

CONVEX HULLS

PETR FELKEL

FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg] and [Mount]

Version from 17.10.2020

Talk overview

- Motivation and Definitions
- Graham's scan - incremental algorithm
- Divide \& Conquer
- Quick hull
- Jarvis's March - selection by gift wrapping
- Chan's algorithm - assymptotic optimal algorithm

Convex hull (CH) - why to deal with it?

- Shape approximation of a point set or complex shapes (other common approximations include: minimal area enclosing rectangle, circle, and ellipse,...) - e.g., for collision detection
- Initial stage of many algorithms to filter out irrelevant points, e.g.:
- diameter of a point set

- minimum enclosing convex shapes (such as rectangle, circle, and ellipse) depend only on points on CH

Convexity

- A set S is convex

- if for any points $p, q \in S$ the line segment $p \overline{q \subseteq S}$, or
- if any convex combination of p and q is in S
- Convex combination of points p, q is any point that can be expressed as
$(1-\alpha) p+\alpha q$, where $0 \leq \alpha \leq 1$

- Convex hull $\mathrm{CH}(\mathrm{S})$ of set S - is (similar definitions)
- the smallest set that contains S (convex)
- or: intersection of all convex sets that contain S
- Or in 2D for points: the smallest convex polygon containing all given points

DCGI

Definitions from topology in metric spaces

- Metric space - each two of points have defined a distance
- r-neighborhood of a point p and radius $r>0$
= set of points whose distance to p is strictly less than r (open ball of diameter r centered about p)
- Given set S, point p is
- Interior point of S - if $\exists r, r>0,(r$-neighborhood about $p) \subset S$
- Exterior point - if it lies in interior of the complement of S
- Border point - is neither interior neither exterior

Definitions from topology in metric spaces

- Set S is Open (otevěenáa)

$-\forall p \in S \quad \exists(r$-neighborhood about p of radius $r) \subseteq S$
- it contains only interior points, none of its border points
- Closed (uzavǐená)

- If it is equal to its closure S (uzávěr = smallest closed set containing s in topol. space) $\forall(r$-neighborhood about p of radius $r) \cap S \neq \phi)$
Clopen (otevřená i uzavřená) - Ex.: empty set ϕ, or finite set of disjoint components
- if it is both closed and open
space $Q=$ rational numbers
$(S=$ all positive rational numbers whose square is bigger than 2) $S=(\sqrt{ } 2, \infty)$ in $Q, \sqrt{ } 2 \notin Q, S=\bar{S}$

Bounded (ohraničená)

- if it can be enclosed in a ball of finite radius
- Compact (kompaktni)

DCGI

Clopen (otevřená i uzavřená) example

If it is both closed and open => clopen

Space Q: rational numbers

Set S : all positive rational numbers whose square is bigger than 2

$$
\left.\begin{array}{l}
S=(\sqrt{2}, \infty) \text { in } Q \\
\sqrt{2} \notin Q \Rightarrow \text { open (does not contain the border) } \\
S=\bar{S} \Rightarrow \text { closed (equal to its closure } \bar{S} \text {) }
\end{array}\right] \Rightarrow \text { clopen }
$$

$$
\sqrt{2}=1.414213562
$$

S

Definitions from topology in metric spaces

- Convex set S may be bounded or unbounded

- Convex hull $\mathrm{CH}(\mathrm{S})$ of a finite set S of points in the plane
= Bounded, closed, (= compact) convex polygon

Convex hull representation

- CCW enumeration of vertices
- Contains only the extreme points ("endpoints" of collinear points)

- Simplification for the whole semester: Assume the input points are in general position,
- no two points have the same x-coordinates and
- no three points are collinear
-> We avoid problem with non-extreme points on x (solution may be simple - e.g. lexicographic ordering)

Online x offline algorithms

- Incremental algorithm
- Proceeds one element at a time (step-by-step)
- Online algorithm (must be incremental)
- is started on a partial (or empty) input and
- continues its processing as additional input data becomes available (comes online, thus the name).
- Ex.: insertion sort
- Offline algorithm (may be incremental)
- requires the entire input data from the beginning
- than it can start
- Ex.: selection sort (any algorithm using sort)

Graham's scan

- Incremental $O(n \log n)$ algorithm
- Objects (points) are added one at a time
- Order of insertion is important

1. Random insertion $\quad n O(n)=O\left(n^{2}\right)$
\rightarrow we need to test: is-point-inside-the-hull(p)
2. Ordered insertion

Find the point p with the smallest y coordinate first
a) Sort points p_{i} according to increasing angles around the point p (angle of $p p_{i}$ and x axis)
b) Andrew's modification: sort points p_{i} according to x and add them left to right (construct upper \& lower hull)
Sorting x-coordinates is simpler to implement than sorting of angles

