

## VORONOI DIAGRAM

## PETR FELKEL

FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.fel.cvut.cz/wiki/courses/cgl
Based on [Berg] and [Mount]

Version from 30.10.2019

## Talk overview

- Definition and examples
- Applications
- Algorithms in 2D
- D\&C
$O(n \log n)$
- Sweep line $\quad O(n \log n)$


## Voronoi diagram (VD)

- One of the most important structure in Comp. geom.
- Encodes proximity information What is close to what?
- Standard VD - this lecture
- Set of points - nDim
- Euclidean space \& metric
- Generalizations
- Set of line segments or curves
- Different metrics
- Higher order VD's (furthest point)


## Voronoi cell (for points in plane)

- Let $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ be a set of points (sites) in dDim space

... 2D space (plane) here

- Voronoi cell $V\left(p_{i}\right)$ - is open!
$=$ set of points $q$ closer to $p_{i}$ than to any other site:

$$
V\left(p_{i}\right)=\left\{q,\left|p_{i} q\right|<\left|p_{j} q\right|, \forall j \neq i\right\} \text {, where }
$$

$\| p q$ is the Euclidean distance between $p$ and $q$
= intersection of open halfplanes

$$
V\left(p_{i}\right)=\bigcap_{j \neq i} h\left(p_{i}, p_{j}\right)
$$

$h\left(p_{i}, p_{j}\right)=$ open halfplane
$=$ set of $p$ ts strictly closer to $p_{i}$ than to $p_{i}$
DCGI

## Voronoi diagram (in plane)

- Voronoi diagram $\operatorname{Vor}(P)$ of points $P$
$=$ what is left of the plane after removing all the open Voronoi cells
= collection of line segments (possibly unbounded)



## Voronoi diagram (in plane)

- Voronoi diagram $\operatorname{Vor}(P)$ of points $P$
= what is left of the plane after removing all the open Voronoi cells
= collection of line segments (possibly unbounded)

Site (given point)


## Voronoi diagram (in plane)

- Voronoi diagram $\operatorname{Vor}(P)$ of points $P$
= what is left of the plane after removing all the open Voronoi cells
$=$ collection of line segm

Site (given point)


## Voronoi diagram (in plane)

- Voronoi diagram $\operatorname{Vor}(P)$ of points $P$
= what is left of the plane after removing all the open Voronoi cells
$=$ collection of line segm

Site (given point)


## Voronoi diagram (in plane)

- Voronoi diagram $\operatorname{Vor}(P)$ of points $P$
= what is left of the plane after removing all the open Voronoi cells
$=$ collection of line segm

Site (given point)


## Voronoi diagram examples

1 point


## Voronoi diagram examples

1 point
$\bullet$

2 points


## Voronoi diagram examples

1 point
$\bullet$
2 points


3 points

- $\mid$ - $\mid$ -


## Voronoi diagram examples

1 point
2 points
3 points

-

## Voronoi diagram examples

1 point
2 points
3 points


## Voronoi diagram examples

1 point
2 points
3 points

-

## Voronoi diagram examples

1 point
2 points


3 points


## Cell

- The whole plain for 1 point
- Halfplane or strip for collinear points
- Convex (possibly unbounded) polygon

Edges of VD

- || lines for collinear points
- Halflines (for non-collinear CH points)
- Line segments (for bounded cells)


## Voronoi diagram examples




## Voronoi diagram examples



Vertex with $\mathrm{O}(\mathrm{n})$ incident edges


17 points


Cell with $O(n)$ vertices
From total $\left|n_{v}\right| \leq 2 n-5$

## Voronoi diagram examples



## Voronoi diagram (in plane)

## = planar graph

- Subdivides plane into $n$ cells ( $n=$ num. of input sites $|\mathrm{P}|$ )
- Edge = locus of equidistant pairs of points (cells) = part of the bisector of these points
- Vertex $=$ center of the circle defined by $\geq 3$ points => vertices have degree $\geq 3$
- Number of vertices $n_{v} \leq 2 n-5 \quad \Rightarrow>(n)$
- Number of edges $\quad n_{e} \leq 3 n-6 \quad=>$ O(n) (only $\mathrm{O}(n)$ from $\mathrm{O}\left(n^{2}\right)$ intersections of bisectors)
- In higher dimensions complexity from $\mathrm{O}(n)$ up to $\mathrm{O}\left(n^{|d / 2|}\right)$
- Unbounded cells belong to sites (points) on convex hull


