Robust Adaptive Floating-Point Geometric Predicates

Jonathan Richard Shewchuk

School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
jrs@cs.cmu.edu

+ additional notes by Petr Felkel, CTU Prague, 2020-2023

Version from 05.10.2023

Precise floats represented as expansions

Just the idea, not using IEEE float, but 4-digit decimal numbers ...

-1.5000000000000000000000000000080000000000000000000000000000000077 * 10~1

-1.500% 1071 | + [-8.000* 10731 | + |-7.700 % 10~

Expansion

* Sorted sequence of non-overlapping machine native numbers (float,

double) —each with its own exponent and significand (mantissa) 1020

e Sorted by absolute values oo
1018.7

 Signum of the highest FP number is the signum of the expansion * ©-°

e Zero members of the expansion will be not added. 1018, T8
lxal > xz]l > x> |xy] 1018.7195

represents x = +1018.7195
approximated x ~ + 1020 = x,

1020 -1.3 0.020 -0.0005

Expansions are not unique

binary
1001.1
Possibly stored as

1100 + (-10.1)
= 1100.0 - 10.1
= 1001 + 0.1
= 1000 + 1 + 0.1

decimal (overlap)

..9.5

12+ (—2.5)
.12 =25

9+0.5
8+1+0.5

Meaning of symbols

p-bit floating point operations with exact rounding (float, double):

@ addition
© subtraction
& multiplication

Perform the operation with higher precision
Round the result to the representable number

Exact rounding

Operations with exact rounding to p-bits (32 / 64) store result:

exact results store exact, and
non-precise results store rounded

More than 4-bits arithmetic (precise) With exact rounding to 4-bits

010 x 011 = 100 010 ® 011 = 100 if (possible)
2X3=6 2 3=6 store exact
else
111 x 101 = 100011 111 ® 101 = 1.001 x 2° store rounded

7 X5 =35 75 =36

Operations on expansions

IEEE 754 standard on floating point format and computing rules.
Operations on expansions require exact rounding of each op. to 32 / 64bit.

Fast-Two-Sum(a, b) : (a>=b) -> (x, y), a+b=x+y

Two-Sum(a, b) -> (X, y)

Linear-Expansion-Sum(a interleaved with b) -> correct expansion
(non-overlapping)

Split (a) -> (a_hi, a lo), a =ahi+ alo
Two-Product (a,b) -> (x, y)

numbers such that |a| > Then the following algorithm
will produce a nonoverlapping expansion x + y such that
a+ b= x +y, where(x)is an approximation to a + b and[y

Theorem 1 (Dekker [4]) Let a and b be p-bit floating-point
b]

represents the roundoff error in the calculation of x. B
2 bits mantissa FAST-TWO-SuM(a, b)
8«61] rT<=a®b // Rounded sum = approximation
28606) bvirtual &= I & @ // Whatwas truly added - Rounded
1162 3 y<=bo bvirtual // round-off error
return (8, —1) 4 return (z,y)

lal = |b|

FAST-TWO-SUM(a, b)
1 r=ah Z I ==
2 bVirtual =Iroa
3 Yy <= b O byjrtyual X < a @ b
4 return (z,y) —a
bvirtual I

a+b=x+ y b _
=a® b+ bO byjriyal —byirtual]

v B= y B

Fast TwoSum with result rounded up (on 4-digits decimal numbers)

Correct Rounded up Really added Correction
a = 5081 a = 5081 x = 5175 b= 935
b= 935 b= 935 —a = —5081 —Dyirtuar= —94
5174.5 x = 5175 byirtuar = 94 y = —0.5

(a+b)=(x + y)

5081 + 93.5 = (5175 — 0.5)

Fast TwoSum with result rounded down (on 4-digits decimal numbers)

Correct

a = 5081
b = 93.4
5174.4

Rounded down Really added Correction

a = 5081 x = 5174 b =
b= 934 —a = —5081

93.4
—byirtuar= —94

5081 +93.4= (5174 + 0.4)

Theorem 2 (Knuth [10]) Let a and b be p-bit floating-point
numbers, where p > 3. Then the following algorithm will
produce a nonoverlapping expansion x + y such that a + b =

T+ .

