Principal Component Analysis

Vojtěch Franc
Center for Machine Perception
Department of Cybernetics, FEE CTU Prage

RPZ ZS 2015

Principal Component Analysis

PCA is a dimension reduction method transforming input n-dimensional data set

$$
\mathbf{X}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right) \in \mathbb{R}^{n \times m}
$$

by a applying a linear orthogonal transform on centered version of \mathbf{X}, i.e.
$\mathbf{z}=\mathbf{W}^{T}(\mathbf{x}-\mu)=\mathbf{W}^{T} \overline{\mathbf{x}}=\left[\begin{array}{c}\mathbf{w}_{1}^{T}(\mathbf{x}-\mu) \\ \mathbf{w}_{2}^{T}(\mathbf{x}-\mu) \\ \vdots \\ \mathbf{w}_{d}^{T}(\mathbf{x}-\mu)\end{array}\right] \quad$ where $\quad \mathbf{W} \in \mathbb{R}^{n \times d}, \mathbf{W}^{T} \mathbf{W}=\mathbf{I}, \mu=\frac{1}{m} \sum_{j=1}^{m} \mathbf{x}_{j}$,
which yields a lower $(d<n)$-dimensional representation, so called principal scores,

$$
\mathbf{Z}=\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{m}\right) \in \mathbb{R}^{d \times m}
$$

with the following properties:

- \mathbf{Z} retains as much as possible of the variation presented in the data set \mathbf{X}
- \mathbf{Z} is centered and uncorrelated
- \mathbf{Z} are coordinates of points \mathbf{X}^{\prime} obtained by projecting \mathbf{X} onto an d-dimensional affine subspace such that the approximation error $\left\|\mathbf{X}-\mathbf{X}^{\prime}\right\|_{F}$ is minimal possible.

Orthogonal transformation retaining the maximum of variance

- The projection vectors $\mathbf{W}=\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{d}\right) \in \mathbb{R}^{n \times d}$ are called the principal components.
- The first principal component is a unit vector $\mathbf{w}_{1} \in\left\{\mathbf{w} \in \mathbb{R}^{n} \mid\|\mathbf{w}\|=1\right\}$ maximizing the variance

$$
v(\mathbf{w})=\operatorname{var}\left(\mathbf{w}^{T}(\mathbf{x}-\mu)\right)=\frac{1}{m} \sum_{j=1}^{m}\left(\mathbf{w}^{T}\left(\mathbf{x}_{j}-\mu\right)\right)^{2}=\mathbf{w}^{T} \mathbf{C} \mathbf{w}
$$

where $\mathbf{C} \in \mathbb{R}^{n \times n}$ is the sample covariance matrix defined as

$$
\mathbf{C}=\frac{1}{m} \sum_{j=1}^{m}\left(\mathbf{x}_{j}-\mu\right)\left(\mathbf{x}_{j}-\mu\right)^{T}
$$

- (k 2)-th principal component is a unit vector $\mathbf{w}_{k} \in\left\{\mathbf{w} \in \mathbb{R}^{n} \mid\|\mathbf{w}\|=1\right\}$ maximizing the variance $v(\mathbf{w})$ and being orthogonal to all previous principal components, i.e.
$\mathbf{w}_{k}^{T} \mathbf{w}_{i}=0, i=1, \ldots, k-1$.

Directions with maximal variance

Finding the first principal component

- Finding the first principal component amounts to solving

$$
\begin{equation*}
\mathbf{w}_{1}=\underset{\mathbf{w} \in \mathbb{R}^{n}}{\operatorname{argmax}} \mathbf{w}^{T} \mathbf{C w} \quad \text { s.t. } \quad\|\mathbf{w}\|^{2}=1 \tag{1}
\end{equation*}
$$

- The first order conditions for \mathbf{w}_{1} to solve (1): there exist $\lambda_{1} \in \mathbb{R}$ such that $\partial_{\mathbf{w}} L\left(\mathbf{w}_{1}, \lambda_{1}\right)=0$ and $\partial_{\lambda} L\left(\mathbf{w}_{1}, \lambda_{1}\right)=0$ where

$$
L\left(\mathbf{w}_{1}, \lambda_{1}\right)=\mathbf{w}_{1}^{T} \mathbf{C} \mathbf{w}_{1}-\lambda_{1}\left(\left\|\mathbf{w}_{1}\right\|^{2}-1\right)
$$

is the Lagrange function of (1).

