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Problems are organized by lecture topics. There are representative problems from tests / exam
in previous years, problems recommended for working through lecture / lab materials and more
advanced problems.

⊕ – Problems aligned with the lab.
� – Problems from previous years tests with solution.
? – More advanced problem, not to be expected at the exam.
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0 Probability

Problem 0.1 (Bayes Theorem)
Prove the Bayes Theorem:

P (A|B) =
P (B|A)P (A)

P (B)
(1)

using the axioms of probability:
Axiom 1: 0 ≤ P (A) ≤ 1, with P (A) = 1 if A is certain.
Axiom 2: If events (Ai), i = 1, 2, . . . are pairwise incompatible (exclusive)
then P (

⋃
iAi) =

∑
i P (Ai).

Axiom 3: P (A ∩B) = P (B|A)P (A).

Problem 0.2 (Marginal/Conditional Probabilities)
Consider the same example as in the lecture. The joint probability pXK is given by the table:

cloudiness
1 2 3 4

rain 0.02 0.12 0.09 0.04
no rain 0.38 0.28 0.06 0.01

a) Compute marginal probabilities pK(k) for k = {rain, no rain} and pX(x) for x = {1, 2, 3, 4}.

b) Compute the probability that the cloudiness is less or equal than 2 given that there was a
rain.

Problem 0.3 (Bayes Theorem)
Suppose we have a test for cancer with the following statistics:

• The test was positive in 98% of cases when subjects had cancer;

• The test was negative in 97% of cases when subjects did not had cancer;

• Suppose that 0.1% of the entire population have this disease.
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A patient takes a test. Denote the variables as: C ∈ {y, n}, T ∈ {+,−}.

a) Compute the probability that a person who test positive has this disease.

b) Compute the probability that a person who test negative does not have this disease.

1 Bayesian Decision Theory

Problem 1.1 (Umbrella Rain)
Consider the setup as in Problem 0.2. You have three possible decisions D = {umbrella, no
umbrella, 100} to make on a given day:

• umbrella : you take an umbrella with you,

• no umbrella: you do not take an umbrella with you and if it rains, you will get wet,

• 100: you do not take an umbrella with you but you make a fixed decision that if it rains,
you will buy a new umbrella for 100 CZK.

Let the loss (cost) matrix W (k, d) be as follows:

umbrella no umbrella 100
rain 0 10 5
no rain 5 -2 0

Compute:

a) The chance of rain given the cloudiness 2?

b) The expected cloudiness on a rainy day?

c) The risk of not having umbrella if the cloudiness is 2 (called partial risk)?

d) The risk of not having umbrella ever?

e) The risk of always carrying an umbrella?

f) The optimal strategy q∗(x)

Problem 1.2 (Coarse Decision Space)
Assume weather classes: K = {sunny, cloudy, rain, hailstorm}. You want to go for a
walk, but plan to stay inside if the weather is not k = sunny. Given a measurement x
from your UltimateWeatherSensorTM, you calculated the posterior probabilities of the cur-
rent weather as pK|X(· | x) = (0.4, 0.2, 0.2, 0.2). The task is to decide whether it is sunny,
D ∈ {sunny, not sunny}. What is the optimal Bayesian decision in the following cases (ex-
plain):

a) The cost of a correct decision is zero and the cost of a wrong decision is a constant C > 0
(normal person).

b) Mistakenly deciding d = sunny costs twice less than mistakenly deciding d =
not sunny (an active person that does not care that much about getting wet).
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Problem 1.3 (⊕ 0-1 loss, 2 classes, Gaussian Conditionals)
Recall the optimal decision strategy q minimizes the risk:

R(q) =
∑
x∈X

∑
k∈K

pXK(x, k)W (k, q(x)). (2)

Consider 0-1 loss function:

W (k, d) =

{
1, if k 6= d
0, if k = d.

(3)

a) Prove: q(x) = arg max
d

p(d|x).

b) Let additionally K = {0, 1}. Prove q(x) takes the form: p(x|k=0)
p(x|k=1)

≶ θ.

c) Consider Gaussian Measurements:

p(x|k) =
1√

2πσk
exp(−(x− µk)2

2σ2
k

). (4)

Prove q(x) takes the form ax2 + bx+ c ≶ 0.

Problem 1.4 (Error Correcting Codes)
A digital signal transmitting system reads 3 binary digits and for i-th digit outputs the prob-
ability that the digit is 1, the resulting probabilities are 0.3, 0.4, 0.7. It is know that the true
digits form an error correcting code where the last digit is always the sum of the first two digits
modulo 2.

a) Recognize which number is encoded by the first two digits.

b) Decide whether this packet of 3 digits has to be requested again considering that the cost
of skipping an error is 100× more than requesting to repeated the packet.

Problem 1.5 (Gaussian, 3 classes)
We need to classify objects into three classes k ∈ {1, 2, 3}. The classes are equally probable a
priory. Observations x of objects in class 1 follow the distribution N (0, 12). Recall N (µ, σ2)
denotes the normal distribution with mean µ and variance σ2. Similarly, in classes 2, and 3, the
observation are distributed as N (0, 22) and N (3, 22), respectively.
What is the optimal Bayesian decision d ∈ {1, 2, 3} for the two observations x = 1 and x = 0
in the following cases:

• if the loss matrix is

Wa =

 0 1 1
1 0 1
1 1 0

 .

