

CONVEX HULLS

PETR FELKEL

FEL CTU PRAGUE

felkel@fel.cvut.cz

https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg] and [Mount]

Version from 17.10.2020

Talk overview

- Motivation and Definitions
- Graham's scan incremental algorithm
- Divide & Conquer
- Quick hull
- Jarvis's March selection by gift wrapping
- Chan's algorithm assymptotic optimal algorithm

Convex hull (CH) – why to deal with it?

- Shape approximation of a point set or complex shapes (other common approximations include: minimal area enclosing rectangle, circle, and ellipse,...) – e.g., for collision detection
- Initial stage of many algorithms to filter out irrelevant points, e.g.:
 - diameter of a point set
 - minimum enclosing convex shapes (such as rectangle, circle, and ellipse) depend only on points on CH

Convexity

A set S is convex

- if for any points $p,q \in S$ the line segment $p\overline{q} \subseteq S$, or
- if any convex combination of p and q is in S
- Convex combination of points p, q is any point that can be expressed as $(1-\alpha)p + \alpha q$, where $0 \le \alpha \le 1$
- Convex hull CH(S) of set S is (similar definitions)
 - the smallest set that contains S (convex)
 - or: intersection of all convex sets that contain S
 - Or in 2D for points: the smallest convex polygon containing all given points

Definitions from topology in metric spaces

- Metric space each two of points have defined a distance ,
- r-neighborhood of a point p and radius r > 0
 set of points whose distance to p is strictly less than r
 (open ball of diameter r centered about p)
- Given set S, point p is
 - Interior point of S if $\exists r, r > 0$, (r-neighborhood about p) \subset S
 - Exterior point if it lies in interior of the complement of S
 - Border point is neither interior neither exterior

Definitions from topology in metric spaces

- ∀p ∈ S ∃ (r-neighborhood about p of radius r) ⊆ S
- it contains only interior points, none of its border points
- It contains of Closed (uzavřená)

 If it is equal to ∀(r-neighbo

- If it is equal to its closure S (uzávěr = smallest closed set containing S in topol. space) $\forall (r\text{-neighborhood about } p \text{ of radius } r) \cap S \neq \emptyset)$
- **Clopen** (otevřená i uzavřená) Ex.: empty set ϕ , or finite set of disjoint components
 - if it is both closed and open

space Q = rational numbers

(S= all positive rational numbers whose square is bigger than 2) $S = (\sqrt{2}, \infty)$ in $Q, \sqrt{2} \notin Q, S = \overline{S}$

Bounded (ohraničená)

Unbounded

- if it can be enclosed in a ball of finite radius
- Compact (kompaktní)

if it is both closed and bounded

Goes to infinity?

Felkel: Computational geometry

Clopen (otevřená i uzavřená) example

If it is both closed and open => clopen

Space Q: rational numbers

Set S: all positive rational numbers whose square is bigger than 2

$$S = (\sqrt{2}, \infty) \text{ in } Q$$

$$\sqrt{2} \notin Q \Rightarrow \text{ open (does not contain the border)} \Rightarrow \text{clopen}$$

 $S = \bar{S} \Rightarrow \text{closed (equal to its closure } \bar{S})$

Definitions from topology in metric spaces

Convex set S may be bounded or unbounded

- Convex hull CH(S) of a finite set S of points in the plane
 - = Bounded, closed, (= compact) convex polygon

Convex hull representation

- CCW enumeration of vertices
- Contains only the extreme points ("endpoints" of collinear points)

- Simplification for the whole semester:
 Assume the input points are in general position,
 - no two points have the same x-coordinates and
 - no three points are collinear
 - -> We avoid problem with non-extreme points on x
 (solution may be simple e.g. lexicographic ordering)

Online x offline algorithms

- Incremental algorithm
 - Proceeds one element at a time (step-by-step)
- Online algorithm (must be incremental)
 - is started on a partial (or empty) input and
 - continues its processing as additional input data becomes available (comes online, thus the name).
 - Ex.: insertion sort
- Offline algorithm (may be incremental)
 - requires the entire input data from the beginning
 - than it can start
 - Ex.: selection sort (any algorithm using sort)