- The condition $\partial_{\mathbf{w}} L\left(\mathbf{w}_{1}, \lambda_{1}\right)=0$ is a set of n non-linear equations with variables $\mathbf{w}_{1} \in \mathbb{R}^{n}$ and $\lambda_{1} \in \mathbb{R}$ known as the Eigenvalue problem

$$
\mathbf{C} \mathbf{w}_{1}=\lambda_{1} \mathbf{w}_{1}
$$

which for symmetric PSD matrix \mathbf{C} has n solutions: eigen-values $\left(\lambda_{1}^{\prime}, \ldots, \lambda_{n}^{\prime}\right) \in \mathbb{R}^{n}$ and associated orthogonal eigen-vectors $\mathbf{W}^{\prime}=\left(\mathbf{w}_{1}^{\prime}, \ldots, \mathbf{w}_{n}^{\prime}\right) \in \mathbb{R}^{n \times n}, \mathbf{W}^{\prime T} \mathbf{W}^{\prime}=\mathbf{I}$.

- The first principal component is the eigen-vector with the highest eigenvalue because

$$
v\left(\mathbf{w}_{i}^{\prime}\right)=\mathbf{w}_{i}^{\prime T} \mathbf{C} \mathbf{w}_{i}^{\prime}=\lambda_{i}^{\prime}
$$

Finding the second and other principal components

Finding the second principal component amounts to solving

$$
\begin{equation*}
\mathbf{w}_{2}=\underset{\mathbf{w} \in \mathbb{R}^{n}}{\operatorname{argmax}} \mathbf{w}^{T} \mathbf{C} \mathbf{w} \quad \text { s.t. } \quad\|\mathbf{w}\|^{2}=1 \quad \text { and } \quad \mathbf{w}^{T} \mathbf{w}_{1}=0 \tag{2}
\end{equation*}
$$

- The first order condition for \mathbf{w}_{2} : there exists $\lambda_{1} \in \mathbb{R}, \lambda_{2} \in \mathbb{R}$ such that $\partial_{\mathbf{w}} L\left(\mathbf{w}_{2}, \lambda_{1}, \lambda_{2}\right)=0, \partial_{\lambda_{1}} L\left(\mathbf{w}_{2}, \lambda_{1}, \lambda_{2}\right)=0$ and $\partial_{\lambda_{2}} L\left(\mathbf{w}_{2}, \lambda_{1}, \lambda_{2}\right)=0$ where

$$
L\left(\mathbf{w}_{2}, \lambda_{1}, \lambda_{2}\right)=\mathbf{w}_{2}^{T} \mathbf{C} \mathbf{w}_{2}-\lambda_{1} \mathbf{w}_{1}^{T} \mathbf{w}_{2}-\lambda_{2}\left(\left\|\mathbf{w}_{2}\right\|^{2}-1\right)
$$

- The condition $\partial_{\mathbf{w}} L\left(\mathbf{w}_{2}, \lambda_{1}, \lambda_{2}\right)=0$ implies that

$$
\begin{aligned}
2 \mathbf{C} \mathbf{w}_{2}-\lambda_{1} \mathbf{w}_{1}-2 \lambda_{2} \mathbf{w}_{2} & =0 \\
2 \underbrace{\mathbf{w}_{1}^{T} \mathbf{C} \mathbf{w}_{2}}_{=\lambda_{1} \mathbf{w}_{1}^{T} \mathbf{w}_{2}=0}-\lambda_{1} \mathbf{w}_{1}^{T} \mathbf{w}_{1}-2 \lambda_{2} \underbrace{\mathbf{w}_{1}^{T} \mathbf{w}_{2}}_{=0} & =0 \\
\mathbf{C w}_{2} & =\lambda_{2} \mathbf{w}_{2}
\end{aligned} \quad \Rightarrow \lambda_{1}=0
$$

- The last line is again the Eigenvalue problem and thus the second principal component is the eigen-vector with the second largest eigen-value.
- The 3rd, 4th, \cdots, d-th principal components are found analogically.

