Robust Adaptive Floating-Point Geometric Predicates

Jonathan Richard Shewchuk
School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
jrs@cs.cmu.edu
+ additional notes by Petr Felkel, CTU Prague, 2020-2023

Precise floats represented as expansions

Just the idea, not using IEEE float, but 4-digit decimal numbers ..

Expansion

- Sorted sequence of non-overlapping machine native numbers (float, double) - each with its own exponent and significand (mantissa) ${ }^{1028}$
- Sorted by absolute values
1018.7
- Signum of the highest FP number is the signum of the expansion +.........
- Zero members of the expansion will be not added.

represents $\quad x=+1018.7195$
approximated $x \sim+1020=x_{4}$

Expansions are not unique

binary
1001.1

decimal (overlap)

Possibly stored as

$$
\begin{aligned}
& 1100+(-10.1) \\
= & 1100.0-10.1 \\
= & 1001+0.1 \\
= & 1000+1+0.1
\end{aligned}
$$

... $12+(-2.5)$
... $12-2.5$
... $9+0.5$
... $8+1+0.5$

Meaning of symbols

p-bit floating point operations with exact rounding (float, double):
\oplus addition
\ominus subtraction
\otimes multiplication

Perform the operation with higher precision
Round the result to the representable number

Exact rounding

Operations with exact rounding to p-bits (32 / 64) store result: exact results store exact, and non-precise results store rounded

More than 4-bits arithmetic (precise) With exact rounding to 4-bits

$$
010 \times 011=100
$$

$$
010 \otimes 011=100
$$

$$
2 \otimes 3=6
$$

$$
111 \otimes 101=1.001 \times 2^{5}
$$

$$
7 \otimes 5=36
$$

Operations on expansions

IEEE 754 standard on floating point format and computing rules.
Operations on expansions require exact rounding of each op. to 32 / 64bit.

Fast-Two-Sum(a, b) : (a>=b) -> (x, y), a+b=x+y
Two-Sum(a, b) -> (x, y)
Linear-Expansion-Sum(a interleaved with b) -> correct expansion (non-overlapping)

Split (a) -> (a_hi, a_lo),
a = a_hi + a_lo

Two-Product (a, b)-> (x, y)

Theorem 1 (Dekker [4]) Let a and b be p-bit floating-point numbers such that $|a| \geq|b|$. Then the following algorithm will produce a nonoverlapping expansion $x+y$ such that $a+b=x+y$, where x is an approximation to $a+b$ and y represents the roundoff error in the calculation of x.

$$
\text { FAST-Two-SUM }(a, b)
$$

Fast-Two-Sum (a, b)
$1 \quad x \Leftarrow a \oplus b$
$2 \quad b_{\text {virtual }} \Leftarrow x \ominus a$
$3 \quad y \Leftarrow b \ominus b_{\text {virtual }}$ 4 return (x, y)

$$
\begin{aligned}
a+b & =x+y \\
& =a \oplus b+b \ominus b_{\text {virtual }}
\end{aligned}
$$

Fast TwoSum with result rounded up (on 4-digits decimal numbers)

$$
\begin{aligned}
& \text { Correct Rounded up Really added Correction }
\end{aligned}
$$

$$
\begin{aligned}
& (a+b)=(x+y) \\
& 5081+93.5=(5175-0.5)
\end{aligned}
$$

Fast TwoSum with result rounded down (on 4-digits decimal numbers)

$$
\begin{aligned}
& \text { Correct Rounded down Really added Correction }
\end{aligned}
$$

$$
\begin{aligned}
& (a+b)=(x+y) \\
& 5081+93.4=(5174+0.4)
\end{aligned}
$$

Theorem 2 (Knuth [10]) Let a and b be p-bit floating-point

 numbers, where $p \geq 3$. Then the following algorithm will produce a nonoverlapping expansion $x+y$ such that $a+b=$ $x+y$.Two-Sum (a, b)
$1 \rightarrow x \Leftarrow a \oplus b \quad / /$ Rounded sum $=$ approximation
$2 \rightarrow b_{\text {virtual }} \Leftarrow x \ominus a$
// What b was truly added - Rounded for $a>b$
$3 \quad a_{\text {virtual }} \Leftarrow x \ominus b_{\text {virtual //What } a \text { was truly added }- \text { Rounded }}$
$4 \rightarrow b_{\text {roundoff }} \Leftarrow b \ominus b_{\text {virtual }} \begin{aligned} & \text { for } b>a \\ & / / \text { round.off error of } b\end{aligned}$
$5 \quad a_{\text {roundoff }} \Leftarrow a \ominus a_{\text {virtual //r rund-offerror of } a}$
$6 \quad y \Leftarrow a_{\text {roundoff }} \oplus b_{\text {roundoff }}$
$7 \rightarrow$ return (x, y)