Graham's scan

- Incremental O(n log n) algorithm
- Objects (points) are added one at a time
- Order of insertion is important
 - 1. Random insertion $n O(n) = O(n^2)$ -> we need to test: *is-point-inside-the-hull(p)*
 - 2. Ordered insertion
 Find the point *p* with the smallest *y* coordinate first
 - a) Sort points p_i according to *increasing angles* around the point p (angle of pp_i and x axis)
 - b) Andrew's modification: sort points p_i according to x and add them left to right (construct upper & lower hull)

Sorting *x-coordinates* is simpler to implement than sorting of angles

Graham's scan – b) modification by Andrew

- $O(n \log n)$ for unsorted points, O(n) for sorted pts.
- Upper hull, then lower hull. Merge.
- Minimum and maximum on x belong to CH

Graham's scan - incremental algorithm

```
push
                                                                               pop
GrahamsScan(points p)
Input:
          points p
                                                                                tos
                                                                                SOS
Output: CCW points on the convex hull
    sort points according to increasing x-coord -> \{p_1, p_2, ..., p_n\}
                                                                          Stack H
   push(p_1, H), push(p_2, H)
                                                                    upper hull
   for i = 3 to n do
    : :while( size(H) \geq 2 and orient( sos, tos, p<sub>i</sub> ) \geq 0 ) // skip left turns
5.
    pop H
                                                              // (back-tracking)
    push(p<sub>i</sub>, H)
                                                 // store right turn
   store H to the output (in reverse order) // upper hull
   Symmetrically the lower hull
```


Position of point in relation to segment

r is left from pq, CCW orient orient(p, q, r) if (p, q, r) are collinear r is right from pq, CW orient

Point r is: left from pq

on segment pq

right from pq

Convex polygon with edges pq and qr or

Triangle *pqr*: is CCW oriented

Is Graham's scan correct?

Stack H at any stage contains upper hull of the points

 $\{p_1, \dots, p_i, p_i\}$, processed so far

- For induction basis $H = \{p_1, p_2\} \dots$ true p_1
- p_i = last added point to CH, p_j = its predecessor on CH
- Each point p_k that lies between p_j and p_i lies below $p_j p_i$ and should not be part of UH after addition of p_i => is removed before push p_i . [orient(p_j, p_k, p_i) > 0, p_k is right from $p_j p_i \Rightarrow p_k$ is removed from UH]
- Stop, if 2 points in the stack or after construction of the upper hull

Complexity of Graham's scan

- Sorting according $x O(n \log n)$
- Each point pushed once -O(n)
- Some (d_i ≤ n) points deleted while processing p_i
 - -O(n)
- The same for lower hull -O(n)
- Total $O(n \log n)$ for unsorted points O(n) for sorted points

Divide & Conquer

- ullet $\Theta(n \log(n))$ algorithm
- Extension of mergesort
- Principle
 - Sort points according to x-coordinate,
 - recursively partition the points and solve CH.

Convex hull by D&C

Upper tangent ConvexHullD&C(points P) Input: points p Output: CCW points on the convex hull Sort points P according to x 2. return hull(P) hull(points P) if $|P| \le 3$ then Lower tangent 5. compute CH by brute force, 6. return Partition P into two sets L and R (with lower & higher coords x) Recursively compute $H_1 = hull(L)$, $H_R = hull(R)$ 8. $H = Merge hulls(H_I, H_R)$ by computing 10. Upper_tangent(H_L, H_R) // find nearest points, H_L CCW, H_R CV Lower_tangent(H_I , H_R) // (H_I CW, H_R CCW) 11. discard points between these two tangents 12. return H

Search for upper tangent (lower is symmetrical)

Upper_tangent(H_L, H_R)

Input: two non-overlapping CH's

Output: upper tangent ab

- 1. $a = rightmost H_L$
- 2. $b = leftmost H_R$

- 3. while (ab is not the upper tangent for H_1 , H_R) do
- 4. while (ab is not the upper tangent for H_L) a = a.succ // move CCW
- 5. while (ab is not the upper tangent for H_R) b = b.pred // move CW
- 6. Return ab

Where: (ab is not the upper tangent for H_L) => orient(a, b, a.succ) ≥ 0 which means a.succ is left from line ab

$$m = |H_L| + |H_R| \le |L| + |R| => \text{Upper Tangent: } O(m) = O(n)$$

Convex hull by D&C complexity

- Initial sort O(n log(n))
- Function hull()
 - Upper and lower tangent
 Merge hulls
 Discard points between tangents O(n)
- Overall complexity