Graham's scan - b) modification by Andrew

- O($n \log n$) for unsorted points, $\mathrm{O}(n)$ for sorted pts.
- Upper hull, then lower hull. Merge.
- Minimum and maximum on x belong to CH

Graham's scan - incremental algorithm

GrahamsScan(points p)
Input: points p
Output: CCW points on the convex hull

1. sort points according to increasing x-coord -> $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ Stack H
2. push $\left(p_{1}, H\right), \operatorname{push}\left(p_{2}, H\right)$
upper hull
3. for $i=3$ to n do
4. while($\operatorname{size}(H) \geq 2$ and orient $\left(\right.$ sos, tos, $\left.\left.p_{i}\right) \geq 0\right)$ // skip left turns
5.: popH // (back-tracking)
5. push $\left(\mathrm{p}_{\mathrm{i}}, \mathrm{H}\right)$ // store right turn
6. store H to the output (in reverse order) // upper hull
7. Symmetrically the lower hull

Position of point in relation to segment

$\operatorname{orient}(p, q, r) \begin{cases}>0 & r \text { is left from } p q, \text { CCW orient } \\ =0 & \text { if }(p, q, r) \text { are collinear } \\ <0 & r \text { is right from } p q, \text { CW orient }\end{cases}$

Convex polygon with edges pq and qr or Triangle pqr: is CCW oriented

degenerated to line

Is Graham's scan correct?

Stack H at any stage contains upper hull of the points

 $\left\{p_{1}, \ldots, p_{j}, p_{i}\right\}$, processed so far- For induction basis $H=\left\{p_{1}, p_{2}\right\} \ldots$ true
- $p_{i}=$ last added point to $\mathrm{CH}, p_{j}=$ its predecessor on CH
- Each point p_{k} that lies between p_{j} and p_{i} lies below $p_{j} p_{i}$ and should not be part of UH after addition of $p_{i}=>$ is removed before push p_{i}. [orient $\left(p_{j}, p_{k}, p_{i}\right)>0, p_{k}$ is right from $p_{j} p_{i} \Rightarrow p_{k}$ is removed from UH]
- Stop, if 2 points in the stack or after construction of the upper hull

Complexity of Graham's scan

- Sorting according $x \quad-O(n \log n)$
- Each point pushed once -O(n)
- Some ($\mathrm{d}_{\mathrm{i}} \leq \mathrm{n}$) points deleted while processing p_{i}

$$
-\mathrm{O}(n)
$$

- The same for lower hull - O(n)
- Total $\mathrm{O}(n \log n)$ for unsorted points $\mathrm{O}(n)$ for sorted points

Divide \& Conquer

- $\Theta(n \log (n))$ algorithm
- Extension of mergesort
- Principle
- Sort points according to x-coordinate,
- recursively partition the points and solve CH .

Convex hull by D\&C

ConvexHullD\&C(points P)

Input: points p
Output: CCW points on the convex hull

1. Sort points P according to x
2. return hull(P)
3. hull(points P)
4. if $|P| \leq 3$ then
5. compute CH by brute force,

6. return
7. Partition P into two sets L and R (with lower \& higher coords x)
8. Recursively compute $H_{L}=$ hull $(\mathrm{L}), \mathrm{H}_{\mathrm{R}}=\operatorname{hull}(\mathrm{R})$
9. $\quad \mathrm{H}=$ Merge hulls $\left(\mathrm{H}_{\mathrm{L}}, \mathrm{H}_{\mathrm{R}}\right)$ by computing

Upper_tangent $\left(H_{L}, H_{R}\right) / /$ find nearest points, $H_{L} C C W, H_{R} C W$
10. Upper_tangent $\left(\mathrm{H}_{L}, \mathrm{H}_{R}\right) / /$ find nearest points,
12. discard points between these two tangents
13. return H

Search for upper tangent (lower is symmetrical)

Upper_tangent($\mathrm{H}_{\mathrm{L}}, \mathrm{H}_{\mathrm{R}}$) Input: two non-overlapping CH's Output: upper tangent $a b$

1. $\mathrm{a}=$ rightmost H_{L}
2. $b=$ leftmost H_{R}
3. while(ab is not the upper tangent for $\mathrm{H}_{\mathrm{L}}, \mathrm{H}_{\mathrm{R}}$) do
4. while($a b$ is not the upper tangent for H_{L}) $a=$ a.succ // move CCW
5. while($a b$ is not the upper tangent for H_{R}) $b=b$.pred // move CW
6. Return $a b$

Where: (ab is not the upper tangent for $\left.\mathrm{H}_{\mathrm{L}}\right)=>\operatorname{orient}(a, b, a$. succ $) \geq 0$ which means a.succ is left from line $a b$

$$
m=\left|H_{L}\right|+\left|H_{R}\right| \leq|L|+|R| \Rightarrow \text { Upper Tangent: } O(m)=O(n)
$$

