Berechnung von Voronoi Diagrammen fuer Liniensegmente. http://www.reiberg.net/project/voronoi/avortrag.ps.gz
[Nandy]	Subhas C. Nandy: Voronoi Diagram - presentation. Advanced Computing and Microelectronics Unit. Indian Statistical Institute. Kolkata 700108 http://cs.rkmvu.ac.in/~sghosh/subhas-lecture.pdf
[CGAL]	http://www.cgal.org/Manual/3.1/doc html/cgal manual/Segment Voronoi diagram 2/Chapter main.html
[applets]	http://www.personal.kent.edu/~rmuhamma/Compgeometry/ MyCG/Voronoi/Fortune/fortune.htm a http://www.liefke.com/hartmut/cis677/