- Recursion
$$T(n) = \begin{cases} 1 & \dots \text{ if } n \leq 3 \\ 2T(n/2) + O(n) & \dots \text{ otherwise} \end{cases}$$

- Overall complexity of CH by D&C: \Rightarrow O($n \log(n)$)

Quick hull

- A variant of Quick Sort
- $O(n \log n)$ expected time, max $O(n^2)$
- Principle
 - in praxis, most of the points lie in the interior of CH
 - E.g., for uniformly distributed points in unit square, we expect only O(log n) points on CH
- Find extreme points (parts of CH) quadrilateral, discard inner points
 - Add 4 edges to temp hull T
 - Process points outside 4 edges

Process each of four groups of points outside

- For points outside ab (left from ab for clockwise CH)
 - Find point c on the hull max. perpend. distance to ab
 - Discard points inside triangle abc (right from the edges)
 - Split points into two subsets
 - outside ac (left from ac) and outside cb (left from cb)
 - Replace edge ab in T by edges ac and cb
 - Process points outside ac and cb recursively

Quick hull complexity

- n points remain outside the hull
- T(n) = running time for such n points outside
 - O(n) selection of splitting point c
 - O(n) point classification to inside & (n_1+n_2) outside
 - $-n_1+n_2 \le n$
 - The running time is given by recurrence $T(n) = \begin{cases} 1 & \text{if } n = 1 \\ T(n_1) + T(n_2) & \text{where } n_1 + n_2 < n \end{cases}$

- If evenly distributed that $\max(n_1, n_2) \le \alpha n$, $0 < \alpha < 1$ then solves as Quicksort to $O(cn \log n)$ where $c=f(\alpha)$ else $O(n^2)$ for unbalanced splits

Output sensitive algorithm

Jarvis's March – selection by gift wrapping

- Variant of O(n²) selection sort
- Output sensitive algorithm
- O(nh) ... h = number of points on convex hull

Jarvis's March

JarvisCH(points P)

Input: points p

Output: CCW points on the convex hull

- 1. Take point p_{min} with minimum y-coordinate, $h_1 = p_{min}$ h_2 // p_{min} will be the first point in the hull append it to the hull as h_1
- 2. Take a horizontal line, i.e., create temporary point $p_0 = (-\infty, h_1.y)$
- 3. j = 1
- 4. repeat
- Rotate the line around h_j until it bounces to the nearest point $q = p_q$ // compute the smallest angle by the "smallest orient(h_{j-1} , h_j , q)" 0..90°!
- 6. j++ append the bounced nearest point q to the hull as next h_j
- 7. until $(q \neq p_{min})$

Output sensitive algorithm

Complexity: $O(n) + O(n) * h \Rightarrow O(h*n)$

good for low number of points on convex hull

Felkel: Computational geometry

Output sensitive algorithm

- Worst case complexity analysis analyzes the worst case data
 ~n points on CH
 - Presumes, that all (const. fraction of) points lie on the CH
 - The points are ordered along CH
 - => We need sorting => $\Omega(n \log n)$ of CH algorithm
- Such assumption is rare
 - usually only much less of points are on CH
- Output sensitive algorithms
 - Depend on: input size n and the size of the output h
 - Are more efficient for small output sizes
- \blacksquare Reasonable time for CH is $O(n \log h)$

Chan's algorithm

Cleverly combines Graham's scan and Jarvis's march algorithms

Goal is $O(n \log h)$ running time

h points on CH

- We cannot afford sorting of all points $\Omega(n \log n)$
- => Idea: work on parts, limit the part sizes to polynomial h^c the complexity does not change => $\log h^c = \log h$
- h is unknown we get the estimation later
- Use estimation m, better not too high => $h \le m \le h^2$
- 1. Partition points P into r-groups of size m, r = n/m
- 2. Merge *r*-group CHs as "fat points"

