

VORONOI DIAGRAM PART II

PETR FELKEL

FEL CTU PRAGUE

felkel@fel.cvut.cz

https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Reiberg] and [Nandy]

Version from 10.11.2022

Talk overview

- Incremental construction
- Voronoi diagram of line segments
- VD of order k
- Farthest-point VD

																																+	+
																												+	+	+	+	+	+
																									+	+	+	+	+	+	+	+	+
																						+	+	+	+	+	+	+	+	+	+	+	+
																			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
																+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
													+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+ + + +										+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
$\begin{array}{c} + + + + \\ + + + + \end{array}$	÷ +			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Å	27	Ŋ	X	+
+ <i>+ +</i> + <i>+</i> -	+ +	+	+	+	+	+	+	+	+	+	.+	+ Fel	+ kel·	+ Com	+ nut:	+ ation	+ al a	+ eom	+ etrv	+	+	+	+	+	+	+,	+	+				$ \ge $	+
+ + + -) C (5	+	+	+	+	+	+	+	+	+	+	+	+	$r_{(2)}^{+}$	+ 57)	+	+	+	+	+	+	+	+	+	+	+	+ [//	R	Jæ	کر د	+
+ + + + +	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	(2 /	<i>37)</i>	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

Summary of the VD terms

- Site = input point, line segment, …
- Cell = area belonging to the site, in VD₁ locus of points nearest to the site
- Edge, arc = part of Voronoi diagram (border between cells)
- Vertex = intersection of VD edges

Summary of the VD terms

Incremental construction

																																			+
																																			+
																																			+
																																		+	+
																														+	+	+	+	+	+
																											+	+	+	+	+	+	+	+	+
																								+	+	+	+	+	+	+	+	+	+	+	+
																					+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
																		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
															+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	+ + +											+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+ +	* * + * +	+						+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	R		Ŋ		+
+ +	<i>+</i> +			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			R	\bigcirc	+
- + +	+	D)	+	+	+	+	+	+	+	+	+	rei +	ке!: +	+			iai ge +	eom	etry +	+	+	+	+	+	+	+	+	+		K		2	+
	+ + +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	(5 /	57)	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

Incremental construction algorithm

InsertPoint(S, Vor(S), y) ... y = a new site *Input:* Point set *S*, its Voronoi diagram, and inserted point *y*²*S Output:* VD after insertion of **y** Find the site x in which cell point y falls, $\dots O(\log n)$ Detect the intersections $\{a, b\}$ of bisector L(x, y) with cell x boundary 2. = create the first edge e = ab on the border of site x ...O(*n*) site z = neighbor site across the border with intersection $b \dots O(1)$ 3. Set start intersection point p = b, set new intersection c = undef 4. while (exists (p) and c 2 a) // trace the bisectors from b in one direction 5. a. Detect intersection c of L(y,z) with border of cell zb. Report Voronoi edge pc ≻...O(*n*²) c. p = c, z = neighbor site across border with intersec. c 5. if $(c \square a)$ then // open site \rightarrow trace the bisectors from a in other direction a. p = ab. Similarly as in steps 3,4,5 with a $O(n^2)$ worst-case, O(n) expected time for some distributions

																																	+
																																+	+
																												+	+	+	+	+	+
																									+	+	+	+	+	+	+	+	+
																						+	+	+	+	+	+	+	+	+	+	+	+
																			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
																+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
													+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
										+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
$\begin{array}{c} & \stackrel{+}{} + \\ & + & + \\ & + & + \\ \end{array}$	<u> </u>					+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	R		Ŋ	X	+
+ + + +		+	+	+	+	+	+	+	+	+	+	+	+	^+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			K,	Q	+
·····												⊦el	kel:	Con	nputa	ation	al g	eom	etry										// \	6	A	~	
+ + +		9	+	+	+	+	÷	+	+	+	+	+	+	+	(10	/ 57)	+	+	+	+	+	+	+	+	+	+	+	+ļ	y	R	Jæ	(کر	+
+ + + + +	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

Input: $S = \{s_1, ..., s_n\} = \text{set of } n \text{ disjoint line segments (sites)}$

VD of line segments with bounding box

VD consists of line segments and parabolic arcs

- Line segment bisector of end-points(1) or of interiors(2)
- Parabolic arc of point and interior₍₃₎ of a line segment

VD consists of line segments and parabolic arcs

- Line segment bisector of end-points(1) or of interiors(2)
- Parabolic arc of point and interior₍₃₎ of a line segment

