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PCA is a dimension reduction method transforming input n-dimensional data set :
X = (X1,...,Xpy) € R*"™
by a applying a linear orthogonal transform on centered version of X, i.e.
wlx—pr) .,
z=W'(x—p)=Wlx = W2T(X —H) where W e R4 WIW =1,y = %ij :
wl(x—p) =

which yields a lower (d < n)-dimensional representation, so called principal scores,
Z = (z1,...,2,) € R™>*™

with the following properties:
® 7 retains as much as possible of the variation presented in the data set X
® Z is centered and uncorrelated

® 7 are coordinates of points X’ obtained by projecting X onto an d-dimensional affine
subspace such that the approximation error || X — X'|| is minimal possible.
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Orthogonal transformation retaining the maximum of @ -
variance 3/15

¢ The projection vectors W = (w1, ..., wg) € R™*? are called the principal components.

@ The first principal component is a unit vector w; € {w € R" | ||w|| = 1} maximizing
the variance

1 ™m
v(w) = var(w! (x — — Z )2 =w!Cw
- m

where C € R™*"™ is the sample covariance matrix defined as
1 m
T
=— Z — 1)

¢ (k > 2)-th principal component is a unit vector wi € {w € R" | ||w|| = 1} maximizing

the variance v(w) and being orthogonal to all previous principal components, i.e.

wgwi:O,izl,...,k—l.
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Directions with maximal variance
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Finding the first principal component
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Finding the first principal component amounts to solving
w; = argmax w’ Cw s.t. [wl|* =1 (1)
weR™?
The first order conditions for w; to solve (1): there exist A\; € R such that
OwL (W1, A1) =0 and 0xL(w1, A1) = 0 where
L(wi, A1) = wi Cwi — Ai([[wi]* = 1)
is the Lagrange function of (1).
The condition Oy L(w1, A1) = 0 is a set of n non-linear equations with variables
w1 € R™ and Ay € R known as the Eigenvalue problem
CWl = )\1W1
which for symmetric PSD matrix C has n solutions: eigen-values (\},..., \.) € R"

and associated orthogonal eigen-vectors W/ = (w/, ..., w’) € R"™*" W/'W' =1.

The first principal component is the eigen-vector with the highest eigenvalue because

v(w)) =w, Cw)| =\,
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Finding the second and other principal components

¢ Finding the second principal component amounts to solving

T

wy = argmax w’ Cw s.t. lw||[?=1 and w'w; =0 (2)

weRM?

® The first order condition for wy: there exists A\{ € R, Ay € R such that
8WL(W2, )\1, )\2) = O, 8)\1L(W2, )\1, )\2) = 0 and 8)\2L(W2, )\1, )\2) — (0 where

L(WQ, )\1, )\2) = WgCWQ — )\1WC1FW2 — )\2(||W2H2 — 1)

¢ The condition OwL(Wa, A1, A2) = 0 implies that

QCWQ — )\1W1 — 2)\2W2 = 0
2 W{CWQ —)\1W1TW1 — 2Xo W{Wg = 0 = A =0
N—— N——
:>\1W21FW2:O =0
CW2 = )\2W2

® The last line is again the Eigenvalue problem and thus the second principal component
is the eigen-vector with the second largest eigen-value.
® The 3rd, 4th, ---, d-th principal components are found analogically.
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PCA: The Algorithm C
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L: Input: X = (X1,...,X;,) € R"™ and d € [0, n].
2: Output: W € R"*¢, e R?
3: Compute mean and covariance

1 & 1 & -
“:E;Xi CZE;(Xi—M)(Xi—M)
4: Find d eigen-vectors W = (w1,...,wy) with highest eigen-values, i.e.