Chan's algorithm

1. Partition points P into r-groups of size m, r = n/m

- Each group take $O(m \log m)$ time

- sort + Graham

- r-groups take $O(r m \log m) = O(n \log m)$ - Jarvis

$$h \le m \le h^2$$

goal $O(n \log h)$

Merging of *m* parts in Chan's algorithm

2. Merge *r*-group CHs as "fat points"

- Tangents to convex m-gon can be found in $O(\log m)$

by binary search

Felkel: Computational geometry

Chan's algorithm complexity

h points on the final convex hull

- => at most *h* steps in the Jarvis march algorithm
- each step computes r-tangents, $O(\log m)$ each
- merging together $O(hr \log m)$

r-groups of size m, r = n/m

Complete algorithm O(n log h)

- Graham's scan on partitions $O(r m \log m) = O(n \log m)$
- Jarvis Merging: $O(hr \log m) = O(h n/m \log m)$, ...4a) $h \le m \le h^2$ = $O(n \log m)$
- Altogether $O(n \log m)$
- How to guess m? Wait!

Chan's algorithm for known m

PartialHull(P, m)

Input: points P

Output: group of size m

 $O(\log m)$

- 1. Partition P into $r = \lceil n/m \rceil$ disjoint subsets $\{p_1, p_2, ..., p_r\}$ or size at most m
- 2. for i=1 to r do
 - a) Convex hull by GrahamsScan(P_i), store vertices in ordered array
- 3. let p_1 = the bottom most point of P and p_0 = $(-\infty, p_1.y)$
- 4. for k = 1 to m do // compute merged hull points
 - a) for i = 1 to r do // angle to all r subsets => points $q_i \not$ Compute the point $q_i \in P$ that maximizes the angle $\angle p_{k-1}, p_k, q_i$
 - b) let p_{k+1} be the point $q \in \{q_1, q_2, ..., q_r\}$ that maximizes $\angle p_{k-1}, p_k, q$ (p_{k+1} is the new point in CH)
 - c) if $p_{k+1} = p_1$ then return $\{p_1, p_2, ..., p_k\}$
- 5. return "Fail, m was too small"

Chan's algorithm – estimation of m

```
ChansHull
Input:
          points P
Output: convex hull p<sub>1</sub>...p<sub>k</sub>
1. for t = 1, 2, ..., \lceil \lg \lg h \rceil do {
      a) let m = \min(2^{2^{1}}, n) m = \{2^{2}, 2^{4}, 2^{8}, ..., n\}
      b) L = PartialHull(P, m)
      c) if L \neq "Fail, m was too small" then return L
Sequence of choices of m are { 4, 16, 256,..., 2^{2^{t}},..., n} ... squares
Example: for h = 23 points on convex hull of n = 57 points, the algorithm
    will try this sequence of choices of m \{ 4, 16, \frac{256}{57}, 57 \}
      1. 4 and 16 will fail
      2. 256 will be replaced by n=57
                                  Felkel: Computational geometry
```

Complexity of Chan's Convex Hull?

- The worst case: Compute all t iterations one iteration
- tth iteration takes $O(n \log 2^{2^t}) = O(n 2^t)$
- Algorithm stops when $2^{2^t} \ge h \Rightarrow t = \lceil \lg \lg h \rceil$
- All $t = \lceil \lg \lg h \rceil$ iterations take:

Using the fact that
$$\sum_{i=1}^{k} 2^{i} = 2^{k+1} - 1$$

t iterations

$$\sum_{t=1}^{\lg \lg h} n 2^{t} = n \sum_{t=1}^{\lg \lg h} 2^{t} \le n 2^{\frac{1+k}{\lg \lg h}} = 2n \lg h = O(n \log h)$$

2x more work in the worst case

Conclusion in 2D

• Graham's scan: $O(n \log n)$, O(n) for sorted pts

Divide & Conquer: $O(n \log n)$

• Quick hull: $O(n \log n)$, max $O(n^2)$ ~ distrib.

■ Jarvis's march: O(hn), max $O(n^2)$ ~ pts on CH

• Chan's alg.: $O(n \log h) \sim \text{pts on CH}$

asymptotically optimal

but

constants are too high to be useful

References

- [Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapter 5, http://www.cs.uu.nl/geobook/
- [Mount] Mount, D.: Computational Geometry Lecture Notes for Fall 2016, University of Maryland, Lectures 3 and 4. http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf
- [Chan] Timothy M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions., *Discrete and Computational Geometry*, 16, 1996, 361-368.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.389

