
+ additional notes by Petr Felkel, CTU Prague, 2020-2023

Version from 05.10.2023

Precise floats represented as expansions

- 1.5000000000000000000000000000080000000000000000000000000000000077 ∗ 10−1

Just the idea, not using IEEE float, but 4-digit decimal numbers …

- 1.500 ∗ 10−1 - 8.000 ∗ 10−31 - 7.700 ∗ 10−64++

Expansion

• Sorted sequence of non-overlapping machine native numbers (float,
double) – each with its own exponent and significand (mantissa)

• Sorted by absolute values

• Signum of the highest FP number is the signum of the expansion

• Zero members of the expansion will be not added.

represents 𝑥 = +1018.7195

approximated 𝑥 ~ + 1020 = 𝑥4

1020
- 1.3

1018.7
+ 0.02

1018.7200
- 0.0005

1018.7195

1020 -1.3 0.020 -0.0005

+

|𝑥4| |𝑥1||𝑥2||𝑥3| >>>

Expansions are not unique

binary decimal (overlap)

1001.1 … 9.5

Possibly stored as

1100 + (– 10.1) … 12 + (−2.5)

= 1100.0 – 10.1 … 12 − 2.5

= 1001 + 0.1 … 9 + 0.5

= 1000 + 1 + 0.1 … 8 + 1 + 0.5

Meaning of symbols

p-bit floating point operations with exact rounding (float, double):

⊕ addition

⊖ subtraction

⊗ multiplication

Perform the operation with higher precision

Round the result to the representable number

Exact rounding

Operations with exact rounding to p-bits (32 / 64) store result:

exact results store exact, and
non-precise results store rounded

With exact rounding to 4-bits

010 ⊗ 011 = 100
2 ⊗ 3 = 6

111 ⊗ 101 = 1.001 × 25

7 ⊗ 5 = 36
store rounded

store exact

More than 4-bits arithmetic (precise)

010 × 011 = 100
2 × 3 = 6

111 × 101 = 100011
7 × 5 = 35

if (possible)

else

Operations on expansions

IEEE 754 standard on floating point format and computing rules.

Operations on expansions require exact rounding of each op. to 32 / 64bit.

Fast-Two-Sum(a, b) : (a>=b) -> (x, y), a+b=x+y

Two-Sum(a, b) -> (x, y)

Linear-Expansion-Sum(a interleaved with b) -> correct expansion

(non-overlapping)

Split (a) -> (a_hi, a_lo), a = a_hi + a_lo

Two-Product (a,b) -> (x, y)

// Rounded sum = approximation

// What was truly added - Rounded

// round-off error

8 ⇐ 6 ⊕ 1

2 ⇐ 8 ⊖ 6

−1 ⇐ 1 ⊖ 2

return (8, −1)

2-bits mantissa

𝑎 ≥ |𝑏|

−𝑎

𝑏

𝑥 ⇐ 𝑎 ⊕ 𝑏

𝑎

𝑏𝑣𝑖𝑟𝑡𝑢𝑎𝑙

= 𝑎 ⊕ 𝑏 + 𝑏 ⊖ 𝑏𝑣𝑖𝑟𝑡𝑢𝑎𝑙

𝑏
−𝑏𝑣𝑖𝑟𝑡𝑢𝑎𝑙

𝑦

𝑎 + 𝑏 = 𝑥 + 𝑦

+

Fast TwoSum with result rounded up (on 4-digits decimal numbers)

Correct

𝑎 = 5081
𝑏 = 93.5

5174.5

Rounded up

𝑎 = 5081
𝑏 = 93.5

𝑥 = 5175

Really added

𝑥 = 5175
−𝑎 = −5081

𝑏𝑣𝑖𝑟𝑡𝑢𝑎𝑙 = 94

Correction

𝑏 = 93.5
−𝑏𝑣𝑖𝑟𝑡𝑢𝑎𝑙= −94

𝑦 = −0.5

𝑎 + 𝑏 = 𝑥 + 𝑦

5081 + 93.5 = 5175 − 0.5

up

Fast TwoSum with result rounded down (on 4-digits decimal numbers)

