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Principal Component Analysis

PCA is a dimension reduction method transforming input n-dimensional data set

X = (x1, . . . ,xm) ∈ Rn×m

by a applying a linear orthogonal transform on centered version of X, i.e.

z = WT (x−µ) = WT x̄ =


wT

1 (x− µ)
wT

2 (x− µ)
...

wT
d (x− µ)

 where W ∈ Rn×d,WTW = I, µ =
1

m

m∑
j=1

xj ,

which yields a lower (d < n)-dimensional representation, so called principal scores,

Z = (z1, . . . , zm) ∈ Rd×m

with the following properties:
� Z retains as much as possible of the variation presented in the data set X
� Z is centered and uncorrelated
� Z are coordinates of points X′ obtained by projecting X onto an d-dimensional affine
subspace such that the approximation error ‖X−X′‖F is minimal possible.

http://cmp.felk.cvut.cz
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Orthogonal transformation retaining the maximum of
variance

� The projection vectors W = (w1, . . . ,wd) ∈ Rn×d are called the principal components.

� The first principal component is a unit vector w1 ∈ {w ∈ Rn | ‖w‖ = 1} maximizing
the variance

v(w) = var(wT (x− µ)) =
1

m

m∑
j=1

(wT (xj − µ))2 = wTCw

where C ∈ Rn×n is the sample covariance matrix defined as

C =
1

m

m∑
j=1

(xj − µ)(xj − µ)T

� (k ≥ 2)-th principal component is a unit vector wk ∈ {w ∈ Rn | ‖w‖ = 1} maximizing
the variance v(w) and being orthogonal to all previous principal components, i.e.
wT
kwi = 0, i = 1, . . . , k − 1.

http://cmp.felk.cvut.cz
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Directions with maximal variance
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Finding the first principal component

� Finding the first principal component amounts to solving

w1 = argmax
w∈Rn

wTCw s.t. ‖w‖2 = 1 (1)

� The first order conditions for w1 to solve (1): there exist λ1 ∈ R such that
∂wL(w1, λ1) = 0 and ∂λL(w1, λ1) = 0 where

L(w1, λ1) = wT
1 Cw1 − λ1(‖w1‖2 − 1)

is the Lagrange function of (1).
� The condition ∂wL(w1, λ1) = 0 is a set of n non-linear equations with variables
w1 ∈ Rn and λ1 ∈ R known as the Eigenvalue problem

Cw1 = λ1w1

which for symmetric PSD matrix C has n solutions: eigen-values (λ′1, . . . , λ
′
n) ∈ Rn

and associated orthogonal eigen-vectors W′ = (w′1, . . . ,w
′
n) ∈ Rn×n, W′TW′ = I.

� The first principal component is the eigen-vector with the highest eigenvalue because

v(w′i) = w′i
T
Cw′i = λ′i

http://cmp.felk.cvut.cz
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Finding the second and other principal components

� Finding the second principal component amounts to solving

w2 = argmax
w∈Rn

wTCw s.t. ‖w‖2 = 1 and wTw1 = 0 (2)

� The first order condition for w2: there exists λ1 ∈ R, λ2 ∈ R such that
∂wL(w2, λ1, λ2) = 0, ∂λ1L(w2, λ1, λ2) = 0 and ∂λ2L(w2, λ1, λ2) = 0 where

L(w2, λ1, λ2) = wT
2 Cw2 − λ1wT

1 w2 − λ2(‖w2‖2 − 1)

� The condition ∂wL(w2, λ1, λ2) = 0 implies that

2Cw2 − λ1w1 − 2λ2w2 = 0

2 wT
1 Cw2︸ ︷︷ ︸

=λ1w
T
1 w2=0

−λ1wT
1 w1 − 2λ2w

T
1 w2︸ ︷︷ ︸
=0

= 0 ⇒ λ1 = 0

Cw2 = λ2w2

� The last line is again the Eigenvalue problem and thus the second principal component
is the eigen-vector with the second largest eigen-value.