• if the loss matrix is

Wb =

 0 2 1
2 0 1
1 1 0

 .

What is the probability of incorrect decision (d 6= k) for the first case and observation x = 1?
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Problem 1.6 (? Exam with Bernoulli Chain)
A student prepares for the exam in RPZ. There are K topics in total, one for each lecture.
Because the lectures are sequential, he prepares sequentially. He learns the first topic with
probability q. If he already learned k topics, he learns the next one again with probability q or
otherwise stops preparing.
At the exam he gets a randomly drawn topic. Assume the student answered well on the topic
with number x. The task is to recognize whether he/she has prepared at least half of the topics
(assume K is even). Model the problem as a Bayesian decision:

a) In this problem, what is the hidden state, observation, decision?

b) What is the probability that he/she learned at least half of the topics?

c) Derive the optimal Bayesian decision strategy.

2 Non-Bayesian Tasks: Minimax, Neuman-Pearson, Wald

Problem 2.1 (Student Wants to Marry - Lecture Example)
An aging student at CTU wants to marry. He can’t afford to miss recognizing a girl when he
meets her, therefore he sets the threshold on overlooking an opportunity as ε̄D = 0.2. At the
same time, he wants to minimize mis-classifying boys for girls. The exact setup is as follows:

• Hidden states K = {D,N} ≡ {F,M} (female, male)

• Measurements X = {short, normal, tall} × {ultralight, light, avg, heavy}

• Prior probabilities do not exist

• Conditional probabilities p(x|k) are given as follows:

p(x|F)
short .197 .145 .094 .017

normal .077 .299 .145 .017
tall .001 .008 .000 .000

u-
lig

ht

lig
ht

av
g

he
av

y

p(x|M)
short .011 .005 .011 .011

normal .005 .071 .408 .038
tall .002 .014 .255 .169

u-
lig

ht

lig
ht

av
g

he
av

y

Find the optimal strategy when you

a) formulate the task as a Neuman-Pearson problem

b) formulate the task as a minimax problem

Problem 2.2 (Neyman-Pearson Continuous Measurement)
Suppose that you have a two-class decision problem y ∈ {1, 2} with real-valued features x ∈
[0, 1] and that only the class conditional probabilities p(x|y = 1) = 1 and p(x|y = 2) = x+ 0.5
are given.

a) Write down formally the Neyman-Pearson problem formulation.

b) Find the optimal Neyman-Pearson strategy for this decision problem when y = 2 is the
dangerous state and the probability of overlooked danger shouldn’t be higher than 0.1.
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Problem 2.3 (� Minimax - Test Example) Suppose that you have a two-class decision prob-
lem y ∈ {1, 2} with the real-valued features x ∈ [−1, 1] and that only the class conditional
probabilities p(x|y=1) = max (−x, x) = |x| and p(x|y=2) = min (1 + x, 1− x) = 1−|x| are
given.

a) Write down formally the Minimax problem formulation.

b) How many likelihood thresholds are in the solution? Why?

c) Find the optimal Minimax strategy for this decision problem. Any informal solution, e.g.
geometric, will be awarded by 0 points.

Problem 2.4 (⊕ Worst Bayes / Minimax)
Consider a binary classification problem (K={1, 2}) with continuous features x ∈ R. Suppose
you have obtained the optimal Bayesian strategy q for the case when the proportion of classes
was given by p(k=1) = π∗ (let’s call it training distribution prior). Suppose at the test time the
proportion of classes changes. What is the worst case performance of the strategy q?

a) How does the riskR(q) =
∑

k

∫
p(x, k)W (k, q(x))dx vary as a function of the parameter

π = p(k=1)?

b) Show that the maximum over π is achieved either at π = 0 or at π = 1.

c) Express the value of the risk in the worst case. Assuming also 0−1 loss, compare the
worst risk to the objective of the minimax problem.

d) When the risk R(q) viewed as a function of π is a constant function? Assume this is the
case and q is in the form of the likelihood ratio test. Show that q then is the solution to
the minimax problem.

3 Parameter Estimation, Maximum Likelihood

Problem 3.1 (Bernoulli Coin)
You observed random and independent draws of an unfair coin, the draws were (H,H,H, T, T ).

a) Define the probability model and the likelihood of all observations. Find the maximum
likelihood estimate of the heads probability of the coin, pML.

b) Let the heads probability be parametrized as p(H) = 1
1+e−η

for η ∈ R. What is the
maximum likelihood estimate of η? Does there always hold pML = 1

1+e−ηML
, why?
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Problem 3.2 (Binomial Socks)
You have red and blue socks in the drawer. Let the unknown proportion of red to the total
number of socks be denoted by π. You draw them randomly with replacement.

a) What does it mean to draw with replacement?

b) What is the probability of drawing two red socks in a row?

c) In N = 10 draws you got R = 2 red socks. What is the probability to draw R red socks
in N trials?

d) Compute the maximum likelihood estimate of π.

