Non-Bayesian Methods

lecturer: Ondřej Drbohlav, drbohlav@fel.cvut.cz

authors: Ondřej Drbohlav, Jiří Matas, Václav Hlaváč

Czech Technical University, Faculty of Electrical Engineering Department of Cybernetics, Center for Machine Perception 121 35 Praha 2, Karlovo nám. 13, Czech Republic

http://cmp.felk.cvut.cz

September 2022, Ver. 1.1

Lecture Outline

m p

- 1. Limitations of Bayesian Decision Theory
- 2. Neyman Pearson Task
- 3. Minimax Task
- 4. Wald Task

Bayesian Decision Theory

Recall:

X set of observations

K set of hidden states

D set of decisions

 $p_{XK}: X \times K \to \mathbb{R}$: joint probability

 $W: K \times D \to \mathbb{R}: loss function,$

 $q: X \to D$: strategy

R(q): risk:

$$R(q) = \sum_{x \in X} \sum_{k \in K} p_{XK}(x, k) \ W(k, q(x))$$
 (1)

Bayesian strategy q^* :

$$q^* = \operatorname*{argmin}_{q \in X \to D} R(q) \tag{2}$$

4 /00

Limitations of the Bayesian Decision Theory

The limitations follow from the very ingredients of the Bayesian Decision Theory — the necessity to know all the probabilities and the loss function.

- lacktriangle The loss function W must make sense, but in many tasks it wouldn't
 - medical diagnosis task (W): price of medicines, staff labor, etc. but what penalty in case of patient's death?) Uncomparable penalties on different axes of X.
 - nuclear plant
 - judicial error
- ullet The prior probabilities $p_K(k)$: must exist and be known. But in some cases it does not make sense to talk about probabilities because the events are not random.
 - $K=\{1,2\}\equiv$ {own army plane, enemy plane}; $p(x|1),\ p(x|2)$ do exist and can be estimated, but p(1) and p(2) don't.
- The conditionals may be subject to non-random intervention; $p(x \mid k, z)$ where $z \in Z = \{1, 2, 3\}$ are different interventions.
 - a system for handwriting recognition: The training set has been prepared by 3 different persons. But the test set has been constructed by one of the 3 persons only. This **cannot** be done:

(!)
$$p(x | k) = \sum p(z)p(x | k, z)$$
 (3)

- \bullet $K = \{D, N\}$ (dangerous state, normal state)
- X set of observations
- Conditionals $p(x \mid D)$, $p(x \mid N)$ are given
- lacktriangle The priors $p(\mathsf{D})$ and $p(\mathsf{N})$ are unknown or do not exist
- \bullet $q: X \to K$ strategy

The Neyman Person Task looks for the optimal strategy q^* for which

- i) the error of classification of the dangerous state is lower than a predefined threshold $\bar{\epsilon}_D$ (0 < $\bar{\epsilon}_D$ < 1), while
- ii) the classification error for the normal state is as low as possible.

This is formulated as an optimization task with an inequality constraint:

$$q^* = \underset{q:X \to K}{\operatorname{argmin}} \sum_{x:q(x) \neq \mathsf{N}} p(x \mid \mathsf{N}) \tag{4}$$

subject to:
$$\sum_{x: a(x) \neq D} p(x \mid D) \le \overline{\epsilon}_D.$$
 (5)

Neyman Pearson Task

6/29

(copied from the previous slide:)

$$q^* = \underset{q:X \to K}{\operatorname{argmin}} \sum_{x:q(x) \neq \mathsf{N}} p(x \mid \mathsf{N}) \tag{4}$$

subject to:
$$\sum_{x:q(x)\neq D} p(x \mid D) \le \overline{\epsilon}_D.$$
 (5)

A strategy is characterized by the classification error values ϵ_N and ϵ_D :

$$\epsilon_{\mathsf{N}} = \sum_{x:q(x)\neq\mathsf{N}} p(x\,|\,\mathsf{N})$$
 (false alarm) (6)

$$\epsilon_{\mathsf{D}} = \sum_{x: q(x) \neq \mathsf{D}} p(x \mid \mathsf{D})$$
 (overlooked danger) (7)

Example: Male/Female Recognition (Neyman Pearson) (1)

An aging student at CTU wants to marry. He can't afford to miss recognizing a girl when he meets her, therefore he sets the threshold on female classification error to $\bar{\epsilon}_D = 0.2$. At the same time, he wants to minimize mis-classifying boys for girls.