� The 3rd, 4th, · · · , d-th principal components are found analogically.
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PCA: The Algorithm

1: Input: X = (x1, . . . ,xm) ∈ Rn×m and d ∈ [0, n].
2: Output: W ∈ Rn×d, µ ∈ Rn

3: Compute mean and covariance

µ =
1

m

m∑
i=1

xi C =
1

m

m∑
i=1

(xi − µ)(xi − µ)T

4: Find d eigen-vectors W = (w1, . . . ,wd) with highest eigen-values, i.e.
λ1 ≥ λ2 ≥ · · · ≥ λn, of the eigen-value problem

Cw = λw

Transform the data X onto a PCA scores Z = (z1, . . . , zm) ∈ Rd×m by

zi = WT (xi − µ) , i ∈ {1, . . . ,m}

http://cmp.felk.cvut.cz
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PCA: Matlab code

function [W,mu] = pca( X, d)
% PCA Principal Component Analysis
% Synopsis:
% [W,mu] = pca( X, d)
%
% Input:
% X [n x m] Input data
% d [1 x 1] Output dimension
% Output:
% W [n x d] Principal components
% mu [m x 1] Data mean
%

mu = mean(X,2);
C = cov( X’, 1);
[V,D] = eig( C );
[~,idx] = sort( diag(D), ’descend’);
W = V(:,idx(1:d));

end

% Lower dimensional data representation of X
Z = W’*( X - repmat( mu, 1, size(X,2) ));

http://cmp.felk.cvut.cz
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The PCA scores are centered and uncorrelated

� The PCA scores zi = WT (xi − µ), i ∈ {1, . . . ,m}, are centered

µ̃ =
1

m

m∑
i=1

zi =
1

m

m∑
i=1

WT (xi − µ) = WT

(
1

m

m∑
i=1

xi

)
−WTµ = 0

� The PCA scores are uncorrelated

C̃ =
1

m

m∑
i=1

zTi zi =
1

m

m∑
i=1

(WT (xi − µ))(WT (xi − µ))T = WTCW

so that
C̃i,j = wT

i Cwj = λjw
T
i wj = λiw

T
i wj =

{
0 for i 6= j
λi for i = j

and the retained variance is

tr(WT C̃W) =

d∑
i=1

λiw
T
i wi =

d∑
i=1

λi

http://cmp.felk.cvut.cz
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The PCA scores are centered and uncorrelated

The PCA can be interpreted as follows:

1. Center and rotate the data such that they become uncorrelated.
2. Forget the dimensions with lowest variance.

http://cmp.felk.cvut.cz
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PCA presents data in affine sub-space

� The PCA scores Z = (z1, . . . , zm) ∈ Rd×m are coordinates of the original data
X = (x1, . . . ,xm) ∈ Rn×m projected onto a d-dimensional affine sub-space

P =
{
x ∈ Rn | x = Wz + µ, z ∈ Rd} ⊆ Rn

� The orthogonal projection of x onto an affine sub-space P is

x̃ = argmin
x′∈P

‖x− x′‖2 = Wz + µ = w1z1 + w2z2 + · · ·wdzd + µ

where z = WT (x− µ).

This follows from

z = argmin
z′∈Rd

‖Wz′ + µ− x‖2

= (WTW)−1WT (x− µ)

= WT (x− µ)

which is so called least squares problem.

http://cmp.felk.cvut.cz
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PCA minimizes the reconstruction error

� Let X̃ = (x̃1, . . . , x̃m) ∈ Rn×m be the points reconstructed from the PCA scores
Z = (z1, . . . , zm) ∈ Rd×m by

x̃i = Wzi + µ where zi = WT (xi − µ)

� The reconstruction error is

Err(W, µ,Z) = ‖X̃−X‖2F =

m∑
i=1

‖x̃i − xi‖2 =

m∑
i=1

‖Wzi + µ− xi‖2

� The PCA is the optimal solution of the problem

min
W′∈Rn×d,µ′∈Rn,Z′∈Rd×m

Err(W′, µ′,Z′)

i.e. it minimizes the reconstruction error which equals to

Err(W, µ,Z) =

n∑
i=d+1

λi

� The cumulative sum of the sorted eigen-vectors can be used to select the output
dimension d.

http://cmp.felk.cvut.cz
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Example: Eigenfaces

� The face image represented by column vector x ∈ Rn containing the intensity values is
compressed to PCA scores

z = WT (x− µ) = (wT
1 (x− µ)︸ ︷︷ ︸

z1

, . . . ,wT
d (x− µ)︸ ︷︷ ︸

zd

)T

� Face x is approximated by a linear combination of d-principal components, so called
“eigenfaces”:

Image originates from http://vision.stanford.edu/teaching/cs231a/lecture/lecture2_face_r%
ecognition_cs231a_marked.pdf

http://cmp.felk.cvut.cz
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PCA: Summary

� The PCA represents X ∈ Rn×m as coordinates Z ∈ Rd×m in an affine sub-space with
the following properties:

• Z retains as much as possible of the variation presented in the data X

• Z is centered and uncorrelated

• Z is the optimal compression minimizing the reconstruction error ‖X̃−X‖F .

� Typical usage of PCA:

• Feature extraction

• Compression

• Visualization

• Denoising

� PCA is an unsupervised method (no labels are required).

http://cmp.felk.cvut.cz
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END
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