Problem 3.3 (? Gaussian)
The density of a multivariate Normal distribution is given by

p(x) = (2π)−
d
2 det(Σ)−

1
2 e−

1
2

(x−µ)TΣ−1(x−µ), (5)

where x, µ ∈ Rd, Σ ∈ Rd×d, Σ < 0. You are given i.i.d. observations (xi)
N
i=1.

a) Find the maximum likelihood estimate of the mean µ. Hint: optimal µ does not depend
on Σ.

b) Find the maximum likelihood estimate of the covariance matrix Σ.
Hints: Use log-likelihood; the mean µ is known from above and can be substituted in the
end; You can solve for the precision matrix Λ = Σ−1, it is simpler to differentiate with
respect to it; use the following identities: det(Σ−1) = det(Σ)−1, ∂ det(Λ)

∂Λ
= Λ−1 det(Λ).

Problem 3.4 (Exponential Lamp Lifetime)
At a lamp factory, bulbs are tested in order to know their lifetime. They tested N bulbs and
obtained a set of measurements T = {t1, ..., tN}, where ti is the time that the light bulb stood
before it burned out. We will assume that the measurements follow the exponential distribution:

p(t) = λe−λt, t ∈ [0,∞).

a) Find the maximum likelihood estimate of the parameter λ.

b) Let us consider an alternative parameterization

p(t) = 1
θ
e−

t
θ .

Verify that the expected lifetime of a lamp is θ. Find the maximum likelihood estimate of
θ. How does it relate to the rate λ?
Hint: The expected lifetime is the mean of the distribution defined as E[t] =

∫∞
0
tp(t)dt.

It can be calculated using integration by parts. An alternative solution is to note that θML

is the sample mean 1
n

∑
i ti and with n → ∞ the former approaches the true parameter

θ and the later the distribution mean.

c) Assume that our prior knowledge about λ is expressed by the distribution p(λ) = e−λ.
Derive the MAP estimate of λ, λMAP. What is the expected lifetime of a bulb for λ̂MAP?
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Problem 3.5 (Exponential Hard Drives)
The reliability of hard drives is defined by the probability density function p(t) = λe−λt, t ∈
(0,∞).

a) What is the maximum likelihood estimate of the failure rate λ if in an experiment with
three hard drives the following lifetimes have been observed: t1 = 56, t2 = 120 and
t3 = 424?

b) If the test described above finished at time T = 300 and one hard drive would still be
running, i.e. t1 = 56 and t2 = 120 are known but about the time of failure of the third
hard drive we know only that t3 ≥ T . Formulate the likelihood function in this case. Find
the ML estimate of λ.

Problem 3.6 (? German Tank)
During the second world war, British intelligence service had collected information about serial
numbers of German tanks ever seen. Suppose serial numbers x1, x2, . . . xn have been seen.
Assume that xi are independent and follow a uniform distribution with the density

p(x) =
1

θ
δ{0≤x≤θ}, (6)

where θ is the total number of tanks produced by Germany (we assume x, θ ∈ R for simplicity).

a) What is the maximum likelihood estimate of θ, θML?

b) Does the intuition suggest that θML underestimates the real number of tanks Germany
has?

c) Assume that apriori Germany had capacity to manufacture up to M tanks. What is the
maximum a posteriori estimate of θ, θMAP?

d) Treating θ as a random variables, what is the posterior distribution of θ given the obser-
vations. What is the Bayesian estimate of θ minimizing the mean squared error, θMSE?

4 Nearest Neighbour, Non-Parametric Density Estimation

Problem 4.1 (Piece-wise constant density)
Let {xi}ni=1 be independent observations with xi ∈ [0, 1]. The domain [0, 1] is partitioned into
K equal size segments denoted ∆k. The piece-wise density model is defined on [0, 1] as

p(x) =


d1, if x ∈ ∆1

. . .

dK , if x ∈ ∆K ,

where (dk ≥ 0 | k = 1 . . . K) are parameters.

a) Estimate the parameter vector d using the maximum likelihood.
Hint: use the constraint that the density must integrate to 1.
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Problem 4.2 (K-nearest neighbours)
Describe the K-NN algorithm and list its pros and cons.
With the following training set with data points (x, y) (measurement, class), classify point x = 5
using 1-NN, 3-NN and 5-NN classifier.

T = {(0, A), (−1.5, A), (10, B), (2, A), (4.5, A), (3, B), (6, B), (9, B), (1.5, A), (11, B)}
Problem 4.3 (K-D trees)
Describe the algorithm for building a K-D tree.
Make a K-D tree (alternating X- and Y- cuts) from the following data:
(2,3), (4,7), (5,4), (7,2), (8,1), (9,6)
Describe how to search for exact nearest neighbour using a K-D tree.

Problem 4.4 (Parzen Windows)
Given the measurements X = {1,−1, 1, 3, 2, 0}, plot the non-parametric estimate of a distribu-
tion p(x) using the Parzen window method with a kernel function K(x, y) = k(x− y) and k(z)
defined as:

k(z) = 1/h for |z| ≤ h/2 ,

k(z) = 0 for |z| > h/2 ,

for h = 2.