## Voronoi diagram O(n) complexity derivation

$\cdot|\cdot| \cdot$ For $n$ collinear sites:

$$
\begin{array}{ll}
n_{v}=0 & \leq 2 n-5 \\
n_{e}=(n-1) & \leq 3 n-6
\end{array}
$$

both hold
For $n$ non-collinear sites:

- Add extra VD vertex $v$ in infinity $m_{v}=n_{n}+1$
- Apply Euler's formula: $\quad m_{v}-m_{e}+m_{f}=2$
- Obtain $\quad\left(n_{v}+1\right)-n_{e}+n=2\left\{\begin{array}{l}n_{e}=n_{v}+n-1 \\ n_{v}=n_{e}-n+1\end{array}\right.$
- Every VD edge has 2 vertices Sum of vertex degrees $=2 n_{e}$
- Every VD vertex has degree $\geq 3$ Sum of vertex degrees $=3 m_{v}=3\left(n_{v}+1\right)$
- Together $2 n_{e} \geq 3\left(n_{v}+1\right)$

$$
\begin{aligned}
& 2 n_{e} \geq 3\left(n_{v}+1\right) \\
& 2\left(n_{v}+n-1\right) \geq 3\left(n_{v}+1\right) \\
& 2 n_{v}+2 n-2 \geq 3 n_{v}+3 \\
& n_{v} \leq 2 n-5
\end{aligned}
$$

$$
\begin{aligned}
& 2 n_{e} \geq 3\left(n_{v}+1\right) \\
& 2 n_{e} \geq 3\left(n_{e}-n+1+1\right) \\
& 2 n_{e} \geq 3 n_{e}-3 n+6 \\
& \quad n_{e} \leq 3 n-6
\end{aligned}
$$

## Voronoi diagram and convex hull

- Convex hull

Connects points from unbounded cells

## Delaunay triangulation

- point set triangulation (straight line dual to VD)
- maximize the minimal angle (tends to equiangularity)


## Delaunay triangulation

- point set triangulation (straight line dual to VD)
- maximize the minimal angle (tends to
equiangularity)



## Edges, vertices and largest empty circles

Largest empty circle $C_{P}(q)$ with center in

1. In VD vertex $q$ : has 3 or more sites on its boundary
2. On VD edge: contains exactly 2 sites on its boundary and no other site
[Berg]


## Edges, vertices and largest empty circles

Largest empty circle $C_{P}(q)$ with center in

1. In VD vertex $q$ : has 3 or more sites on its boundary
2. On VD edge: contains exactly 2 sites on its boundary and no other site
[Berg]


## Edges, vertices and largest empty circles

Largest empty circle $C_{P}(q)$ with center in

1. In VD vertex $q$ : has 3 or more sites on its boundary
2. On VD edge: contains exactly 2 sites on its boundary and no other site
[Berg]


## Some applications

- Nearest neighbor queries in $\operatorname{Vor}(P)$ of points $P$
- Point $q \in P$... search sites across the edges around the cell q
- Point $q \notin \mathrm{P}$... point location queries - see Lecture 2
(the cell where point $q$ falls)
- Facility location (shop or power plant)
- Largest empty circle (better in Manhattan metric VD)
- Neighbors and Interpolation
- Interpolate with the nearest neighbor, in 3D: surface reconstruction from points
- Art