VD consists of line segments and parabolic arcs

- Line segment bisector of end-points(1) or of interiors(2)
- Parabolic arc of point and interior₍₃₎ of a line segment

VD consists of line segments and parabolic arcs

- Line segment bisector of end-points(1) or of interiors(2)
- Parabolic arc of point and interior₍₃₎ of a line segment

VD consists of line segments and parabolic arcs

- Line segment bisector of end-points(1) or of interiors(2)
- Parabolic arc of point and interior₍₃₎ of a line segment

VD in greater details

Bisector of two

line segment interiors

VD in greater details

Bisector of two

line segment interiors

Bisector of two

Bisector of two

Bisector of two

Bisector of two

VD of points and line segments examples

Voronoi diagram of line segments

- Has more complex bisectors of line segments
 VD contains line segments and parabolic arcs
- Still O(n) combinatorial complexity
- Assumptions on the input line segments:
 - non-crossing
 - strictly disjoint end-points (slightly shorten the segm.)

Fortune's algorithm for line segments

																																		+
																																	+	+
																													+	+	+	+	+	+
																										+	+	+	+	+	+	+	+	+
																							+	+	+	+	+	+	+	+	+	+	+	+
																				+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
																	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
														+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
											+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
$\begin{array}{c} & + \\ + \\ + \\ + \\ \end{array}$	÷ +	+					+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŕ		Ŋ	\mathbb{N}	+
+ + + + +	- +		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			Å	Q	+
+													Fel	kel:	Con	nputa	atior	nal ge	eomo	etry										// \) گا	جگر ا	~	
+ + + +	D		5	+	+	+	+	+	+	+	+	+	+	+	+	(18	+	+	+	+	+	+	+	+	+	+	+	+	+ /	y	R	∫ æ	لد	+
+ + + + +	+ +	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	(10	, <i>31</i>	' +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

Shape of beach line for line segments

[Berg]

Beach line = points with distance to the closest site above sweep line l equal to the distance to l

Beach line contains

- parabolic arcs when closest to a site end-point
- straight line segments when closest to a site interior
 (or just the part of the site interior above *l* if the site *s* intersects *l*).

(This is the shape of the beach line)

Felkel: Computational geo

Beach line breakpoints types site = line segment

Breakpoint *p* on the beach line is equidistant from *l* and equidistant and closest to:

=> p traces a VD line segment 1. two site end-points points segments => p traces a VD line segment 2. two site interiors => p traces a VD parabolic arc 3. end-point and interior 4. one site end-point => p traces a line segment (border of the slab perpendicular to the site) $\Rightarrow p = intersection, traces$ 5. site interior intersects the scan line l the input line segment Cases 4 and 5 involve only one site and therefore do not form a Voronoi diagram edge (are used by alg.only) Felkel: Computational

Breakpoints types - what they trace on VD

- 1,2 trace a Voronoi line segment (part of VD edge)
- 3 traces a Voronoi parabolic arc (part of VD edge)
- 4,5 trace a line segment (used only by the algorithm) MOVE
 - 4 limits the slab perpendicular to the line segment
 - 5 traces the intersection of input segment with a sweep line

Felkel: Computational geome

DRAW

DRAV

Breakpoints types - what they trace on VD

- 1,2 trace a Voronoi line segment (part of VD edge)
- traces a Voronoi parabolic arc (part of VD edge)
- 4,5 trace a line segment (used only by the algorithm) MOVE
 - 4 limits the slab perpendicular to the line segment
 - 5 traces the intersection of input segment with a sweep line

Felkel: Computational geome

DRAW

DRAV

Site event – sweep line reaches an endpoint

I. At upper endpoint of 🔨

- Arc above is split into two 1-1
- four new arcs are created (2 segments + 2 parabolas)
- Breakpoints for two segments are of type 4-5-4
- Breakpoints for parabolas depend on the surrounding sites
 - Type 1 for two end-points
 - Type 3 for endpoint and interior
 - etc.:. + + + + + + + + +

Site event – sweep line reaches an endpoint

Circle event – lower point of circle of 3 sites

- Two breakpoints meet (on the beach-line)
- Solution depends on their type
 - Any of first three types (1,2,or 3) meet (circle event)
 - 3 sites involved Voronoi vertex created
 - Type 4 (segment interiors) with something else
 - two sites involved breakpoint changes its type
 - Voronoi vertex not created
 (Voronoi edge may change its shape)

Felkel: Computational geor

 Type 5 (on segment) with something else
 never happens for disjoint segments (meet with type 4 happens before)