Problem 4.5 (Parzen Window Re-weighting)
Suppose we have training points {xi}ni=1 and found a Parzen density estimate

p(y) =
1

n

∑
i

K(y − xi)

using a fixed kernel K. Here all kernel copies have equal weights 1
n

. Consider giving kernels at
different positions a different weight πi:

p(y; π) =
∑
j

πjK(y − xj),

where πj ≥ 0 must sum to 1 to ensure p is a density. Re-estimate coefficients π by maximizing
the following lower bound on the log likelihood:∑

i

log p(xi; π) ≥
∑
i

∑
j

Ki,j

Ki

log πjKi,

where Kij = K(xi − xj) and Ki =
∑

iKi,j . Later we will see that this is the first iteration of
the EM algorithm initialized with πj = 1

n
.
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5 Logistic Regression

Problem 5.1 (⊕ Logistic Regression from Bayes Decision)
Consider a recognition problem with two hidden states K = {−1, 1} and x ∈ Rd. We know
that the optimal decision expresses in many cases using the likelihood ratio.

a) Assume that the log odds is linear: log p(k=1|x)
p(k=−1|x)

= wTx. Knowing also that
∑

k p(k|x) =

1, find probabilities p(1|x), p(−1|x).

b) Assume that p(k|x) is logistic (as derived in a), p(x) exists but is unknown and does not
depend on parameters. Given the training data points {xi, ki}ni=1, express the negative log
likelihood of the data (up to an additive constant).

c) Plot the miss-classification indicator [[k 6= sign(wTx)]] as a function of z = kwTx. Plot
the function log(1 + e−kw

Tx) as a function of same z. Using convexity of this function,
show that the negative log likelihood in b) is convex.

Problem 5.2 (⊕ Properties of Logistic Sigmoid Function)
The logistic (sigmoid) function is σ(z) = 1

1+e−z
. The following will be helpful for logistic

regression but also for multi-layer neural networks.

a) Show that σ(−z) = 1− σ(z);

b) Show that ∂
∂z
σ(z) = σ(z)(1− σ(z));

c) Compute ∂
∂z

log σ(z) (using b);

d) Compute ∂
∂x

log σ(wTx) (using c);

e) Show that − log σ(z) is convex (using monotonicity of the first derivative or non-
negativity of second derivative)

6 Linear Classifier, Perceptron

Problem 6.1 (Linear Classifier)
Let x ∈ Rd, a ∈ Rd, b ∈ R. Consider a linear classifier defined as

q(x) =

{
1, if aTx+ b ≥ 0,

−1, if aTx+ b < 0.

a) Find the distance from a given point x to the decision boundary of the classifier.
(Hint: find y on the decision boundary (i.e. satisfying aTy + b = 0) such that ‖x− y‖2 is
minimal. Then d = ‖x− y‖ is the thought distance.)

b) Let ki ∈ {1,−1} be the true class of xi ∈ Rd (data point xi is a vector with coordinates
xi,j , j = 1 . . . d). Define x̄i ∈ Rd+1 and w ∈ Rd+1 such that q classifies xi correctly iff
wTx̄i ≥ 0.
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Problem 6.2 (Perceptron)
Consider training points (xi, ki)

N
i=1, where xi ∈ Rd, ki ∈ {−1, 1} and let x̄i be as derived

in Problem 6.1 (b). Consider the approximation to the empirical loss:

R̃(w) =
1

N

∑
i

max(−wTx̄i, 0), (7)

a) Plot this approximation for one data point (x, y) as a function of z = wTx̄.

b) On the same graph, plot also the empirical loss of one data point as a function of z = wTx̄.

c) On the same graph, plot also the log likelihood of data point (x, y) in the logistic regres-
sion model as a function of z. (see Problem 5.1).

Problem 6.3 (Perceptron)
We will see connection between Perceptron algorithm and stochastic gradient descent for risk
approximation (7). Note, the common Perceptron algorithm considers data points sequentially.
For a training data as in Problem 6.2, let li(w) = max(−wTx̄i, 0) be the approximate error of
one data point and so R̃(w) = 1

N

∑
i li(w).

a) Apply stochastic gradient descent to R̃. A step of SGD picks a data point i at random and
performs an update

wt+1 = wt − ε∇wli(w).

(Compute the gradient and simplify what possible).

b) Show that when starting with w0 = 0, the classification boundary at step t is invariant of
the step size ε.
(Hint: inspect what the algorithm would do if starting from w0 with different values of ε,
e.g. ε = 1 and some ε 6= 1).

Problem 6.4 (Perceptron)
A training set is given in the format T = {(xi; ki)}, where i = 1 . . . 5,xi ∈ R2, and k ∈
{1,−1}:

T = {(−2, 1;−1), (0, 0;−1), (0, 2; 1), (0,−3;−1), (2, 2, 1)}.

a) Find a linear classifier by the Perceptron algorithm, i.e. find a vector w ∈ R2 and offset
b ∈ R such that y = wTx + b is positive for samples of class k = 1 end negative for
k = −1. More specifically, what are the vector w and offset b after ten steps of the
Perceptron algorithm?

Problem 6.5 (Perceptron) For the iterations of the Perceptron algorithm expressed as:

wt+1 = wt + xt,

where xt is the data point selected at step t as misclassified when using weights wt.

a) Starting with w0 = 0, show that for any t there holds ‖wt‖2 ≤ tmaxi ‖xi‖2.
(Hint: use induction)
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7 Support Vector Machines

Problem 7.1 (Soft Margin SVM Loss) Consider the primal soft margin SVM formulation:

min
w,b,ξ

1

2
‖w‖2 + C

∑
i

ξi

(wTxi + b)yi ≥ 1− ξi ∀i,
ξi ≥ 0 ∀i.