- $K = \{D, N\} \equiv \{F, M\}$ (female, male)
- ullet measurements $X = \{ ext{short, normal, tall} \} imes \{ ext{ultralight, light, avg, heavy} \}$
- Prior probabilities do not exist.
- Conditionals are given as follows:

p(x F)							
short	.197 .145 .094 .01						
normal	.077	.299	.145	.017			
tall	.001	.008	.000	.000			
	u-light		avg	heavy			

p(x w)							
short	.011	.005	.011	.011			
normal	.005	.071	.408	.038			
tall	.002	.014	.255	.169			
u-light		light	avg	heavy			

m(m|M)

(8)

The optimal strategy q^* for a given $x \in X$ is constructed using the likelihood ratio $\frac{p(x \mid N)}{n(x \mid D)}$.

Let there be a constant $\mu \geq 0$. Given this μ , a strategy q is constructed as follows:

$$\frac{p(x \mid \mathsf{N})}{p(x \mid \mathsf{D})} > \mu \quad \Rightarrow \quad q(x) = \mathsf{N},$$

$$\frac{p(x \mid \mathsf{N})}{p(x \mid \mathsf{D})} \le \mu \quad \Rightarrow \quad q(x) = \mathsf{D}.$$
(9)

$$\frac{p(x \mid \mathsf{N})}{p(x \mid \mathsf{D})} \le \mu \quad \Rightarrow \quad q(x) = \mathsf{D} \,. \tag{10}$$

The optimal strategy q^* is obtained by selecting the minimal μ for which there still holds that $\epsilon_{\rm D} \leq \bar{\epsilon}_{\rm D}$.

Let us show this on an example.

Example:	Male	/Female	Recognition	(Neyman	Pearson)	(2)
- /(ap.c.				(10)		(-)

p(x F)							
short	.197	.017					
normal	.077 .299		.145	.017			
tall	.001	.008	.000	.000			
	J-light		avg	heavy			

p(x M)							
short	.011	.005	.011	.011			
normal	.005	.071	.408	.038			
tall	.002	.014	.255	.169			
u-light		light	avg	heavy			

r(x) = p(x M)/p(x F)					
short	0.056	0.034	0.117	0.647	
normal	0.065	0.237	2.814	2.235	
tall	2.000	1.750	∞	∞	
	u-light		avg	heavy	

rank order of $p(x N)/p(x F)$					
short	2	1	4	6	
normal	3	5	10	9	
tall	8	7	11	12	
	u-light	light	avg	heavy	

rapk order of m(m|M)/m(m|E)

Here, different μ 's can produce 11 different strategies.

First, let us take $2.814 < \mu < \infty$, e.g. $\mu = 3$. This produces a strategy $q^*(x) = \mathsf{F}$ everywhere except where $p(x|\mathsf{F}) = 0$. Obviously, classification error ϵ_F for F is $\epsilon_\mathsf{F} = 0$, and $\epsilon_\mathsf{M} = 1 - .255 - .169 = .576$.

Example: Male/Female Recognition (Neyman Pearson) (3)

10/29

p(x F)							
short	.197	.017					
normal	.077	.299	.145	.017			
tall	.001	.008	.000	.000			
	J-light		avg	heavy			

p(x M)							
short	short .011 .005 .011 .011						
normal	.005	.071	.408	.038			
tall	.002	.014	.255	.169			
u-light		light	avg	heavy			

r(x) = p(x M)/p(x F)						
short	0.056	0.034	0.117	0.647		
normal	0.065	0.237	2.814	2.235		
tall	2.000	1.750	∞	∞		
	I-light	light	avg	леаvу		

rank, and $q^*(x) = \{F, M\}$ for $\mu = 2.5$					
short	2	1	4	6	
normal	3	5	10	9	
tall	8	7	11	12	
u-light avg heavy					

Next, take μ which satisfies

$$r_9 < \mu < r_{10} \quad \text{(e.g. } \mu = 2.5)$$
 (11)

(where r_i is the likelihood ratios indexed by its rank.)