N
Two-SuM(a, b)
— I <= @ b // Rounded sum = approximation
. bVlI‘TUEﬂ {: T Iej (1l // What b was truly added — Rounded
fora > b
a’VlI’tual =T @ bV ll't]_]al // What a was truly added — Rounded

forb > a

broundoff = © © byirtual 7 roomdofreror ot
a’l‘DllI‘ldef <: a @ G“Vil‘tllal // round-off error of a

Y <= aroundoff © broundoff
return (z,y)

NN U AW N —
}

|

Sum of two expansions (4-bit arithmetic)

Input: 1111+0.1001 and 1100+0.1
Output: 11100 + 0 +'0.0001
Zeroes slow down thé computation — removed afterwards

1. Merge both input expansions into a single sequence g
respecting the ordér of magnitudes

1111+ 1100+ 0.1001 + 0.1 numbers in the sequence overlap
2. Use LINEAR-EXPANSION-SUM (g) to create a correct expansion
g5+ g4+ 9g3+g2+gl ->h5+h4+h3+h2+hl
overlapping input = non-overlapping output

g3 > g2 > gl

Rounded
ult
() FAST
Two

SUM

Correction

\Y

Input expansion gs > g4

Output expansion

hs ha hs !
Figure 1. Operation of LINEAR-EXPANSION-SUM. The expansions g
and h are illustrated with their most significant components on the left.
@; + g; maintains an approximate running total. The FAST-TWO-SuMm
operations in the bottom row exist to clip a high-order bit off each g;

term, if necessary, before outputting it.

LINEAR-EXPANSION-SUM

1111+ 1100 + 0.1001 + 0.1

1111 1100 0.1001
1111 1101 1 0.1
11700 = TTTTTTmITTts o mmommmmm o mmommmooes
0.1001 11100 1101+0 1+ 0.0001
0.1
--------------- 11100 + 0 + 0.0001

11100.0001 11100 + 0.0001

Multiplication

Multiplies two p-bit values a and b
1. Split both p-bit values into two halves (with ~p/2 bits)

2. perform four exact multiplications on these fragments.
Api X Apj, Api X Ajg, Ap X Apj, e X Ao,

The trick is to find a way to split a floating-point value into two.

SPLIT(a) operation

* Splits p bits into two non-overlapping halves
(E‘ bits ap; and [ﬂ — 1 bits a;,)
* Missing bit is hidden in the sighum of a,,
* Example
7bit number splits to two 3 bit significands
1001001 splits to 1010000 (101 x 2%) and -111
73=80-7

Theorem 4 (Dekker [4]) Let a be a p-bit floating-point
number, where p > 3. The following algorithm will pro-
duce a | 5 | -bit value ay,; and a nonoverlapping (| 5| — 1)-bit

value ay, such that |ay;| > |aj,| and a = ap; + ay, N
SpLIT(a)
1 c< (2Pl 1) ®a
2 Ubig =coa
3 apy <~ CO a‘big / \
4 Ao < @ O Qp
5 return (ahij (110)

Theorem 5 (Veltkamp) Let a and b be p-bit floating-point
numbers, where p > 4. The following algorithm will produce
a nonoverlapping expansion T + y such that ab = x + .

N

TwoO-PRODUCT(a, b)

1 r<<=a®b

(api, o) = SPLIT(a)

(bhi! blﬂ) = SPL-I'I'(b)

erry <= T O (ap; X by;)
erry <= erry © (a)p ® bp;)
err3 <= erry © (ap; @ byp)
y < (agy @ bio) © e
return (z, y)