When in doubts, consult lecture slides. The tasks follow the lecture explanation.

a) Assuming all variables but ξi for one i are fixed, find the optimal solution for ξi. Hint:
write the respective minimization problem in one variable ξi, solve it graphically.

b) Using the optimal values for ξi, reformulate the SVM problem as unconstrained optimiza-
tion

min
w,b

1

2C
‖w‖2 +

∑
i

max(1− (wTxi + b)yi, 0). (8)

What optimization methods do you know, that can be applied to solve it?

c) Denoting z = (wTxi − b)yi, plot the function max(1 − z, 0). C.f. the loss function of
Perceptron in Problem 6.2, and logistic regression in Problem 5.1.

d) (?) When C → ∞, does formulation (8) become equivalent to the optimization problem
of Perceptron?

e) (?) For a data point i, chosen at random, find the gradient of the function
1

2nC
‖w‖2 + max(1− (wTxi + b)yi, 0)

in w and b and write a gradient descent step.

Problem 7.2 (Hard Margin SVM)
Let x ∈ Rd, w ∈ Rd, b ∈ R. Consider a linear classifier defined as

q(x) = sign(wTx+ b).

a) We want the data points with yi = +1 to satisfy wTx + b ≥ ε with ε > 0 and data
points with yi = −1 to satisfy wTx+ b ≤ −ε, i.e. to be on the right side of the decision
boundary while also separated away from zero. Write the inequalities for the two cases
y = ±1 in the unified form.

b) Compute the value of the margin, i.e. distance between the two hyperplanes

wTx+ b = ε

wTx+ b = −ε.
Hint: Consider two points x and y on the respective hyperplanes and the normal vector
to the hyperplanes n = w/‖w‖. Project x− y onto n.

c) Formulate the SVM problem (to maximize the margin while satisfying the correct classi-
fication constraints with the margin) as a quadratic minimization.
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Problem 7.3 (SVM: Vector Notation, Dual) Consider the primal soft margin formulation

min
w,b,ξ

1

2
‖w‖2 + C

∑
i

ξi

(wTxi + b)yi ≥ 1− ξi ∀i,
ξi ≥ 0 ∀i,

where w ∈ Rd, b ∈ R, (xi, yi)
n
i=1 is the training data with xi ∈ Rd, yi ∈ {−1, 1} and ξ ∈ Rn.

Let X̄ ∈ Rd,n be the matrix of all data points multiplied by their class sign, so that X̄:,i = xiyi.
Write the SVM problem using a matrix notation as

min
w,b,ξ

1

2
wTw + C1Tξ

w̄TX̄ + byT ≥ 1T − ξT

ξ ≥ 0,

where inequalities are coordinate-wise.

a) For the constraint wTX̄ + byT ≥ 1T − ξT introduce a non-negative vector of Lagrange
multipliers α ∈ Rn

+ to express the constraint as a barrier:

max
α≥0
−(wTX̄ + byT − 1T + ξT)α =

{
0, if wTX̄ + byT − 1T + ξT ≥ 0,

∞, otherwise.

You should obtain the problem reformulation in the form

min
w,b;ξ≥0

max
α≥0

(. . . ).

b) Swap the minimization and maximization and solve analytically for w, b and ξ to obtain
maximization in α only.
Hint for w: use critical point conditions to obtain that w = X̄α.
Hint for ξ: use that

min
ξ≥0

(C1−α)Tξ =

{
0, if C1−α ≥ 0,

−∞, otherwise,

in order to eliminate ξ by introducing the constraint α ≤ C.
Hint for b: use that

min
b
byTα =

{
0, if yTα = 0,

−∞, otherwise,

in order to eliminate b by introducing the constraint yTα = 0.
You should obtain the dual formulation:

max
α
−1

2
αTX̄TX̄α+ 1Tα,

0 ≤ α ≤ C,

yTα = 0.
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Problem 7.4 (� Support Vectors) Consider soft-margin SVM for 3 given data points (xi, yi),
i = 1 . . . 3 and suppose that the optimal dual solution is the vector α = (0, C/2, C).

a) Which of the three points are support vectors?

b) Express the optimal w.

c) It is known that for the optimal dual solutionα the optimal primal solution (w, b, ξ) must
satisfy the following conditions (complementary slackness):

(yi(w
Txi + b)− 1 + ξi)αi = 0 ∀i,

ξi(αi − C) = 0 ∀i.
Using these conditions, find the optimal b and ξ.

Problem 7.5 (Kernel SVM) Suppose the input features xi are first lifted to a higher dimension
using a lifting function φ(x).

a) Write the dual SVM formulation in this case.

b) Denote the kernel k(x,x′) = 〈φ(x), φ(x′)〉. Does there always exist a corresponding φ
for any given mapping k : Rd × Rd → R?

c) How the classification of the test data can be expressed knowing only the black box com-
puting k(x, x′) and not knowing the underlying lifting φ(x)?
Hint: use the support vector form, w = X̄α as derived in Problem 7.3 b).