Here,
$$\epsilon_{\rm F}=.145$$
, and $\epsilon_{\rm M}=1-.255-.169-.408=.168$.

Example: Male/Female Recognition (Neyman Pearson) (4)

	_	• -	

p	(x	F)
•	-	1 /	Е

short	.197	.145	.094	.017
normal	.077	.299	.145	.017
tall	.001	.008	.000	.000
	u-light	light	avg	heavy

$$p(x|\mathsf{M})$$

Γ				
short	.011	.005	.011	.011
normal	.005	.071	.408	.038
tall	.002	.014	.255	.169
	u-light	light	avg	heavy

$$r(x) = p(x|\mathsf{M})/p(x|\mathsf{F})$$

	u-light	light	avg	heavy
tall	2.000	1.750	∞	∞
normal	0.065	0.237	2.814	2.235
short	0.056	0.034	0.117	0.647

rank, and
$$q^*(x) = \{F, M\}$$
 for $\mu = 2.1$

short	2	1	4	6
normal	3	5	10	9
tall	8	7	11	12
	u-light	light	avg	heavy

Do the same for μ satisfying

$$r_8 < \mu < r_9$$
 (e.g. $\mu = 2.1$) (12)

$$\Rightarrow \epsilon_{\mathsf{F}} = .162$$
, and $\epsilon_{\mathsf{M}} = 0.13$.

Example: Male/Female Recognition (Neyman Pearson) (5)

Classification errors for F and M, for $\mu_i = \frac{r_i + r_{i+1}}{2}$ and $\mu_0 = 0$.

The optimum is reached for $r_5 < \mu < r_6$; $\epsilon_{\rm F} = .188$, $\epsilon_{\rm M} = .103$

Neyman Pearson: Solution (1, special case)

Consider first a special case when $p(x_i | D) = \text{const} = \frac{1}{8}$.

Possible values for $\epsilon_{\rm D}$ are $0, \frac{1}{8}, \frac{2}{8}, ..., 1$. If a strategy q classifies P observations as normal then $\epsilon_{\rm D} = \frac{P}{8}$.

Let P=1 and thus $\epsilon_{\rm D}=\frac{1}{8}$. It is clear that $\epsilon_{\rm N}$ will attain minimum if the (one) observation which is classified as normal is the one with the highest $p(x_i \mid {\rm N})$. Similarly, if P=2 then the two observations to be classified as normal are the one with the first two highest $p(x_i \mid {\rm N})$. Etc.

 \uparrow cumulative sum of sorted $p(x_i \mid \mathsf{N})$ shows the classification success rate for N , that is, $1-\epsilon_\mathsf{N}$, for $\epsilon_\mathsf{D}=\frac{1}{8},\frac{2}{8},...,1$. For example, for $\epsilon_\mathsf{D}=\frac{2}{8}$ (P=2), $\epsilon_\mathsf{N}=1-0.45=0.55$ (as shown, dashed.)

Neyman Pearson: Solution (2, general case)

In general, $p(x_i | D) \neq \text{const.}$ Consider the following example:

$p(x_i D)$				
x_1 x_2 x_3				
0.5	0.25	0.25		

$p(x_i \mid N)$			
x_1	x_2	x_3	
0.6	0.35	0.05	

But this can easily be converted to the previous special case by (only formally) splitting x_1 to two observations x'_1 and x''_1 :

$p(x_i D)$					
x_1' x_1'' x_2 x_3					
0.25	0.25	0.25	0.25		

$p(x_i \mid N)$			
x_1'	x_1''	x_2	x_3
0.3	0.3	0.35	0.05

which would result in ordering the observations by decreasing $p(x_i \mid N)$ as: x_2, x_1, x_3 .