O ~J O B Wi

Demonstration of SPLIT splitting a five-bit
number into two two-bit numbers

g

234

C

g

(J'bl g
“@hi

”’10

Cc 5 (hi g

a = a hi

|

|
|

29 > (32, —3)

x 23
x 2%

x 23

x 21

29
232
261 >256
—29
224 207
256 —224
32
29 —32
—3

Demonstration of TWO-PRODUCT in six-bit

arithmetic
a = 1 1 1 O 1 1
b = 1 1 1 O 1 1
r = ® b = 1 1 O 1 1 O x 20
ahi @ bhl | = 1 1 0 0 0 1 x 20
erry = xS (a hl Dby) = 1 01 0 0 0 x 23
a 10 2 bhl = 1 01 0 1 O x 22
errs = erry S (”10 DbRi) = 1 0 0 1 1 O x 22
ahi @ b1 = 1 01 0 1 O x 22
Crry = erry S (”hl R b1,) = — 1 0 0 0 0
o @ [*’10 = 1 0 O 1
—y = err3 S (a1p Qb)) = — 1 1 0 0 1

The resulting expansion is 110110 x 2° + 11001
54 % 2° + 25

562 = 3481 — (3456 + 25)

Adaptive arithmetic

* Expensive — avoid when possible

* Some applications need results with absolute error below a threshold
 Set of procedures with different precision (& speed) + error bounds

* For each input — compute the error bounds and choose the procedure
But

* Sometimes hard to determine error before computation

e Especially when relative error needed — like sign of expression compar.

e Result can be much larger than error bound — rounded arithmetic will suffice
e Result can be near zero — must be evaluated exactly

Shewchuk predicates

 Compute a sequence of increasingly accurate results
 Testing each for accuracy
* Not using separate procedures BUT

* Using intermediate results as steps to more accurate results
(work already done is not discarded, but refined)

* |dea: presented routines can be split to two parts
* Line 1 gives an approximate result - run each time
* Remaining lines compute the roundoff error — delayed until needed, if ever ...

Principle of adaptive computation

2
Distance of two points (b, — a,)?* + (by — ay)
Store b, —a, as xq +y;
and b, —a, as x, +y,

(xf + 2x1y1 + ¥£) + (%3 + 2x,5, + V7))

Reorder terms according to their size

(xf +x3) + 2xyy1 + 2x55) + 7 +v3)

Compute them only if needed

Precise:

- Component
vy Expansion

@ Two-Product
E Expansion-Sum

rounded addition

aq aq + bl

NV

Ll

o ab,

first term:

C; ... rounded
A4 ... precise

Y2 ¥y

pivot p
Orientation predicate - definition

1 px Dy
orientation(p,q,r) =sign | det |1 qx qy| | =
1 n n

= sign ((px — Tx)(CIy — Ty) - (py — ry)(qx - rx)),
where pointp = (px, py),

= third coordinate of = (U X V),

Three points orientation(p, q,r) =
* lie on common line
e form a left turn = +1 (positive)

e form aright turn = -1 (negative)

Experiment with orientation predicate

r=[24, 24]

* orientation(p,q,r) = sign((p,-r,)(a,-r,)-(p,-r)(a, 1))

il + left turn

yl

|deal return

q=1[12, 12]
values

double

Value of the LSB

©
[oR
Vv

Felkel: Computational geometry (27)

pivotr

	Snímek 1
	Snímek 2: Precise floats represented as expansions
	Snímek 3: Expansion
	Snímek 4: Expansions are not unique
	Snímek 5: Meaning of symbols
	Snímek 6: Exact rounding
	Snímek 7: Operations on expansions
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13: Sum of two expansions (4-bit arithmetic)
	Snímek 14
	Snímek 15: LINEAR-EXPANSION-SUM
	Snímek 16: Multiplication
	Snímek 17: SPLIT(a) operation
	Snímek 18
	Snímek 19
	Snímek 20: Demonstration of SPLIT splitting a five-bit number into two two-bit numbers
	Snímek 21: Demonstration of TWO-PRODUCT in six-bit arithmetic
	Snímek 22: Adaptive arithmetic
	Snímek 23: Shewchuk predicates
	Snímek 24: Principle of adaptive computation
	Snímek 25
	Snímek 26: Orientation predicate - definition
	Snímek 27: Experiment with orientation predicate