Problem 7.6 (Kernels and Feature Maps)

a) Express the kernel function k(x,x′) that corresponds to feature map φ(x) =
(1, x1, x2, x

2
1, x

2
2, x1x2) assuming 2-D vectors x = (x1, x2) ∈ R2.

b) Derive the feature map φ(x) that corresponds to kernel function k(x,x′) = (1 + xTx′)2

for x ∈ R2.

c) Let us have a kernel function k(x,x′) = (1 + xTx′)d and x ∈ RD for d,D ∈ N. Do we
know how to compute feature map for given d and D? Compare the computation of the
explicit feature map and the kernel function.
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8 AdaBoost

Problem 8.1 (AdaBoost Loss)
Consider a classifier of the form:

H(x) = sign(f(x)), where f(x) =
T∑
t=1

αtht(x).

a) Verify that the empirical risk on the training set (xi, ki)
n
i=1 can be written as

R̂ =
∑
i

[[f(xi)yi < 0]].

b) Consider the empirical risk for one data point (x, y) and show that it is upper bounded
by e−f(x)y. Plot the empirical risk and the exponential upper bound as functions of z =
f(x)y. We will derive AdaBoost algorithm by minimizing

R̃ =
∑
i

e−f(xi)yi . (9)

What are potential advantages of this loss function for optimization in α and as a surrogate
for empirical risk?

c) Consider that T is given and (ht(x) | t = 1 . . . T ) is a fixed “lifting". Identify H(x) as
a linear classifier. Compare the exponential loss of AdaBoost with the loss functions of
Perceptron in Problem 6.2, logistic regression Problem 5.1 and SVM Problem 7.1.

Problem 8.2 (AdaBoost Greedy Objective)
Consider that we have already decided and fixed the part

ft−1(x) =
t−1∑
k=1

αkhk(x)

and consider adding one more term αtht(x) to the classifier. Let us verify that the added part of
the classifier should minimize the same exponential upper bound but with re-weighted data.

a) Write the minimization of (9) in ht, αt, grouping all constant factors (not depending on
αt, ht) together. Show that the problem can be written in the form

min
αt,ht

∑
i

Dt(i)e
−αtyiht(xi), (10)

where Dt are some coefficients satisfying Dt(i) > 0 and
∑

iDt(i) = 1. Find these co-
efficients and identify them as weights assigned to data points by the already constructed
part of the classifier.
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Problem 8.3 (AdaBoost Greedy Optimization)
Continue from the greedy problem formulation (10).

a) Expand e−αtyiht(xi) using that ht(xi)yi may take only two values, ±1.
Hint: you should obtain greedy step subproblem:

min
αt,ht

∑
i

Dt(i)
(

[[ht(xi)=yi]]e
−αt + [[ht(xi) 6=yi]]eαt

)
.

b) Using that [[ht(xi)=yi]] = 1− [[ht(xi)6=yi]], group factors involving αt together, to obtain

min
ht,αt

e−αt
∑
i

Dt(i) + (eαt − e−αt)
∑
i

Dt(i)[[ht(xi)6=yi]]. (11)

Recall that
∑

iDt(i) = 1.

c) Show that for any α > 0, the minimization in ht reduces to

ht = arg min
h

∑
i

Dt(i)[[h(xi) 6=yi]],

i.e. ht minimizes the empirical classification error with data re-weighted by Dt.

d) Given the optimal ht find the optimal αt ∈ R by minimizing (11). For brevity, denote
εt =

∑
iDt(i)[[ht(xi) 6=yi]], the weighted error achieved by ht. Hint: differentiate in αt.

e) Under which conditions on εt the optimal αt satisfies the assumption αt > 0 made in (c)?

Problem 8.4 (1-D Adaboost Classifier)
Adaboost learning algorithm. Consider the following 1-D data:

and the following set of weak classifiers: h(x) = sign(ax+ b) (a, b ∈ R). Use this example to
explain how Adaboost works (make one full iteration, ending with first data re-weighting.)

9 Neural Networks, Backpropagation

Problem 9.1 (What is Backpropagation?)
Find the most consistent matching of concepts on the left and descriptions on the right:

a) Backpropagation

b) Gradient

c) Chain rule

d) Training loss minimization

e) SGD

1 A way to learn neural networks.

2 Method to optimize training loss.

3 Is necessary to find a step direction for gradient descent.

4 A rule to compute gradient of composite functions.

5 Computationally efficient automatic differentiation for
scalar-valued composite functions.
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Problem 9.2 (What is Gradient, etc.?)
Let f : Rn → Rm. Find the most consistent matching of concepts on the left and descriptions
on the right:

a) Gradient of f

b) Derivative of f

c) Jacobian of f

1 A linear mapping approximating f locally around a
point.

2 Expression of the derivative in coordinates as a matrix.

3 Column vector of partial (or total) derivatives in case f
is scalar-valued, i.e. m = 1.

Problem 9.3 (Backprop for Linear Layer)
Consider a linear layer y = Wx expressed in coordinates as

yi =
∑
j

Wi,jxj. (12)

Let L(y) be a real-valued loss function as a function of the layer output y. Apply the total
derivative rule

dL
dx

=
(∂L
∂y

)(∂y
∂x

)
in order to compute the gradient of the loss L in x.

a) Write the total derivative rule in coordinates using ∂L
∂yj

and ∂yj
∂xi

and substitute (12).

b) Now write the result in the vector form.
Answer: the gradient in x (column vector of derivative coordinates) is
(∇xL) = WT(∇yL).

c) Find the gradient of the loss in W , i.e. in all coordinates Wi,j . Note this needs to recall
the value of x.