DCGI

## Voronoi Art



## Voronoi Art



## Algorithms in 2D

- D\&C
- Fortune's Sweep line
$O(n \log n)$
$O(n \log n)$


## Voronoi diagram (VD)

## Divide and Conquer method

1. Split points based on $x$ coord into $L$ and $R$
2. Recursion on $L$ and $R$

1-3 points => return
$>3$ points => recursion
3. Merge $V D_{L}$ and $V D_{R}$

- monotone chain
- trim intersected edges
- Add new edges from the chain


## Voronoi diagram (VD)

## Divide and Conquer method



## Voronoi diagram (VD)

## Divide and Conquer method



## Voronoi diagram (VD)

## Divide and Conquer method



## Voronoi diagram (VD)

## Divide and Conquer method



## Voronoi diagram (VD)

## Divide and Conquer method



## Voronoi diagram (VD)

## Divide and Conquer method



## Voronoi diagram (VD)

## Divide and Conquer method



## Voronoi diagram (VD)

## Divide and Conquer method



## Voronoi diagram (VD)

## Divide and Conquer method



## Voronoi diagram (VD)

## Divide and Conquer method



## Voronoi diagram (VD)

## Divide and Conquer method



## Voronoi diagram (VD)

## Divide and Conquer method



## Voronoi diagram (VD)

## Divide and Conquer method



## Monotone chain search in O(n)

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- In the left cell $l_{i}$ continue CW, in the right cell $r_{i}$ go CCW
- Image shows CW search on cell $l_{0}$ and CCW on cells $r_{i}$ :



## Monotone chain search in O(n)

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- In the left cell $l_{i}$ continue CW, in the right cell $r_{i}$ go CCW
- Image shows CW search on cell $l_{0}$ and CCW on cells $r_{i}$ :



## Monotone chain search in O(n)

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- In the left cell $l_{i}$ continue CW, in the right cell $r_{i}$ go CCW
- Image shows CW search on cell $l_{0}$ and CCW on cells $r_{i}$ :



## Monotone chain search in O(n)

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- In the left cell $l_{i}$ continue CW, in the right cell $r_{i}$ go CCW
- Image shows CW search on cell $l_{0}$ and CCW on cells $r_{i}$ :



## Monotone chain search in O(n)

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- In the left cell $l_{i}$ continue CW, in the right cell $r_{i}$ go CCW
- Image shows CW search on cell $l_{0}$ and CCW on cells $r_{i}$ :



## Monotone chain search in O(n)

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- In the left cell $l_{i}$ continue CW, in the right cell $r_{i}$ go CCW
- Image shows CW search on cell $l_{0}$ and CCW on cells $r_{i}$ :



## Monotone chain search in O(n)

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- In the left cell $l_{i}$ continue CW, in the right cell $r_{i}$ go CCW
- Image shows CW search on cell $l_{0}$ and CCW on cells $r_{i}$ :



## Monotone chain search in O(n)

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- In the left cell $l_{i}$ continue CW, in the right cell $r_{i}$ go CCW
- Image shows CW search on cell $l_{0}$ and CCW on cells $r_{i}$ :



## Monotone chain search in O(n)

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- In the left cell $l_{i}$ continue CW, in the right cell $r_{i}$ go CCW
- Image shows CW search on cell $l_{0}$ and CCW on cells $r_{i}$ :



## Monotone chain search in O(n)

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- In the left cell $l_{i}$ continue CW, in the right cell $r_{i}$ go CCW
- Image shows CW search on cell $l_{0}$ and CCW on cells $r_{i}$ :



## Monotone chain search in O(n)

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- In the left cell $l_{i}$ continue CW, in the right cell $r_{i}$ go CCW
- Image shows CW search on cell $l_{0}$ and CCW on cells $r_{i}$ :



## Monotone chain search in O(n)

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- In the left cell $l_{i}$ continue CW, in the right cell $r_{i}$ go CCW
- Image shows CW search on cell $l_{0}$ and CCW on cells $r_{i}$ :



## Monotone chain search in O(n)

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- In the left cell $l_{i}$ continue CW, in the right cell $r_{i}$ go CCW
- Image shows CW search on cell $l_{0}$ and CCW on cells $r_{i}$ :