Sum of two expansions (4-bit arithmetic)

Input:

$$
1111+0.1001 \text { and } 1100+0.1
$$

Output:

$$
11100+0+0.0001
$$

Zeroes slow down the computation - removed afterwards

1. Merge both input expansions into a single sequence g respecting the order of magnitudes

$$
1111+1100+0.1001+0.1 \quad \text { numbers in the sequence overlap }
$$

2. Use LINEAR-EXPANSION-SUM (g) to create a correct expansion

$$
g 5+g 4+g 3+g 2+g 1 \rightarrow \mathrm{~h} 5+h 4+h 3+h 2+h 1
$$

overlapping input \rightarrow non-overlapping output

Figure 1: Operation of Linear-Expansion-Sum. The expansions g and h are illustrated with their most significant components on the left. $Q_{i}+q_{i}$ maintains an approximate running total. The Fast-Two-Sum operations in the bottom row exist to clip a high-order bit off each q_{i} term, if necessary, before outputting it.

LINEAR-EXPANSION-SUM

$1111+1100+0.1001+0.1$

100 + $0.1001+0.1$	1111	1100	0.1001
1111	1101	1	0.1
1100		--------	
0.1001	11100	1101+0	$1+0.0001$
0.1			
---------------	$11100+0+0.0001$		
11100.0001	$11100+0.0001$		

Multiplication

Multiplies two p-bit values a and b

1. Split both p-bit values into two halves (with $\sim p / 2$ bits)
2. perform four exact multiplications on these fragments.

$$
a_{h i} \times a_{h i}, a_{h i} \times a_{l o}, a_{l o} \times a_{h i}, a_{l o} \times a_{l o},
$$

The trick is to find a way to split a floating-point value into two.

SPLIT(a) operation

- Splits p bits into two non-overlapping halves
($\left\lfloor\frac{p}{2}\right\rfloor$ bits a_{hi} and $\left\lceil\frac{p}{2}\right\rceil-1$ bits $\mathrm{a}_{l o}$)
- Missing bit is hidden in the signum of $\mathrm{a}_{l o}$
- Example

7bit number splits to two 3 bit significands
1001001 splits to $1010000\left(101 \times 2^{4}\right)$ and -111

$$
73=80-7
$$

Theorem 4 (Dekker [4]) Let a be a p-bit floating-point number, where $p \geq 3$. The following algorithm will produce a $\left\lfloor\frac{p}{2}\right\rfloor$-bit value a_{hi} and a nonoverlapping $\left(\left\lceil\frac{p}{2}\right\rceil-1\right)$-bit value a_{lo} such that $\left|a_{\mathrm{hi}}\right| \geq\left|a_{\mathrm{lo}}\right|$ and $a=a_{\mathrm{hi}}+a_{\mathrm{lo}}$. $\operatorname{SPLIT}(a)$

$$
\begin{array}{ll}
1 & c \Leftarrow\left(2^{\lceil p / 2\rceil}+1\right) \otimes a \\
2 & a_{\mathrm{big}} \Leftarrow c \ominus a \\
3 & a_{\mathrm{hi}} \Leftarrow c \ominus a_{\mathrm{big}} \\
4 & a_{\mathrm{lo}}^{\Leftarrow} \Leftarrow a \ominus a_{\mathrm{hi}} \\
5 & \text { return }\left(a_{\mathrm{hi}}, a_{\mathrm{lo}}\right)
\end{array}
$$

Theorem 5 (Veltkamp) Let a and b be p-bit floating-point numbers, where $p \geq 4$. The following algorithm will produce a nonoverlapping expansion $x+y$ such that $a b=x+y$.

	Product (a, b)
1	$x \Leftarrow a \otimes b$
2	$\left(a_{\text {hi }}, a_{\text {lo }}\right)=\operatorname{Split}(a)$
3	$\left(b_{\text {hi }}, b_{\text {lo }}\right)=\operatorname{SpLIT}(b)$
4	$e r r_{1} \Leftarrow x \ominus\left(a_{\text {hi }} \otimes b_{\text {hi }}\right)$
5	$e r r_{2} \Leftarrow e r r_{1} \ominus\left(a_{\mathbf{l o}} \otimes b_{\mathbf{h i}}\right)$
6	$e r r_{3} \Leftarrow e r r_{2} \ominus\left(a_{\mathrm{hi}} \otimes b_{\mathrm{lo}}\right)$
7	$y \Leftarrow\left(a_{\mathrm{lo}} \otimes b_{\mathrm{lo}}\right) \ominus$ err ${ }_{3}$
8	return (x, y)