PCA: The Algorithm

1: Input: $\mathbf{X}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right) \in \mathbb{R}^{n \times m}$ and $d \in[0, n]$.
2: Output: $\mathbf{W} \in \mathbb{R}^{n \times d}, \mu \in \mathbb{R}^{n}$
3: Compute mean and covariance

$$
\mu=\frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i} \quad \mathbf{C}=\frac{1}{m} \sum_{i=1}^{m}\left(\mathbf{x}_{i}-\mu\right)\left(\mathbf{x}_{i}-\mu\right)^{T}
$$

4: Find d eigen-vectors $\mathbf{W}=\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{d}\right)$ with highest eigen-values, i.e. $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$, of the eigen-value problem

$$
\mathbf{C w}=\lambda \mathbf{w}
$$

Transform the data \mathbf{X} onto a PCA scores $\mathbf{Z}=\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{m}\right) \in \mathbb{R}^{d \times m}$ by

$$
\mathbf{z}_{i}=\mathbf{W}^{T}\left(\mathbf{x}_{i}-\mu\right), \quad i \in\{1, \ldots, m\}
$$

PCA: Matlab code

```
function [W,mu] = pca( X, d)
% PCA Principal Component Analysis
% Synopsis:
% [W,mu] = pca( X, d)
%
% Input:
% X [n x m] Input data
% d [1 x 1] Output dimension
% Output:
% W [n x d] Principal components
% mu [m x 1] Data mean
%
    mu = mean(X,2);
    C = cov( X', 1);
    [V,D] = eig( C );
    [~,idx] = sort( diag(D), 'descend');
    W = V(:,idx(1:d));
end
```

\% Lower dimensional data representation of X
Z = W'*(X - repmat (mu, 1, size(X,2)));

The PCA scores are centered and uncorrelated

- The PCA scores $\mathbf{z}_{i}=\mathbf{W}^{T}\left(\mathbf{x}_{i}-\mu\right), i \in\{1, \ldots, m\}$, are centered

$$
\tilde{\mu}=\frac{1}{m} \sum_{i=1}^{m} \mathbf{z}_{i}=\frac{1}{m} \sum_{i=1}^{m} \mathbf{W}^{T}\left(\mathbf{x}_{i}-\mu\right)=\mathbf{W}^{T}\left(\frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}\right)-\mathbf{W}^{T} \mu=\mathbf{0}
$$

The PCA scores are uncorrelated

$$
\tilde{\mathbf{C}}=\frac{1}{m} \sum_{i=1}^{m} \mathbf{z}_{i}^{T} \mathbf{z}_{i}=\frac{1}{m} \sum_{i=1}^{m}\left(\mathbf{W}^{T}\left(\mathbf{x}_{i}-\mu\right)\right)\left(\mathbf{W}^{T}\left(\mathbf{x}_{i}-\mu\right)\right)^{T}=\mathbf{W}^{T} \mathbf{C W}
$$

so that

$$
\tilde{C}_{i, j}=\mathbf{w}_{i}^{T} \mathbf{C} \mathbf{w}_{j}=\lambda_{j} \mathbf{w}_{i}^{T} \mathbf{w}_{j}=\lambda_{i} \mathbf{w}_{i}^{T} \mathbf{w}_{j}=\left\{\begin{array}{rll}
0 & \text { for } & i \neq j \\
\lambda_{i} & \text { for } & i=j
\end{array}\right.
$$

and the retained variance is

$$
\operatorname{tr}\left(\mathbf{W}^{T} \tilde{\mathbf{C}} \mathbf{W}\right)=\sum_{i=1}^{d} \lambda_{i} \mathbf{w}_{i}^{T} \mathbf{w}_{i}=\sum_{i=1}^{d} \lambda_{i}
$$

The PCA scores are centered and uncorrelated

The PCA can be interpreted as follows:

1. Center and rotate the data such that they become uncorrelated.
2. Forget the dimensions with lowest variance.

PCA presents data in affine sub-space

- The PCA scores $\mathbf{Z}=\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{m}\right) \in \mathbb{R}^{d \times m}$ are coordinates of the original data $\mathbf{X}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right) \in \mathbb{R}^{n \times m}$ projected onto a d-dimensional affine sub-space

$$
\mathcal{P}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x}=\mathbf{W} \mathbf{z}+\mu, \mathbf{z} \in \mathbb{R}^{d}\right\} \subseteq \mathbb{R}^{n}
$$