## Monotone chain search in O(n)

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- In the left cell $l_{i}$ continue CW, in the right cell $r_{i}$ go CCW
- Image shows CW search on cell $l_{0}$ and CCW on cells $r_{i}$ :



## Monotone chain search in O(n)

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- In the left cell $l_{i}$ continue CW, in the right cell $r_{i}$ go CCW
- Image shows CW search on cell $l_{0}$ and CCW on cells $r_{i}$ :



## Monotone chain search in O(n)

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- In the left cell $l_{i}$ continue CW, in the right cell $r_{i}$ go CCW
- Image shows CW search on cell $l_{0}$ and CCW on cells $r_{i}$ :



## Divide and Conquer method complexity

- Initial sort $O(n \log n)$
- $O(\log n)$ recursion levels
$-O(n)$ each merge (chain search, trim, add edges to VD)
- Altogether $O(n \log n)$


## Fortune's sweep line algorithm - idea in 3D



Cones in sites Scanning plane $\pi$ Both slanted $45^{\circ}$

Projection of the intersection to $x y$ :

- Cone x plane => parabolic arcs
- Cone $x$ cone => edges of VD


## Fortune's sweep line algorithm

## - Differs from "typical" sweep line algorithm $\frac{\text { DoNE }}{\text { Tooo }}$

- Unprocessed sites ahead from sweep line may generate Voronoi vertex behind the sweep line

unanticipated
[Mount]
events


## Fortune's sweep line algorithm idea

- Subdivide the halfplane above the sweep line $l$ into 2 regions

1. Points closer to some site above than to sweep line $l$ (solved part)
2. Points closer to sweep line $l$ than any point above (unsolved part - can be changed by sites below $l$ )

- Border between these 2 regions is a beach line



## Sweep line and beach line

- Straight sweep line $l$
- Separates processed and unprocessed sites (points)
- Beach line (Looks like waves rolling up on a beach)
- Separates solved and unsolved regions above sweep line (separates sites above $l$ that can be changed from sites that cannot be changed by sites below $l$ )
- $x$-monotonic curve made of parabolic arcs
- Follows the sweep line
- Prevents us from missing unanticipated events until the sweep line encounters the corresponding site


## Beach line

- Every site $p_{i}$ above $l$ defines a complete parabola - Beach line is the function, that passes through the lowest points of all the parabolas (lower envelope)



## Beach line

- Every site $p_{i}$ above $l$ defines a complete parabola - Beach line is the function, that passes through the lowest points of all the parabolas (lower envelope)



## Beach line

- Every site $p_{i}$ above $l$ defines a complete parabola - Beach line is the function, that passes through the lowest points of all the parabolas (lower envelope)



## Break point (bod zlomu)

$=$ Intersection of two arcs on the beach line

- Equidistant to 2 sites and sweep line 1
- Lies on Voronoi edge of the final diagram



## Notes

## Beach line is $x$-monotone

= every vertical line intersects it in exactly ONE point

Along the beach line
Parabolic arcs are ordered
Breakpoints are ordered
Breakpoints
trace the Voronoi edges
compute their position on the fly from neighboring arcs

## Events

## What event types exist?



## Events

There are two types of events:

- Site events (SE)

Colors:

- Beach line
- Voronoi diagram -VD
- When the sweep line passes over a new site $p_{i}$,
- new arc is added to the beach line
- new edge fragment added to the VD.
- All SEs known from the beginning (sites sorted by y)
- Voronoi vertex event ([Berg] calls a circle event)
- When the parabolic arc shrinks to zero and disappears, new Voronoi vertex is created.
- Created dynamically by the algorithm for triples or more neighbors on the beach line (triples changed by both types of events)


## Site event



Generated when the sweep line passes over a site $p_{i}$

- New parabolic arc created, it starts as a vertical ray from $p_{i}$ to the beach line
- As the sweep line sweeps on, the arc grows wider
- The entry $\left\langle\ldots, p_{j}, \ldots\right\rangle$ on the sweep line status is replaced by the triple $\left\langle\ldots, p_{j}, p_{i}, p_{j}, \ldots\right\rangle$
- Dangling future VD edge created on the bisector $\left(p_{i}, p_{j}\right)$