Obviously, the same ordering is obtained when $p(x_i | N)$ is 'normalized' by $p(x_i | D)$, that is, using the likelihood ratio

$$r(x_i) = \frac{p(x_i \mid \mathsf{N})}{p(x_i \mid \mathsf{D})}. \tag{13}$$

Neyman Pearson: Solution (3, general case, example)

Neyman Pearson Solution: Illustration of Principle

16/29

Lagrangian of the Neyman Pearson Task is

$$L(q) = \sum_{x: q(x) = D} p(x \mid N) + \mu \left(\sum_{x: q(x) = N} p(x \mid D) - \bar{\epsilon}_D \right)$$
(14)

$$= \underbrace{1 - \sum_{x:q(x)=N} p(x \mid N)}_{p(x \mid N)} + \mu \left(\sum_{x:q(x)=N} p(x \mid D) \right) - \mu \overline{\epsilon}_{D}$$
 (15)

$$=1 - \mu \bar{\epsilon}_{\mathsf{D}} + \sum_{x: q(x)=\mathsf{N}} \underbrace{\{\mu \, p(x \, | \, \mathsf{D}) - p(x \, | \, \mathsf{N})\}}_{T(x)} \tag{16}$$

If T(x) is negative for an x then it will decrease the objective function and the optimal strategy q^* will decide $q^*(x) = N$. This illustrates why the solution to the Neyman Pearson Task has the form

$$\frac{p(x \mid \mathsf{N})}{p(x \mid \mathsf{D})} > \mu \quad \Rightarrow \quad q(x) = \mathsf{N} \,, \tag{9}$$

$$\frac{p(x \mid \mathsf{N})}{p(x \mid \mathsf{D})} \le \mu \quad \Rightarrow \quad q(x) = \mathsf{D} \,. \tag{10}$$

Neyman Pearson: Derivation (1)

$$q^* = \min_{q:X \to K} \sum_{x:q(x) \neq \mathsf{N}} p(x \mid \mathsf{N}) \qquad \text{subject to: } \sum_{x:q(x) \neq \mathsf{D}} p(x \mid \mathsf{D}) \leq \bar{\epsilon}_{\mathsf{D}}. \tag{17}$$

Let us rewrite this as

$$q^* = \min_{q:X \to K} \sum_{x \in X} \alpha(x) p(x \mid \mathsf{N}) \qquad \text{subject to:} \qquad \sum_{x \in X} [1 - \alpha(x)] p(x \mid \mathsf{D}) \le \bar{\epsilon}_{\mathsf{D}} \,. \tag{18}$$

and:
$$\alpha(x) \in \{0,1\} \ \forall x \in X$$
 (19)

This is a combinatorial optimization problem. If the relaxation is done from $\alpha(x) \in \{0,1\}$ to $0 \le \alpha(x) \le 1$, this can be solved by **linear programming** (LP). The Lagrangian of this problem with inequality constraints is:

$$L(\alpha(x_1), \alpha(x_2), ..., \alpha(x_N)) = \sum_{x \in X} \alpha(x) p(x \mid N) + \mu \left(\sum_{x \in X} [1 - \alpha(x)] p(x \mid D) - \bar{\epsilon}_D \right)$$
 (20)

$$-\sum_{x \in X} \mu_0(x)\alpha(x) + \sum_{x \in X} \mu_1(x)(\alpha(x) - 1)$$
 (21)

m p

Neyman Pearson: Derivation (2)

$$L(\alpha(x_1), \alpha(x_2), ..., \alpha(x_N)) = \sum_{x \in X} \alpha(x) p(x \mid N) + \mu \left(\sum_{x \in X} [1 - \alpha(x)] p(x \mid D) - \bar{\epsilon}_D \right)$$
 (20)

$$-\sum_{x \in X} \mu_0(x)\alpha(x) + \sum_{x \in X} \mu_1(x)(\alpha(x) - 1)$$
 (21)

The conditions for optimality are $(\forall x \in X)$:

$$\frac{\partial L}{\partial \alpha(x)} = p(x \mid \mathsf{N}) - \mu p(x \mid \mathsf{D}) - \mu_0(x) + \mu_1(x) = 0, \tag{22}$$

$$\mu \ge 0, \, \mu_0(x) \ge 0, \, \mu_1(x) \ge 0, \quad 0 \le \alpha(x) \le 1,$$
 (23)

$$\mu_0(x)\alpha(x) = 0, \ \mu_1(x)(\alpha(x) - 1) = 0, \ \mu\left(\sum_{x \in X} [1 - \alpha(x)]p(x \mid \mathsf{D}) - \bar{\epsilon}_\mathsf{D}\right) = 0.$$
 (24)