Breakpoints types - what they trace on VD

- 1,2 trace a Voronoi line segment (part of VD edge)
- 3 traces a Voronoi parabolic arc (part of VD edge)
- 4,5 trace a line segment (used only by the algorithm) MOVE
 - 4 limits the slab perpendicular to the line segment
 - 5 traces the intersection of input segment with a sweep line

Felkel: Computational geome

DRAW

DRAV

Motion planning example

+ + +
• + + +
+ + +
+ + +
+ + +
+ + +
+ + +
+ + +
- IN +
¥(0 +

Find path for a circular robot of radius *r* from q_{start} to q_{end}

- Create Voronoi diagram of line segments, take it as a graph
- Project q_{start} and q_{end} to P_{start} and P_{end} on the VD
- Remove segments with distance to sites smaller than radius r of a robot

- Depth first search if path from P_{start} to P_{end} exists
- Report path $q_{start} P_{start} \dots path \dots P_{end} q_{end}$

O(n log n) time using O(n) storage

Higher order VD

																																			+
																																			+
																																			+
																																		+	+
																														+	+	+	+	+	+
																											+	+	+	+	+	+	+	+	+
																								+	+	+	+	+	+	+	+	+	+	+	+
																					+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
																		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
															+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	+ +											+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+ +	- - -	<i>‡</i>	-					+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	R		Ŋ	\mathbb{X}	+
+ +	+ -	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			K	Q	+
+ +	+)	+	+	+	+	+	+	+	+	+	+ei	кеі: +	Con	nputa		ai ge	eom +	etry +	+	+	+	+	+	+	+	+	+ [// \	(b)		2	+
						1	-	-			-	-	1	-	-	-	(29	/ 57))	+	+	-	1	+	+	-	-	-	-		-	,~, _			+

Construction of V(3,5) = V(5,3)

Construction of V(3,5) = V(5,3)

Construction of V(3,5) = V(5,3)

edge : set of centers of 5 circles passing through V(3,2 2 sites s and t and × C₃(1 containing site p $=> C_{D}(S,t)$ (3.1 (Edge splits the cell for p) Question Which are the regions on both sides of $c_p(s,t)$? = cells V(p,s) and V(p,t) Felkel: Computational geometry (32 / 57

edge : set of centers of circles passing through 2 sites s and t and containing site p=> $c_p(s,t)$ (Edge splits the cell for p) Question Which are the regions on both sides of $c_p(s,t)$?

=> cells V(p,s) and V(p,t)

(32 / 57

edge : set of centers of circles passing through 2 sites s and t and containing site p=> $c_p(s,t)$ (Edge splits the cell for p) Question Which are the regions on both sides of $c_p(s,t)$?

=> cells V(p,s) and V(p,t)

(32 / 57

Order-2 Voronoi vertex $u_{\emptyset}(Q \cup p)$

Order-2 Voronoi vertex $u_{\emptyset}(Q \cup p)$

Order-k Voronoi Diagram

Single step $V_k \rightarrow V_{k+1}$ The order-*k* diagram can be constructed from the order-(k - 1) diagram in $O(kn \log n)$ time

Globally

k-1 $\sum O(in\log n) = O(k^2 n\log n)$ From $V_1 \rightarrow V_k$ The order-k diagram can be iteratively constructed in $O(k^2 n \log n)$ time from the pointset of size *n* Felkel: Computational geometry (38 / 57)

Order n-1 VD (Farthest-point Voronoi diagram)

																															+
																														+	+
																										+	+	+	+	+	+
																							+	+	+	+	+	+	+	+	+
																				+	+	+	+	+	+	+	+	+	+	+	+
																	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
														+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
											+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
								+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Å		Ŋ	R	+
	+	+	+	+	+	+	+	+	+	+ Fell	+ +	+ Corr	+	+ ation	+ al a	+ eom	+ etrv	+	+	+	+	+	+	+	+	+			L.	Y	+
• + + + + DCG	+	+	+	+	+	+	+	+	+	+	+	+	(39	+	+	+	+	+	+	+	+	+	+	+	+	+,	ļ	R	$\int \mathcal{R}$	2	+
+ + + + + + + +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

Farthest-point Voronoi diagram

 $V_{-1}(p_i)$ cell = set of points in the plane farther from p_i than from any other site

Vor₋₁(P) diagram = partition of the plane formed by the farthest point Voronoi regions, their edges, and vertices