## Voronoi vertex event (circle event)



Generated when $l$ passes the lowest point of a circle

- Sites $p_{i}, p_{j}, p_{k}$ appear consecutively on the beach line
- Circumcircle lies partially below the sweep line (Voronoi vertex has not yet been generated)
- This circumcircle contains no point below the sweep line (no future point will block the creation of the vertex)
- Vertex \& bisector $\left(p_{i}, p_{k}\right)$ created, $\left(p_{i}, p_{j}\right) \&\left(p_{j}, p_{k}\right)$ finished
- One parabolic arc removed from the beach line


## Data structures

1. (Partial) Voronoi diagram
2. Beach line data structure $T$
3. Event queue Q


## Data structures

1. (Partial) Voronoi diagram
2. Beach line data structure $T$
3. Event queue Q
4. VD edges arise during: site event circle event?
5. VD vertices arise during: site event circle event?
6. Site events known from the beginning: yes no?
7. Circle events known from the beginning: yes no?

## 1. (Partial) Voronoi diagram data structure

Any PSLG data structure, e.g. DCEL (planar stright line graph)

- Stores the VD during the construction
- Contain unbounded edges
- dangling edges during the construction (managed by the beach line DS) and
- edges of unbounded cells at the end
=> create a bounding box



## 2. Beach line tree data structure T - status

- Used to locate the arc directly above a new site
- E.g. Binary tree $T$
$p_{i}$ - possibly multiple times
- Leaves - ordered arcs along the beach line (x-monotone)
- $T$ stores only the sites $p_{i}$ in leaves, $T$ does not store the parabolas
- Inner tree nodes - breakpoints as ordered pairs $<p_{j}, p_{k}>$
- $p_{j}, p_{k}$ are neighboring sites
- Breakpoint position computed on the fly from $p_{j}, p_{k}$ and $y$-coord of the sweep line
- Pointers to other two DS
- In leaves - pointer to event queue, point to node when arc disappears via Voronoi vertex event - if it exists
- In inner nodes - pointer to (dangling) half-edge in DCEL of VD, that is being traced out by the break point


## Max 2n-1 arcs on the beach line

New site splits just one arc


## 2. Beach line tree T



## 3. Event queue Q

- Priority queue, ordered by y-coordinate
- For site event
- stores the site itself
- known from the beginning
- For Voronoi vertex event (circle event)
- stores the lowest point of the circle
- stores also pointer to the leaf in tree T (represents the parabolic arc that will disappear)
- created by both events, when triples of points become neighbors (possible max three triples for a site)
$-\overline{p_{i}}, \overline{p_{j}, \bar{p}_{k}}, p_{l}, p_{m}$ insert of $p_{k}$ can create up to 3 triples and delete up to 2 triples $\left(p_{i}, p_{j}, p_{l}\right)$ and $\left(p_{j}, p_{l}, p_{m}\right)$


## Fortune's algorithm

## FortuneVoronoi( $P$ )

Input: $\quad$ A set of point sites $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ in the plane
Output: Voronoi diagram $\operatorname{Vor}(P)$ inside a bounding box in a DCEL struct.

1. Init event queue $Q$ with all site events
2. while( Q not empty) do
3. I consider the event with largest $y$-coordinate in $Q$ (next in the queue)
4. If( event is a site event at site $p_{i}$ )
5. then HandleSiteEvent $\left(p_{i}\right)$
6. else HandleVoroVertexEvent $\left(p_{i}\right)$, where $p_{i}$ is the lowest point of the circle causing the event
7. ॥ remove the event from $Q$
8. Create a bbox and attach half-infinite edges in $T$ to it in DCEL.
9. Traverse the halfedges in DCEL and add cell records and pointers to and from them