Convex hull by D\&C complexity

- Initial sort $O(n \log (n))$
- Function hull()
- Upper and lower tangent
- Merge hulls

- Overall complexity
- Recursion

$$
\mathrm{T}(n)= \begin{cases}1 & \ldots \text { if } n \leq 3 \\ 2 \mathrm{~T}(n / 2)+\mathrm{O}(n) & \ldots \text { otherwise }\end{cases}
$$

- Overall complexity of CH by D\&C: $=>\mathrm{O}(n \log (n))$

DCGI

Quick hull

- A variant of Quick Sort
- $\mathrm{O}(n \log n)$ expected time, max $\mathrm{O}\left(n^{2}\right)$
- Principle
- in praxis, most of the points lie in the interior of CH
- E.g., for uniformly distributed points in unit square, we expect only $\mathrm{O}(\log n)$ points on CH
- Find extreme points (parts of CH) quadrilateral, discard inner points
- Add 4 edges to temp hull T
- Process points outside 4 edges

DCGI

Process each of four groups of points outside

- For points outside $a b$ (left from $a b$ for clockwise $с н$)
- Find point c on the hull - max. perpend. distance to $a b$
- Discard points inside triangle abc (right from the edges)
- Split points into two subsets
- outside ac (left from ac) and outside cb (left from cb)
- Replace edge $a b$ in T by edges $a c$ and $c b$
- Process points outside ac and $c b$ recursively

Quick hull complexity

- n points remain outside the hull
- $T(n)=$ running time for such n points outside
$-\mathrm{O}(n)$ - selection of splitting point c
$-\mathrm{O}(n)$ - point classification to inside \& $\left(n_{1}+n_{2}\right)$ outside
$-n_{1}+n_{2} \leq n$
- The running time is given by recurrence

$$
T(n)= \begin{cases}1 & \text { if } n=1 \\ T\left(n_{1}\right)+T\left(n_{2}\right) & \text { where } n_{1}+n_{2} \leq n\end{cases}
$$

- If evenly distributed that $\max \left(n_{1}, n_{2}\right) \leq \alpha n, 0<\alpha<1$ then solves as Quicksort to $\mathrm{O}(\mathrm{c} n \log n)$ where $\mathrm{c}=\mathrm{f}(\alpha)$ else $\mathrm{O}\left(n^{2}\right)$ for unbalanced splits
$\neq \neq$ Output sensitive algorithm

Jarvis's March - selection by gift wrapping

- Variant of $\mathrm{O}\left(\mathrm{n}^{2}\right)$ selection sort
- Output sensitive algorithm
- O(nh) ... $h=$ number of points on convex hull

Jarvis's March

JarvisCH(points P)
Input: points p
Output: CCW points on the convex hull

1. Take point $p_{\min }$ with minimum y-coordinate, $\quad \mathrm{h}_{1}=\mathrm{p}_{\text {min }} \quad \mathrm{h}_{2}$ $/ / p_{\text {min }}$ will be the first point in the hull - append it to the hull as h_{1}
2. Take a horizontal line, i.e., create temporary point $p_{0}=\left(-\infty, h_{1} \cdot y\right)$
3. $\mathrm{j}=1$
4. repeat
5. Rotate the line around h_{j} until it bounces to the nearest point $\mathrm{q}=p_{q}$ // compute the smallest angle by the "smallest orient $\left(h_{j-1}, h_{j}, q\right) " \quad 0 . .90^{\circ}$!
6. ${ }^{\text {j+ }}$
append the bounced nearest point q to the hull as next h_{j}
7. until $\left(q \neq p_{\text {min }}\right)$

Output sensitive algorithm
Complexity: $\mathrm{O}(n)+\mathrm{O}(n)^{*} h \quad=>\mathrm{O}\left(h^{*} n\right)$ good for low number of points on convex hull+

Output sensitive algorithm

- Worst case complexity analysis analyzes the worst case data
$\sim n$ points on CH
- Presumes, that all (const. fraction of) points lie on the CH
- The points are ordered along CH
=> We need sorting => $\Omega(n \log n)$ of CH algorithm
- Such assumption is rare
- usually only much less of points are on CH
- Output sensitive algorithms
- Depend on: input size n and the size of the output h
- Are more efficient for small output sizes
- Reasonable time for CH is $O(n \log h)$

DCGI

Chan's algorithm

Cleverly combines Graham's scan and Jarvis's march algorithms
Goal is $O(n \log h)$ running time $\quad{ }^{n \text { points on } \mathrm{CH}}$