10 K-Means Clustering

Problem 10.1 (K-Means Alternating Optimization) Consider a set of points {xi ∈ Rd | i =
1 . . . N}. Let τ(i) ∈ {1 . . . K} denote the cluster assignment of point i. Let (ck ∈ Rd | k =
1 . . . K) denote cluster centers. Consider the problem

min
τ,c

∑
k

∑
i|τ(i)=k

‖xi − ck‖2 = min
τ,c

∑
i

‖xi − cτ(i)‖2.

a) For fixed cluster centers c, solve for optimal partition τ .

b) For fixed partition τ , solve for optimal cluster centers c.

c) Based on the above point show that K-means algorithm never increases the objective
function. Show that if the centroids change their position, the objective function strictly
decreases. Conclude that the algorithm converges in centroid positions.
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Problem 10.2 (? K-Means, Equivalent reformulation) Let X be a set of points, (ck | k =
1 . . . K) cluster centers and {Tk | k = 1 . . . K} a disjoint partitioning of X . Show that K-means
clustering objective is equivalent to sum of all pairwise inter-class distances:

min
T ,c

∑
k

∑
x∈Tk

‖x− ck‖2 = min
T

∑
k

1

2‖Tk‖
∑
x,y∈Tk

‖x− y‖2.

Problem 10.3 (K-medians, Villages) There are N villages on a plane at coordinates pi =
(xi, yi), i = 1 . . . N . Find the positions of K wells to supply water to the villages such that the
total construction cost is minimized. The cost of pipes is Cp per meter. (every village should be
connected by a pipe to some well).

a) Assume that pipes can be laid without restrictions. Formulate the optimization problem
and reduce to K-medians.

b) Consider that the cost of drilling a well is Cw. Propose an algorithm to find the optimal
value of the number of wells K.

c) What changes if the pipes can only be laid along vertical or horizontal axis
(each pipe is allowed to contain both horizontal and vertical segments)?

11 EM algorithm

Problem 11.1 (K-means / EM)
Let {xi|i = 1 . . . n} be observed points from a joint model p(x, k) where k ∈ {1 . . . K} is
a hidden state (not observed). The model p(x, k) is defined as p(x, k) = p(x|k)p(k), where
p(x|k) is a Normal density N (µk, I) with mean parameter µk for each k and p(k) is uniform.
Assume that initial estimates of µk are given.

a) Obtain K-means algorithm as follows. Given current means µ, find the most likely ki,
the assignment of mixture components to points maximizing the posterior distribution
p(ki|xi). Given current assignment ki, find the maximum likelihood estimate of µ, i.e.
maximizing the joint likelihood of x and k.

b) Obtain EM algorithm as follows. Given current means µ, find the soft assignment αi(k) =
p(ki|xi). Given weights αi(k), find the parameters µ maximizing the “weighted” log-
likelihood: ∑

i

∑
k

αi(k) log p(xi, k).
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12 PCA, LDA

Problem 12.1 (PCA: Max variance / Least errors) Let {xi ∈ RD | i = 1 . . . N} be the data
points. We will assume the data is already centered (zero mean). Let {uj ∈ RD | j = 1 . . .M}
be M orthonormal vectors. Let S = 1

N

∑
i xix

T
i be the D×D normalized data scatter matrix.

Work out PCA derivation following the next steps.

a) Show that sum of variances along M orthonormal directions
M∑
j=1

1

N

N∑
i=1

(uT
j xi)

2 (13)

can be expressed as
∑

j u
T
j Suj .

b) Consider the reconstruction error of the data when projecting to the subspace of {uj}:∑
i

‖xi −
∑
j

uT
j xiuj‖2. (14)

Show that it is equal to
∑

i ‖xi‖2 −
∑

j(u
T
j xi)

2 and thus minimizing the reconstruction
error is the same as maximizing the variance of projected data (13).

Problem 12.2 (PCA: Solution) Use Problem 12.1, to formulate the PCA problem as

max
{u}

∑
j

uT
j Suj s.t. uT

j uk = δj,k. (15)

a) Find the necessary conditions for the optimum by considering only the constraints
‖uj‖2 = 1 for all j = 1 . . .M (no orthogonality constraints) and solving for station-
ary point. You should obtain

Suj = λjuj,

where λj is the Lagrange multiplier for ‖uj‖2 = 1.

b) Observe that when uj are distinct eigenvectors and λj are eigenvalues of S, the necessary
conditions as well as ortonormality constraints are satisfied.

c) Show that the objective (15) for uj being the first M eigenvectors of S equals
M∑
j=1

λj,

and thus in order to maximize it we should select the eigenvectors corresponding to M
largest eigenvalues of S.

Hints: Every D×D symmetric real-valued matrix has D orthogonal eigenvectors and has
eigen-decomposition UΛUT with real eigenvalues. A positive semidefinite symmetric matrix
has non-negative eigenvalues.
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Problem 12.3 (LDA: Solution) Let Sb be between-class scatter matrix (symmetric, positive
semidefinite) and Sw be within-class scatter matrix (symmetric, positive semidefinite, full rank).
Solve the LDA problem

max
v

vTSbv

vTSwv
. (16)

• Note that the objective is invariant to scaling of v. Fix the scale ambiguity by choosing
a convenient constraint vTSwv = 1 and simplify the problem to a constrained quadratic
program.