Case-by-case analysis:

case	implications
$\mu = 0$	L minimized by $\alpha(x) = 0 \forall x$
$\mu \neq 0, \alpha(x) = 0$	$\mu_1(x) = 0 \Rightarrow \mu_0(x) = p(x \mid N) - \mu p(x \mid D) \Rightarrow p(x \mid N)/p(x \mid D) \leq \mu$
$\mu \neq 0, \alpha(x) = 1$	$\mu_0(x) = 0 \Rightarrow \mu_1(x) = -[p(x \mid N) - \mu p(x \mid D)] \Rightarrow p(x \mid N)/p(x \mid D) \ge \mu$
$\begin{array}{ccc} \mu \neq 0, \\ 0 < \alpha(x) < 1 \end{array}$	$\mu_0(x) = \mu_1(x) = 0 \Rightarrow p(x \mid \mathbf{N})/p(x \mid \mathbf{D}) = \mu$

Neyman Pearson: Derivation (3)

Case-by-case analysis:

	-
case	implications
$\mu = 0$	L minimized by $\alpha(x) = 0 \forall x$
$\mu \neq 0, \alpha(x) = 0$	$\mu_1(x) = 0 \Rightarrow \mu_0(x) = p(x \mid N) - \mu p(x \mid D) \Rightarrow p(x \mid N)/p(x \mid D) \leq \mu$
$\mu \neq 0, \alpha(x) = 1$	$\mu_0(x) = 0 \Rightarrow \mu_1(x) = -[p(x \mid N) - \mu p(x \mid D)] \Rightarrow p(x \mid N)/p(x \mid D) \ge \mu$
$\begin{array}{ c c } \mu \neq 0, \\ 0 < \alpha(x) < 1 \end{array}$	$\mu_0(x) = \mu_1(x) = 0 \Rightarrow p(x \mid \mathbf{N})/p(x \mid \mathbf{D}) = \mu$
$\mu \neq 0, \alpha(x) = 0$ $\mu \neq 0, \alpha(x) = 1$ $\mu \neq 0, \alpha(x) = 1$	$\mu_{1}(x) = 0 \Rightarrow \mu_{0}(x) = p(x \mid N) - \mu p(x \mid D) \Rightarrow \frac{p(x \mid N)/p(x \mid D) \leq \mu}{p(x \mid N)/p(x \mid D) \leq \mu}$ $\mu_{0}(x) = 0 \Rightarrow \mu_{1}(x) = -[p(x \mid N) - \mu p(x \mid D)] \Rightarrow \frac{p(x \mid N)/p(x \mid D) \leq \mu}{p(x \mid N)/p(x \mid D) \geq \mu}$

Optimal Strategy for a given $\mu \geq 0$ and particular $x \in X$:

$$\frac{p(x \mid \mathsf{N})}{p(x \mid \mathsf{D})} \begin{cases} < \mu & \Rightarrow q(x) = \mathsf{D} \text{ (as } \alpha(x) = 0) \\ > \mu & \Rightarrow q(x) = \mathsf{N} \text{ (as } \alpha(x) = 1) \\ = \mu & \Rightarrow \mathsf{LP} \text{ relaxation does not give the desired solution, as } \alpha \notin \{0, 1\} \end{cases}$$
 (25)

Neyman Pearson: Note on Randomized Strategies (1)

Consider:

p(x D)			
$x_1 x_2 x_3$			
0.9	0.09	0.01	

p(x N)			
x_1	x_2	x_3	
0.09	0.9	0.01	

r(x) = p(x N)/p(x D)			
x_1	x_2	x_3	
0.1	10	1	

and $\bar{\epsilon}_D = 0.03$.