Correct

𝑎 = 5081
𝑏 = 93.4

5174.4

Rounded down

𝑎 = 5081
𝑏 = 93.4

𝑥 = 5174

Really added

𝑥 = 5174
−𝑎 = −5081

𝑏𝑣𝑖𝑟𝑡𝑢𝑎𝑙 = 93

Correction

𝑏 = 93.4
−𝑏𝑣𝑖𝑟𝑡𝑢𝑎𝑙= −94

𝑦 = 0.4

𝑎 + 𝑏 = 𝑥 + 𝑦

5081 + 93.4 = 5174 + 0.4

down

// Rounded sum = approximation

// What 𝑏 was truly added – Rounded
for 𝑎 > 𝑏

// round-off error of 𝑏

// What 𝑎 was truly added – Rounded
for 𝑏 > 𝑎

// round-off error of 𝑎

Sum of two expansions (4-bit arithmetic)

Input: 1111+0.1001 and 1100 + 0.1

Output: 11100 + 0 + 0.0001

Zeroes slow down the computation – removed afterwards

1. Merge both input expansions into a single sequence g
respecting the order of magnitudes

1111+ 1100 + 0.1001 + 0.1

2. Use LINEAR-EXPANSION-SUM (g) to create a correct expansion

 𝑔5 + 𝑔4 + 𝑔3 + 𝑔2 + 𝑔1 → h5 + ℎ4 + ℎ3 + ℎ2 + ℎ1

 overlapping input → non-overlapping output

numbers in the sequence overlap

Input expansion

Rounded
result

Correction

≥≥≥≥

Output expansion

LINEAR-EXPANSION-SUM

1111+ 1100 + 0.1001 + 0.1

1111

 1100

 0.1001

 0.1

11100.0001

0.1001

0.1

1 + 0.0001

1100

 1

1101+0

1111

 1101

11100

11100 + 0 + 0.0001

11100 + 0.0001

Multiplication

Multiplies two p-bit values 𝑎 and 𝑏

1. Split both p-bit values into two halves (with ~p/2 bits)

2. perform four exact multiplications on these fragments.
𝑎ℎ𝑖 × 𝑎ℎ𝑖 , 𝑎ℎ𝑖 × 𝑎𝑙𝑜, 𝑎𝑙𝑜 × 𝑎ℎ𝑖 , 𝑎𝑙𝑜 × 𝑎𝑙𝑜,

The trick is to find a way to split a floating-point value into two.

SPLIT(a) operation

• Splits p bits into two non-overlapping halves

(
𝑝

2
bits ahi and

𝑝

2
− 1 bits a𝑙𝑜)

• Missing bit is hidden in the signum of a𝑙𝑜

• Example

7bit number splits to two 3 bit significands

1001001 splits to 1010000 (101 × 24) and -111

73 = 80 - 7

Demonstration of SPLIT splitting a five-bit
number into two two-bit numbers

0 1 0 1

0 1 1

29

232

261 →256
−29

224 ←227

256 −224

32

29 −32

− 3

29 → (32, −3)

Demonstration of TWO-PRODUCT in six-bit
arithmetic

The resulting expansion is 110110 × 26 + 11001 562 = 3481 → (3456 + 25)
54 ∗ 26 + 25

Adaptive arithmetic

• Expensive – avoid when possible

• Some applications need results with absolute error below a threshold

• Set of procedures with different precision (& speed) + error bounds

• For each input – compute the error bounds and choose the procedure

But

• Sometimes hard to determine error before computation

• Especially when relative error needed – like sign of expression compar.
• Result can be much larger than error bound – rounded arithmetic will suffice