- We cannot afford sorting of all points $-\Omega(n \log n)$
=> Idea: work on parts, limit the part sizes to polynomial h^{c} the complexity does not change $=>\log h^{c}=\log h$
- h is unknown - we get the estimation later
- Use estimation m, better not too high $=>h \leq m \leq h^{2}$

1. Partition points P into r-groups of size $m, r=n / m$
2. Merge r-group CHs as "fat points"

Chan's algorithm

1. Partition points P into r-groups of size $m, r=n / m$

- Each group take $O(m \log m)$ time
- sort + Graham
- r-groups take $O(r m \log m)=O(n \log m)$ - Jarvis

goal $O(n \log h)$

Merging of m parts in Chan's algorithm

2. Merge r-group CHs as "fat points"

- Tangents to convex m-gon can be found in $\mathrm{O}(\log m)$

Chan's algorithm complexity

- h points on the final convex hull
=> at most h steps in the Jarvis march algorithm
- each step computes r-tangents, $O(\log m)$ each
- merging together $O(h r \log m)$

$$
r \text {-groups of size } m, r=n / m
$$

- Complete algorithm $\mathrm{O}(n \log h)$
- Graham's scan on partitions $\quad O(r m \log m)=O(n \log m)$
- Jarvis Merging: $O(h r \log m)=O(h n / m \log m), \quad . .4 \mathrm{a})$
$h \leq m \leq h^{2}$
$=O(n \log m)$
- Altogether
$\underline{O(n \log m)}$
- How to guess m ? Wait!

Chan's algorithm for known m

PartialHull(P, m)
Input: points P
Output: group of size m

1. Partition P into $r=\lceil n / m\rceil$ disjoint subsets $\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$ or size at most $r /$
2. for $i=1$ to r do
a) Convex hull by GrahamsScan $\left(\mathrm{P}_{\mathrm{i}}\right)$, store vertices in ordered array
3. let $p_{1}=$ the bottom most point of P and $p_{0}=\left(-\infty, p_{1} \cdot y\right)$
4. for $k=1$ to m do $/ /$ compute merged hull points
a) for $i=1$ to r do $/ /$ angle to all r subsets => points q_{i}

Compute the point $q_{i} \in P$ that maximizes the angle $\angle p_{k-1}, p_{k}, q_{i}$
b) let p_{k+1} be the point $q \in\left\{q_{1}, q_{2}, \ldots, q_{r}\right\}$ that maximizes $\angle p_{k-1}, p_{k}, q$ (p_{k+1} is the new point in CH)
c) if $p_{k+1}=p_{1}$ then return $\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$
5. return "Fail, m was too small"

Chan's algorithm - estimation of m

ChansHull
Input: points P
Output: convex hull $p_{1} \ldots p_{k}$

1. for $t=1,2, \ldots,\lceil\lg \lg h\rceil$ do $\{$
a) let $m=\min \left(2^{2^{\wedge t}}, n\right) \quad m=\left\{2^{2}, 2^{4}, 2^{8}, \ldots, n\right\}$
b) $L=$ PartialHull (P, m)
c) if $L \neq$ "Fail, m was too small" then return L \}
Sequence of choices of m are $\left\{4,16,256, \ldots, 2^{2^{\wedge t}}, \ldots, n\right\} \ldots$ squares
Example: for $h=23$ points on convex hull of $n=57$ points, the algorithm
will try this sequence of choices of $m\{4,16,256,57\}$
2. 4 and 16 will fail
3. 256 will be replaced by $n=57$

Complexity of Chan's Convex Hull?

- The worst case: Compute all t iterations
- $\mathrm{t}^{\text {th }}$ iteration takes $O\left(n \log 2^{2^{t}}\right)=O\left(n 2^{t}\right)$
- Algorithm stops when $2^{2^{t}} \geq h \Rightarrow t=\lceil\lg \lg h\rceil$
- All $t=\lceil\lg \lg h\rceil$ iterations take:

Using the fact that $\sum_{i=0}^{k} 2^{i}=2^{k+1}-1$

$2 \times$ more work in the worst case

Conclusion in 2D

- Graham's scan: $O(n \log n), O(n)$ for sorted pts
- Divide \& Conquer: $O(n \log n)$
- Quick hull:
$O(n \log n), \max O\left(n^{2}\right) \sim$ distrib.
- Jarvis's march:
- Chan's alg.: $O(h n), \max O\left(n^{2}\right) \sim$ pts on CH $O(n \log h) \sim$ pts on CH asymptotically optimal but
constants are too high to be useful

References

- [Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapter 5, http://www.cs.uu.nl/geobook/
- [Mount] Mount, D.: Computational Geometry Lecture Notes for Fall 2016, University of Maryland, Lectures 3 and 4. http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf
- [Chan] Timothy M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions., Discrete and Computational Geometry, 16, 1996, 361-368.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.389