- $q_1:(x_1,x_2,x_3)\to (\mathsf{D},\mathsf{D},\mathsf{D}) \Rightarrow \epsilon_\mathsf{D}=0.00, \, \epsilon_\mathsf{N}=1.00$
- $q_2:(x_1,x_2,x_3)\to (\mathsf{D},\mathsf{D},\mathsf{N}) \quad \Rightarrow \quad \epsilon_\mathsf{D}=0.01,\ \epsilon_\mathsf{N}=0.99$
- lacktriangle no other deterministic strategy q is feasible, that is all other ones have $\epsilon_{\mathsf{D}} > \overline{\epsilon}_{\mathsf{D}}$
- ullet q_2 is the best deterministic strategy but it does not comply with the previous basic result of constructing the optimal strategy because it decides for N for likelihood ratio 1 but decides for D for likelihood ratios 0.01 and 10. Why is that?
- we can construct a randomized strategy which attains $\bar{\epsilon}_D$ and reaches lower ϵ_N :

$$q(x_1) = q(x_3) = D$$
, $q(x_2) = \begin{cases} N & 1/3 \text{ of the time} \\ D & 2/3 \text{ of the time} \end{cases}$ (26)

For such strategy, $\epsilon_D = 0.03$, $\epsilon_N = 0.7$.

Neyman Pearson: Note on Randomized Strategies (2)

21/29

- lacklosh This is not a problem but a feature which is caused by discrete nature of X (does not happen when X is continuous).
- This is exactly what the case of $\mu = p(x \mid N)/p(x \mid D)$ is on slide 18.

22/29

- The task can be generalized to 3 hidden states, of which 2 are dangerous, $K = \{N, D_1, D_2\}$. It is formulated as an analogous problem with two inequality constraints and minimization of classification error for N.
- Neyman's and Pearson's work dates to 1928 and 1933.
- A particular strength of the approach lies in that the likelihood ratio r(x) or even $p(x \mid N)$ need not be known. For the task to be solved, it is enough to know the $p(x \mid D)$ and the **rank order** of the likelihood ratio (to be demonstrated on the next page)

Neyman Pearson: Notes (2)

- Consider a medicine for reducing weight which is taken for one month. The control group taking placebos has known distribution of weight change $p(x \mid \mathsf{D})$ as shown in blue. Let it be normal, $p(x \mid \mathsf{D}) = \mathcal{N}(x \mid \mu_0, \sigma)$. The distribution of weight change after 1 month of taking the real pill is assumed to be normal as well, with the same variance but uknown shift of mean to the left, $p(x \mid \mathsf{N}) = \mathcal{N}(x \mid \mu_1, \sigma)$, with $\mu_1 < \mu_0$ but otherwise unknown (shown in red). The likelihood ratio is $r(x) = \exp \frac{1}{2\sigma^2} \left(-(x \mu_1)^2 + (x \mu_0)^2 \right) = \exp \left(\frac{1}{\sigma^2} (\mu_1 \mu_0) x + \text{const} \right)$. It is thus decreasing (monotone) with x (irrespective of μ_1 , $\mu_1 < \mu_0$).
- Setting $\bar{\epsilon}_D=0.02$, we go along the decreasing r(x) and find the point x_{thr} for which $\int_{-\infty}^{x_{thr}} p(x \mid \mathsf{D}) = \bar{\epsilon}_\mathsf{D} = 0.02$ (0.02-quantile). Note that the threshold μ on r(x) is still uknown as $p(x \mid \mathsf{N})$ is unknown.

- \bullet $K = \{1, 2, ..., N\}$
- X set of observations
- lacktriangle Conditionals $p(x \mid k)$ are known $\forall k \in K$
- lacktriangle The priors p(k) are unknown or do not exist
- $lack q \colon X \to K$ strategy

The Minimax Task looks for the optimum strategy q^* which minimizes the classification error of the worst classified class:

$$q^* = \underset{q:X \to K}{\operatorname{argmin}} \max_{k \in K} \epsilon(k), \quad \text{where}$$
(27)

$$\epsilon(k) = \sum_{x: \, q(x) \neq k} p(x \mid k) \tag{28}$$

- Example: A recognition algorithm qualifies for a competition using preliminary tests.
 During the final competition, only objects from the hardest-to-classify class are used.
- For a 2-class problem, the strategy is again constructed using the likelihood ratio.
- In the case of continuous observations space X, equality of classification errors is attained: $\epsilon_1=\epsilon_2$
- ♦ The derivation can again be done using Linear Programming.

Example: Male/Female Recognition (Minimax)

Classification errors for F and M, for $\mu_i = \frac{r_i + r_{i+1}}{2}$ and $\mu_0 = 0$.

The optimum is attained for i=8, $\epsilon_{\rm F}=.162$, $\epsilon_{\rm M}=.13$. The corresponding strategy is as shown on slide 11.