Demonstration of SPLIT splitting a five-bit number into two two-bit numbers

$$
\begin{aligned}
& 29 \rightarrow(32,-3)
\end{aligned}
$$

Demonstration of TWO-PRODUCT in six-bit arithmetic

$$
\begin{aligned}
& a=\begin{array}{llllll}
1 & 1 & 1 & 0 & 1 & 1
\end{array} \\
& b=\begin{array}{llllll}
1 & 1 & 1 & 0 & 1 & 1
\end{array} \\
& x= \\
& a \otimes b \\
& =\begin{array}{llllll}
\hline 1 & 1 & 0 & 1 & 1 & 0
\end{array} \times 2^{6} \\
& a_{\mathrm{hi}} \otimes b_{\mathrm{hi}} \quad=\begin{array}{lllllll}
1 & 1 & 0 & 0 & 0 & 1 & \times 2^{6}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{err}_{3}=\operatorname{err}_{2} \ominus\left(a_{\mathrm{hi}} \otimes b_{\mathrm{lo}}\right)= \\
& a_{1 \mathrm{o}} \otimes b_{\mathrm{lo}} \quad= \\
& -y=\operatorname{err}_{3} \ominus\left(a_{10} \otimes b_{1 \mathrm{o}}\right)= \\
& \left.\begin{array}{lllll}
& 1 & 0 & 0 & 1 \\
\hline- & 1 & 1 & 0 & 0
\end{array}\right] \\
& 56^{2}=3481 \rightarrow(3456+25)
\end{aligned}
$$

Adaptive arithmetic

- Expensive - avoid when possible
- Some applications need results with absolute error below a threshold
- Set of procedures with different precision (\& speed) + error bounds
- For each input - compute the error bounds and choose the procedure But
- Sometimes hard to determine error before computation
- Especially when relative error needed - like sign of expression compar.
- Result can be much larger than error bound - rounded arithmetic will suffice
- Result can be near zero - must be evaluated exactly

Shewchuk predicates

- Compute a sequence of increasingly accurate results
- Testing each for accuracy
- Not using separate procedures BUT
- Using intermediate results as steps to more accurate results (work already done is not discarded, but refined)
- Idea: presented routines can be split to two parts
- Line 1 gives an approximate result - run each time
- Remaining lines compute the roundoff error - delayed until needed, if ever ...

Principle of adaptive computation

Distance of two points

$$
\left(b_{x}-a_{x}\right)^{2}+\left(b_{y}-a_{y}\right)^{2}
$$

Store $b_{x}-a_{x}$ as $x_{1}+y_{1}$
and $\quad b_{y}-a_{y}$ as $x_{2}+y_{2}$

$$
\left(x_{1}^{2}+2 x_{1} y_{1}+y_{1}^{2}\right)+\left(x_{2}^{2}+2 x_{2} y_{2}+y_{2}^{2}\right)
$$

Reorder terms according to their size

$$
\left(x_{1}^{2}+x_{2}^{2}\right)+\left(2 x_{1} y_{1}+2 x_{2} y_{2}\right)+\left(y_{1}^{2}+y_{2}^{2}\right)
$$

Compute them only if needed

$$
\left(b_{x}-a_{x}\right)^{2}+\left(b_{y}-a_{y}\right)^{2}
$$

$\left(x_{1}^{2}+2 x_{1} y_{1}+y_{1}^{2}\right)+$ $\left(x_{2}^{2}+2 x_{2} y_{2}+y_{2}^{2}\right)$

Precise:

Orientation predicate - definition

$\operatorname{orientation}(p, q, r)=\operatorname{sign}\left(\operatorname{det}\left[\begin{array}{lll}1 & p_{x} & p_{y} \\ 1 & q_{x} & q_{y} \\ 1 & r_{x} & r_{y}\end{array}\right]\right)=$
$=\operatorname{sign}\left(\left(p_{x}-r_{x}\right)\left(q_{y}-r_{y}\right)-\left(p_{y}-r_{y}\right)\left(q_{x}-r_{x}\right)\right)$, where point $p=\left(p_{x}, p_{y}\right), \ldots$
$=$ third coordinate of $=(\vec{u} \times \vec{v})$,

Three points

- lie on common line
- form a left turn
- form a right turn

$$
\begin{aligned}
& \text { orientation }(p, q, r)= \\
& =0 \\
& =+1 \text { (positive) } \\
& =-1 \text { (negative) }
\end{aligned}
$$

Experiment with orientation predicate