• Result can be near zero – must be evaluated exactly

Shewchuk predicates

• Compute a sequence of increasingly accurate results

• Testing each for accuracy

• Not using separate procedures BUT

• Using intermediate results as steps to more accurate results
(work already done is not discarded, but refined)

• Idea: presented routines can be split to two parts
• Line 1 gives an approximate result - run each time

• Remaining lines compute the roundoff error – delayed until needed, if ever …

Principle of adaptive computation

Distance of two points

Store

and

Reorder terms according to their size

Compute them only if needed

𝑏𝑥 − 𝑎𝑥
2 + 𝑏𝑦 − 𝑎𝑦

2

𝑥1
2 + 2𝑥1𝑦1 + 𝑦1

2 + (𝑥2
2 + 2𝑥2𝑦2 + 𝑦2

2)

𝑏𝑥 − 𝑎𝑥 as 𝑥1 + 𝑦1

𝑏𝑦 − 𝑎𝑦 as 𝑥2 + 𝑦2

𝑥1
2 + 𝑥2

2) + (2𝑥1𝑦1 + 2𝑥2𝑦2 + (𝑦1
2 + 𝑦2

2)

𝑏𝑥 − 𝑎𝑥
2 + 𝑏𝑦 − 𝑎𝑦

2

 𝑥1
2 + 2𝑥1𝑦1 + 𝑦1

2 +
(𝑥2

2 + 2𝑥2𝑦2 + 𝑦2
2)

⊕ rounded addition

Precise:

𝑎1𝑏1

𝑎1 𝑎1 + 𝑏1

first term:
𝐶1 … rounded
𝐴1 … precise

Orientation predicate - definition

orientation 𝑝, 𝑞, 𝑟 = sign det

1 𝑝𝑥 𝑝𝑦

1 𝑞𝑥 𝑞𝑦

1 𝑟𝑥 𝑟𝑦

=

= sign 𝑝𝑥 − 𝑟𝑥 𝑞𝑦 − 𝑟𝑦 − 𝑝𝑦 − 𝑟𝑦 𝑞𝑥 − 𝑟𝑥 ,

where point 𝑝 = 𝑝𝑥, 𝑝𝑦 , …

= third coordinate of = 𝑢 × Ԧ𝑣 ,

Three points orientation 𝑝, 𝑞, 𝑟 =
• lie on common line = 0
• form a left turn = +1 (positive)
• form a right turn = –1 (negative)

Felkel: Computational geometry (26)

r

q

p

𝑢

Ԧ𝑣

pivot 𝑝

Experiment with orientation predicate

• orientation(p,q,r) = sign((px-rx)(qy-ry)-(py-ry)(qx-rx))

Felkel: Computational geometry (27)

r = [24, 24]

q = [12, 12]

[0.5, 0.5]

p = [0.5 + dx , 0.5 + dy], dx , dy = k.2-53

– right turn

dx,
p

dy,

Ideal return
values

double

Value of the LSB

+ left turn

pivot 𝑟

	Snímek 1
	Snímek 2: Precise floats represented as expansions
	Snímek 3: Expansion
	Snímek 4: Expansions are not unique
	Snímek 5: Meaning of symbols
	Snímek 6: Exact rounding
	Snímek 7: Operations on expansions
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13: Sum of two expansions (4-bit arithmetic)
	Snímek 14
	Snímek 15: LINEAR-EXPANSION-SUM
	Snímek 16: Multiplication
	Snímek 17: SPLIT(a) operation
	Snímek 18
	Snímek 19
	Snímek 20: Demonstration of SPLIT splitting a five-bit number into two two-bit numbers
	Snímek 21: Demonstration of TWO-PRODUCT in six-bit arithmetic
	Snímek 22: Adaptive arithmetic
	Snímek 23: Shewchuk predicates
	Snímek 24: Principle of adaptive computation
	Snímek 25
	Snímek 26: Orientation predicate - definition
	Snímek 27: Experiment with orientation predicate