Computed as intersection of halfplanes, but we take "other sides" of bisectors

Construction of V₋₁(7) $V_{-1}(y) = \bigcap_{x=1}^{n} h(y, x), y \neq x$

2

3

5

💶 [Nandy]

•7

•7

57

[Nandy]

 $u_{-1}(2,4,7)$

Application of Vor₋₁(**P**) : **Smallest enclosing circle**

 Construct Vor₋₁(P) and find minimal circle with center in Vor₋₁(P) vertices or on edges

Farthest-point Voronoi diagrams example

Roundness of manufactured objects

- Input: set of measured points in 2D
- Output: width of the smallest-width annulus mezikruží s nejmenší šířkou (region between two concentric circles C_{inner} and C_{outer})

Three cases to test – one will win:

a) C_{inner} contains at least 3 points

 $\Rightarrow O(n^2)$

- Center is the vertex of normal Voronoi diagram (1st order VD)
- The remaining point on C_{outer} in O(n) for each vertex = not the largest (inscribed) empty circle - as discussed on seminar as we must test all VD vertices in combination with point on C outer

_1 point in – 3 out

b) C_{outer} contains at least 3 points
Center is the vertex of the farthest Voronoi diagram
The remaining point on C_{inner} ir

not the smallest enclosing circle - as discussed on seminar
 as we must test all vertices in combination with point on C inner

Felkel: Computational geometry

49 / 57

Felkel: Computational ge

2 in – 2 out

- c) C_{inner} and C_{outer} contain 2 points each
- Generate vertices of overlay of Voronoi (__) and farthest-point Voronoi (- - -) diagrams
 => O(n²) candidates for centers (we need only vertices, not the complete overlay)
- annulus computed in O(1) from center and 4 points (same for all 3 cases)
- O(n²)

Felkel: Computational dec

- c) C_{inner} and C_{outer} contain 2 points each
- Generate vertices of overlay of Voronoi (__) and farthest-point Voronoi (- - -) diagrams
 => O(n²) candidates for centers (we need only vertices, not the complete overlay)
- annulus computed in O(1) from center and 4 points (same for all 3 cases)
- O(n²)

3 in – 1 out

2 in – 2 out

Felkel: Computational geo

2 in – 2 out

3 in – 1 out

out

- c) C_{inner} and C_{outer} contain 2 points each
- Generate vertices of overlay of Voronoi (__) and farthest-point Voronoi (- - -) diagrams
 => O(n²) candidates for centers (we need only vertices, not the complete overlay)
- annulus computed in O(1) from center and 4 points (same for all 3 cases)
- O(n²)

- Generate vertices of overlay of Voronoi (__) and farthest-point Voronoi (- - -) diagrams
 => O(n²) candidates for centers (we need only vertices, not the complete overlay)
- annulus computed in O(1) from center and 4 points (same for all 3 cases)
- O(n²)

Smallest width annulus

Smallest-Width-Annulus

Input: Set *P* of *n* points in the plane *Output:* Smallest width annulus center and radii r and R (roundness)

- Compute Voronoi diagram Vor(P) and farthest-point Voronoi diagram Vor₋₁(P) of P
- 2. For each vertex of Vor(P) (*r*) determine the *farthest point* (*R*) from P => O(n) sets of four points defining candidate annuli case a)
- 3. For each vertex of $Vor_{-1}(P)(R)$ determine the *closest point* (*r*) from *P* => O(n) sets of four points defining candidate annuli case b)

+ + + + + + + + + + + + +

+ + + + + + + + + + + + +

2.+

 $O(n^2)$

 $O(n^2)$

- 4. For every pair of edges Vor(P) and $Vor_{-1}(P)$ test if they intersect => another set of four points defining candidate annulus – c) $A_{-1} = O(n \log n)$
- 5. For all candidates of all three types chose the smallest-width annulus

O(n²) time using O(n) storage+

Order n-1 VD construction

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | + |
|---------------------------------------|---|---|---|---|---|---|---|---|---|-----|------|------|-------|-------|-------|------|------|---|---|---|---|---|---|---|---|-----|-------|----|------|-----------------|---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | + |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | + | + |
| | | | | | | | | | | | | | | | | | | | | | | | | | | + | + | + | + | + | + |
| | | | | | | | | | | | | | | | | | | | | | | | + | + | + | + | + | + | + | + | + |
| | | | | | | | | | | | | | | | | | | | | + | + | + | + | + | + | + | + | + | + | + | + |
| | | | | | | | | | | | | | | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| | | | | | | | | | | | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| | | | | | | | | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| | | | | | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| + + + + + + + + + + + + + + + + + + + | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | Ŕ | | IJ) | \mathcal{V} | + |
| + + + + + + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | Ļ | \bigcirc | + |
| | + | + | + | + | + | + | + | + | + | Fel | kel: | Corr | nputa | ation | al ge | eome | etry | + | + | + | + | + | + | + | + | + / | // / | La | جطرا | 57 | + |
| | | | | | | | | | | | | | (52) | / 57) | | | | | | | | | | | | Þ | ,
 | 5 |) æ | لہ ⁻ | |