- The orthogonal projection of \mathbf{x} onto an affine sub-space \mathcal{P} is

$$
\tilde{\mathbf{x}}=\underset{\mathbf{x}^{\prime} \in \mathcal{P}}{\operatorname{argmin}}\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}=\mathbf{W} \mathbf{z}+\mu=\mathbf{w}_{1} z_{1}+\mathbf{w}_{2} z_{2}+\cdots \mathbf{w}_{d} z_{d}+\mu
$$

where $\mathbf{z}=\mathbf{W}^{T}(\mathbf{x}-\mu)$.
This follows from

$$
\begin{aligned}
\mathbf{z} & =\underset{\mathbf{z}^{\prime} \in \mathbb{R}^{d}}{\operatorname{argmin}}\left\|\mathbf{W} \mathbf{z}^{\prime}+\mu-\mathbf{x}\right\|^{2} \\
& =\left(\mathbf{W}^{T} \mathbf{W}\right)^{-1} \mathbf{W}^{T}(\mathbf{x}-\mu) \\
& =\mathbf{W}^{T}(\mathbf{x}-\mu)
\end{aligned}
$$

which is so called least squares problem.

PCA minimizes the reconstruction error

Let $\tilde{\mathbf{X}}=\left(\tilde{\mathbf{x}}_{1}, \ldots, \tilde{\mathbf{x}}_{m}\right) \in \mathbb{R}^{n \times m}$ be the points reconstructed from the PCA scores $\mathbf{Z}=\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{m}\right) \in \mathbb{R}^{d \times m}$ by

$$
\tilde{\mathbf{x}}_{i}=\mathbf{W} \mathbf{z}_{i}+\mu \quad \text { where } \quad \mathbf{z}_{i}=\mathbf{W}^{T}\left(\mathbf{x}_{i}-\mu\right)
$$

- The reconstruction error is

$$
\operatorname{Err}(\mathbf{W}, \mu, \mathbf{Z})=\|\tilde{\mathbf{X}}-\mathbf{X}\|_{F}^{2}=\sum_{i=1}^{m}\left\|\tilde{\mathbf{x}}_{i}-\mathbf{x}_{i}\right\|^{2}=\sum_{i=1}^{m}\left\|\mathbf{W} \mathbf{z}_{i}+\mu-\mathbf{x}_{i}\right\|^{2}
$$

- The PCA is the optimal solution of the problem

$$
\min _{\mathbf{W}^{\prime} \in \mathbb{R}^{n \times d}, \mu^{\prime} \in \mathbb{R}^{n}, \mathbf{Z}^{\prime} \in \mathbb{R}^{d \times m}} \operatorname{Err}\left(\mathbf{W}^{\prime}, \mu^{\prime}, \mathbf{Z}^{\prime}\right)
$$

i.e. it minimizes the reconstruction error which equals to

$$
\operatorname{Err}(\mathbf{W}, \mu, \mathbf{Z})=\sum_{i=d+1}^{n} \lambda_{i}
$$

- The cumulative sum of the sorted eigen-vectors can be used to select the output dimension d.

Example: Eigenfaces

- The face image represented by column vector $\mathbf{x} \in \mathbb{R}^{n}$ containing the intensity values is compressed to PCA scores

$$
\mathbf{z}=\mathbf{W}^{T}(\mathbf{x}-\mu)=(\underbrace{\mathbf{w}_{1}^{T}(\mathbf{x}-\mu)}_{z_{1}}, \ldots, \underbrace{\mathbf{w}_{d}^{T}(\mathbf{x}-\mu)}_{z_{d}})^{T}
$$

Face \mathbf{x} is approximated by a linear combination of d-principal components, so called "eigenfaces":

Image originates from http://vision.stanford.edu/teaching/cs231a/lecture/lecture2_face_r\% ecognition_cs231a_marked.pdf

PCA: Summary

- The PCA represents $\mathbf{X} \in \mathbb{R}^{n \times m}$ as coordinates $\mathbf{Z} \in \mathbb{R}^{d \times m}$ in an affine sub-space with the following properties:
- \mathbf{Z} retains as much as possible of the variation presented in the data \mathbf{X}
- \mathbf{Z} is centered and uncorrelated
- \mathbf{Z} is the optimal compression minimizing the reconstruction error $\|\tilde{\mathbf{X}}-\mathbf{X}\|_{F}$.
- Typical usage of PCA:
- Feature extraction
- Compression
- Visualization
- Denoising
- PCA is an unsupervised method (no labels are required).

END