## Handle site event

HandleSiteEvent $\left(p_{i}\right)$ Input: event site $p_{i}$ Output: updated DCEL


1. Search in $T$ for arc $\alpha$ vertically above $p_{i}$. Let $p_{j}$ be the corresponding site
2. Apply insert-and-split operation, inserting a new entry of $p_{i}$ to the beach line $T$ (new arc), thus replacing $\left\langle\ldots, p_{j}, \ldots\right\rangle$ with $\left\langle\ldots, p_{j}, p_{i}, p_{j}, \ldots\right\rangle$
3. Create a new (dangling) edge in the Voronoi diagram, which lies on the bisector between $p_{i}$ and $p_{j}$
4. Neighbors on the beach line changed -> check the neighboring triples of arcs and insert or delete Voronoi vertex events (insert only if the circle intersects the sweep line and it is not present yet).
Note: Newly created triple $p_{j}, p_{i}, p_{j}$ cannot generate a circle event because it only involves two distinct sites.

## Handle Voronoi vertex (circle) event

HandleVoroVertexEvent $\left(p_{j}\right)$ Input: event site $p_{j}$
Output: updated DCEL


Let $p_{i}, p_{j}, p_{k}$ be the sites that generated this event (from left to right).

1. Delete the entry $p_{j}$ from the beach line (thus eliminating its arc $\alpha$ ), i.e.: Replace a triple $\left\langle\ldots, p_{i}, p_{j}, p_{k}, \ldots\right\rangle$ with $\left\langle\ldots, p_{i}, p_{k}, \ldots\right\rangle$ in $T$.
2. Create a new vertex in the Voronoi diagram (at circumcenter of $\left.\left\langle p_{i}, p_{j}, p_{k}\right\rangle\right)$ and join the two Voronoi edges for the bisectors $\left\langle p_{i}, p_{j}\right\rangle$ and $\left\langle p_{j}, p_{k}\right\rangle$ to this vertex (dangling edges - created in step 3 above).
3. Create a new (dangling) edge for the bisector between $\left\langle p_{j}, p_{k}\right\rangle$
4. Delete any Voronoi vertex events (max. three) from $Q$ that arose from triples involving the arc $\alpha$ of $p_{j}$ and generate (two) new events corresponding to consecutive triples involving $p_{i}$, and $p_{k}$.

## Beach line modification

## Q: Beach line contains: abcdef

After deleting of d, which triples vanish and which triples are added to the beach line?


## Handling degeneracies

## Algorithm handles degeneracies correctly

- 2 or more events with the same $y$
- if $x$ coords are different, process them in any order
- if $x$ coords are the same (cocircular sites) process them in any order, it creates duplicated vertices with
 zero-length edges, remove them in post processing step

- degeneracies while handling an event
- Site below a beach line breakpoint
- Creates circle event on the same position


[^0]
## References

| [Berg] | Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, SpringerVerlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapter 7, http://www.cs.uu.nl/geobook/ |
| :---: | :---: |
| [Mount] | Mount, D.: Computational Geometry Lecture Notes for Fall 2016, University of Maryland, Lectures 11 and 16. <br> http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf |
| [Prep | Preperata, F.P., Shamos, M.I.: Computational Geometry. An Introduction. Berlin, Springer-Verlag,1985. Chapter 5 |
| [VoroGlide] | VoroGlide applet: <br> http://www.pi6.fernuni-hagen.de/GeomLab/VoroGlide/ |
| [Fortune] | Fortune's algorithm applet: <br> http://www.personal.kent.edu/~rmuhamma/Compgeometry/ MyCG/Voronoi/Fortune/fortune.htm |
| [Muhama] | http://www.personal.kent.edul~rmuhamma/Compgeometryl compgeom.html |
| tp:thaww | rsonal.kent.edul ~rmuhamma/Compgeometry/MyCG/VoronailLaing nqVor/divConqVor.itmm <br> Felkel: Computational geometry <br> (48/48) |


[^0]:    remove zero-length edges in post processing step