A1 > Ao > - > A\, of the eigen-value problem

Cw = \w

Transform the data X onto a PCA scores Z = (z1,...,%Z,) € R¥X™ by

Zi:WT(Xi_M)a i€{17'°°7m}
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function [W,mu] = pca( X, d)

%» PCA Principal Component Analysis
% Synopsis:

A [W,mu] = pca( X, d)

T

% Input:

% X [n x m] Input data

% d [1 x 1] Output dimension

% Output:

% W [n x d]l Principal components
% mu [m x 1] Data mean

T

mu = mean(X,2);
C = cov( X’, 1);
[V,D] = eig( C );
[~,idx] = sort( diag(D), ’descend’);
W = V(:,idx(1:d));
end

%» Lower dimensional data representation of X
Z =Wx( X - repmat( mu, 1, size(X,2) ));
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The PCA scores are centered and uncorrelated
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¢ The PCA scores z; = W1 (x; — ), i € {1,...,m}, are centered

— ;f;zz — T;Zf;WT(Xi — i) = wi (;f;)(?) ~-Wiu=0
¢ The PCA scores are uncorrelated
C = %iz 7 — f:(WT(XZ- ~ (W (xi — )T = WICW
=1 221
so that o
é’i,j =w;Cw; = \;W; W, = \; W, W, = { )S E: Z i?

and the retained variance is

d
tr(WTCW) = Z)\ZW W, = Z)\i
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The PCA scores are centered and uncorrelated

The PCA can be interpreted as follows:

1. Center and rotate the data such that they become uncorrelated.
2. Forget the dimensions with lowest variance.

S

10/15
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PCA presents data in affine sub-space

¢ The PCA scores Z = (z1, ..
X = (Xl, .

P:{XGR”\X:Wz+u,z€Rd}§R”

¢ The orthogonal projection of x onto an affine sub-space P is

X = argmin ||x — X’H2 =Wz -+ =wiz1 +Wozg+ - Wgzg +

x'eP
where z = W1'(x — ).

This follows from

z = argmin||Wz' 4 pu— x|?
7z €R4
= (WW)" "W (x — p)
= Wix-p

which is so called least squares problem.

5.5}

4.5}

@

., Zm) € R¥*™ are coordinates of the original data
., Xm) € R™ ™ projected onto a d-dimensional affine sub-space

5.5

6.5
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PCA minimizes the reconstruction error

Let X = (X1,...,%) € R" ™ be the points reconstructed from the PCA scores
Z = (21,...,2,) € R>X™ by

iz’ = WZi + v where Z; — WT(XZ' — ,u)

The reconstruction error is
Bre(W, 1, 2) = [X = X[[3 = 3 % = xil* = 3 Wi + = x|
i=1 i=1
The PCA is the optimal solution of the problem

min Err(W', ', Z")
WleRnXd7ulERn’Z/€Rde

i.e. it minimizes the reconstruction error which equals to
mn
Err(W,p,Z) = ) A
i=d+1

The cumulative sum of the sorted eigen-vectors can be used to select the output
dimension d.
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Example: Eigenfaces @
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® The face image represented by column vector x € R™ containing the intensity values is
compressed to PCA scores

2=WT(x—p) = (Wl (x —p)s....wh(x—p)T

\

N~ V.

<1 <d

¢ Face x is approximated by a linear combination of d-principal components, so called
“eigenfaces’:

~

B T 2IW1 4 22W2 + 23W3 + 24 W4 + Z5W5 + 26Wg 1 27W7 + 28Wg

Image originates from http://vision.stanford.edu/teaching/cs231a/lecture/lecture2_face_r

ecognition_cs23la_marked.pdf
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The PCA represents X € R™*™ as coordinates Z € R4*™ in an affine sub-space with

the following properties:

e 7 retains as much as possible of the variation presented in the data X

e Z is centered and uncorrelated

e Z is the optimal compression minimizing the reconstruction error || X — X|| .
Typical usage of PCA:

e Feature extraction

e Compression

e Visualization

e Denoising

PCA is an unsupervised method (no labels are required).
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END
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