Minimax: Comparison with Bayesian Decision with Unknown Priors

- 26/29
- ullet Consider the same setting as in the Minimax task, but let the priors p(k) exist but be unknown.
- lacktriangle The Bayesian error ϵ for strategy q is

$$\epsilon = \sum_{k} \sum_{x: q(x) \neq k} p(x, k) = \sum_{k} p(k) \underbrace{\sum_{x: q(x) \neq k} p(x \mid k)}_{\epsilon(k)}$$
(29)

- We want to minimize ϵ but we do not know p(k)'s. What is the maximum it can attain? Obviously, the p(k)'s do the convex combination of the class errors $\epsilon(k)$; the maximum Bayesian error will be attained when p(k)=1 for the class k with the highest class error $\epsilon(k)$.
- ullet Thus, to minimize the Bayesian error ϵ under this setting, the solution is to minimize the error of the hardest-to-classify class.
- ◆ Therefore, Minimax formulation and the Bayesian formulation with Unknown Priors lead to the same solution.

Wald Task (1)

- Let us consider classification with two states, $K = \{1, 2\}$.
- We want to set a threshold ϵ on the classification error of both of the classes: $\epsilon_1 \leq \epsilon$, $\epsilon_2 \leq \epsilon$.
- \bullet As the previous analysis shows (Neyman Pearson, Minimax), there may be **no** feasible solution if ϵ is set too low.
- That is why the possibility of decision "do not know" is introduced. Thus $D = K \cup \{?\}$
- lack A strategy q:X o D is characterized by:

$$\epsilon_1 = \sum_{x: q(x)=2} p(x \mid 1)$$
 (classification error for 1) (30)

$$\epsilon_2 = \sum_{x: q(x)=1} p(x \mid 2)$$
 (classification error for 2) (31)

$$\kappa_1 = \sum_{x: q(x)=?} p(x \mid 1) \quad \text{(undecided rate for 1)} \tag{32}$$

$$\kappa_2 = \sum_{x: q(x)=?} p(x \mid 2) \quad \text{(undecided rate for 2)} \tag{33}$$

Wald Task (2)

lacktriangle The optimal strategy q^* :

$$q^* = \underset{q:X \to D}{\operatorname{argmin}} \max_{i = \{1,2\}} \kappa_i \tag{34}$$

subject to:
$$\epsilon_1 \le \epsilon, \ \epsilon_2 \le \epsilon$$
 (35)

- The task is again solvable using LP (even for more than 2 classes)
- The optimal solution is again based on the likelihood ratio

$$r(x) = \frac{p(x \mid 1)}{p(x \mid 2)} \tag{36}$$

• The optimal strategy is constructed using suitably chosen thresholds μ_l and μ_h such that:

$$q(x) = \begin{cases} 2 & \text{for } r(x) < \mu_l \\ 1 & \text{for } r(x) > \mu_h \\ ? & \text{for } \mu_l \le r(x) \le \mu_h \end{cases}$$

$$(37)$$

Example: Male/Female Recognition (Wald)

Solve the Wald task for $\epsilon = 0.05$.

|--|

short	.197	.145	.094	.017
normal	.077	.299	.145	.017
tall	.001	.008	.000	.000
	u-light	light	avg	heavy

$$p(x|\mathsf{M})$$

	$P(w \cdots)$					
short	.011	.005	.011	.011		
normal	.005	.071	.408	.038		
tall	.002	.014	.255	.169		
	u-light	light	avg	heavy		

$$r(x) = p(x|\mathsf{M})/p(x|\mathsf{F})$$

short normal	0.056	0.034	0.117 2.814	0.647 2.235
tall	2.000	1.750	∞	∞
	u-light	light	avg	heavy

rank, and
$$q^*(x) = \{F, M, ?\}$$

	u-light	light	avg	heavy
tall	8	7	11	12
normal	3	5	10	9
short	2	1	4	6

Result: $\epsilon_{\rm M} = 0.032$, $\epsilon_{\rm F} = 0$, $\kappa_{\rm M} = 0.544$, $\kappa_{\rm F} = 0.487$

$$(r_4 < \mu_l < r_5, r_{10} < \mu_h < \infty)$$