Modified DCEL for farthest-point Voronoi d

- Half-infinite edges -> we adapt DCEL
- Half-edges with origin in infinity
 - Special vertex-like record for origin in infinity
 - Store direction instead of coordinates
 - Next(e) or Prev(e) pointers undefined
- For each inserted site p_i
 - store a pointer to the most
 CCW half-infinite half-edge
 of its cell in DCEL

Modified DCEL for farthest-point Voronoi d

- Half-infinite edges -> we adapt DCEL
- Half-edges with origin in infinity
 - Special vertex-like record for origin in infinity
 - Store direction instead of coordinates
 - Next(e) or Prev(e) pointers undefined
- For each inserted site p_i
 - store a pointer to the most
 CCW half-infinite half-edge
 of its cell in DCEL

Modified DCEL for farthest-point Voronoi d

- Half-infinite edges -> we adapt DCEL
- Half-edges with origin in infinity
 - Special vertex-like record for origin in infinity
 - Store direction instead of coordinates
 - Next(e) or Prev(e) pointers undefined
- For each inserted site p_i
 - store a pointer to the most
 CCW half-infinite half-edge
 of its cell in DCEL

Idea of the algorithm

- 1. Create the convex hull and number the CH points randomly
- 2. Remove the points starting in the last of this random order and store $cw(p_i)$ and $ccw(p_i)$ points at the time of removal.
- 3. Include the points back and compute V_{-1}

Farthest-pointVoronoi $O(n \log n)$ expected time in O(n) storageInput:Set of points P in planeOutput:Farthest-point VD Vor_1(P)1.Compute convex hull of P

- 2. Put points in CH(*P*) of *P* in random order $p_1, ..., p_h$
- 3. Remove $p_h, ..., p_4$ from the cyclic order (around the CH). When removing p_i , store the neighbors: $cw(p_i)$ and $ccw(p_i)$ at the time of removal. (This is done to know the neighbors needed in step 6.)
- 4. Compute $Vor_{-1}(\{p_1, p_2, p_3\})$ as init
- **5.** for i = 4 to h do

7.

8.

9.

10.

- 6. Add site p_i to $Vor_{-1}(\{p_1, p_2, \dots, p_{i-1}\})$ between site $cw(p_i)$ and $ccw(p_i)$
 - start at most CCW edge of the cell $ccw(p_i)$
 - continue CW to find intersection with bisector($ccw(p_i), p_i$)
 - trace borders of Voronoi cell p_i in CCW order, add edges

- remove invalid edges inside of Voronoi cell p_i

References

| [Berg] | Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:
Computational Geometry: <i>Algorithms and Applications</i> , Springer-
Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
77973-5, Chapter 7, <u>http://www.cs.uu.nl/geobook/</u> |
|-----------------|---|
| [Preparata] | Preperata, F.P., Shamos, M.I.: <i>Computational Geometry. An Introduction.</i> Berlin, Springer-Verlag,1985. Chapters 5 and 6 |
| [Reiberg] | Reiberg, J: Implementierung Geometrischer Algoritmen.
Berechnung von Voronoi Diagrammen fuer Liniensegmente.
http://www.reiberg.net/project/voronoi/avortrag.ps.gz |
| [Nandy] | Subhas C. Nandy: Voronoi Diagram – presentation. Advanced
Computing and Microelectronics Unit. Indian Statistical Institute.
Kolkata 700108 <u>http://cs.rkmvu.ac.in/~sghosh/subhas-lecture.pdf</u> |
| [CGAL] | http://www.cgal.org/Manual/3.1/doc_html/cgal_manual/Segment + + + + + + + + + + + + + + + + + + + |
| [applets] | http://www.personal.kent.edu/~rmuhamma/Compgeometry/ MyCG/Voronoi/Fortune/fortune.htm a http://www.liefke.com/hartmut/cis677/ + |
| + + + +
+ D(| G
G
G
G
G
G
G
G |