• Find the necessary condition for optimum from stationary point conditions of the La-
grangian. You should obtain the equation in v, λ

Sbv = λSwv, (17)

Convert it to an eigenvalue problem.

• Use the identity (17) to simplify the objective (16) and conclude which eigenvector we
should chose to solve LDA.

Problem 12.4 (LDA: data preparation) Let xki be data points for k = 1, 2 (two classes). Let

µk =
1

Nk

Nk∑
i=1

vTxki ; sk =

Nk∑
i=1

(vTxki − µk)2.

Show that µk and sk can be expressed knowing only class means x̄k and class covariance ma-
trices Σk.

13 Decision Trees

Problem 13.1 (Information Gain maximization)
Consider decision tree for deciding whether or not to go to the cinema. The attributes of training
data are: (1) movie length (short/long), (2) country of origin (American/other), (3) the weather
(nice/rainy). Find the first splitting atribute by maximization of the information gain (IG).
Consider the following training data (note that attributes are all binary, target decision is also
binary.)

Sample index Short American Nice weather Decision: Go?
1 1 1 0 1
2 1 0 0 1
3 1 1 1 0
4 0 1 0 1
5 1 0 1 0
6 0 0 0 0
7 1 1 1 0
8 1 0 1 1
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14 Answers

Problem 0.1

P (B|A)P (A)

P (B)
=
P (B ∩ A)

P (B)

=
P (A ∩B)

P (B)

=
P (A|B)P (B)

P (B)

= P (A|B)

Problem 0.2

a) pK(rain) = 0.27, pX(1) = 0.4.
b) P (x≤2|rain) ≈ 0.52.

Problem 0.3

Given the info you have, complete the table of joint probabilities PC,T and the marginal proba-
bilities PT .
a) PC|T (y|+) =

PC,T (y,+)

PT (+)
≈ 3.1%.

b) PC|T (n|−) =
PC,T (n,−)

PT (−)
≈ 99.9%.

Problem 1.1

a) 0.12/0.40 = 30%

b) 1 ∗ (0.02/0.27) + 2 ∗ (0.12/0.27) + 3 ∗ (0.09/0.27) + 4 ∗ (0.04/0.27) ≈ 2.56

c) 10 ∗ (0.12/0.40) + (−2) ∗ (0.28/0.40) = 1.6

d) 10 ∗ 0.27 + (−2) ∗ 0.73 = 1.24

e) 0 ∗ 0.27 + 5 ∗ 0.73 = 3.65

f) q∗(1) = no umbrella (partial risk−1.4), q∗(2) = 100 (partial risk 1.5), q∗(3) = umbrella
(partial risk 2), q∗(4) = umbrella (partial risk 1).

Problem 1.2

a) The optimal decision is not sunny (because 0.4 · C < (0.2 + 0.2 + 0.2) · C).
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b) The optimal decision is sunny (because (0.2 + 0.2 + 0.2) · C
2
< 0.4 · C).

Problem 1.4

a) We observe a sequence x of transmitted over a noisy channel sequence of the true bits k.
The per-digit most likely solution [0, 0, 1] would be incorrect with respect to the error
correcting code. In fact the only possible sequences that could have been sent (with the
error-correcting code) are:

[0, 0, 0]

[0, 1, 1]

[1, 0, 1]

[1, 1, 0].

(18)

So there are only 4 possible hidden states. We need to compute and compare their poste-
rior probabilities p(k|x). For the purpose of selecting the best posterior, it is sufficient to
compare only the numbers p(x|k) as the hidden states are equiprobable a priori.

state p(x|k)

[0, 0, 0] 0.7 · 0.6 · 0.3 = 0.126
[0, 1, 1] 0.7 · 0.4 · 0.7 = 0.196
[1, 0, 1] 0.3 · 0.6 · 0.7 = 0.126
[1, 1, 0] 0.3 · 0.4 · 0.3 = 0.036

The best option with the error correcting is [0, 1, 1].

b) For this part we gonna need the complete probability p(k|x). It is obtained by renor-
malizing the four values, i.e., dividing them by their sum, 0.484. The probability of
correct decoding is thus 0.196/0.484 ≈ 0.405 and of incorrect decoding respectively
1 − 0.196/0.48 ≈ 0.595. The decision to keep the message has the (partial) risk of
0.595 · 100 · C while the decision to request a repeat has the risk of 0.405 · C only. We
decide to ask for a repeat.

Problem 1.5

Lets first compute the probability densities for the given measurements x ∈ {0, 1} by evaluating
the normal distributions p(x|k) (approximately).

k = 1 k = 2 k = 3
x = 0 0.399 0.199 0.065
x = 1 0.242 0.176 0.121

Then we convert to the joint p(x, k) (multiply by p(k))

k = 1 k = 2 k = 3
x = 0 0.133 0.066 0.022
x = 1 0.081 0.059 0.040
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Finally we divide by p(x) = p(x, 1) + p(x, 2) + p(x, 3) to get the posterior p(k|x).

k = 1 k = 2 k = 3
x = 0 0.602 0.299 0.099
x = 1 0.450 0.328 0.222

In the first part with loss Wa (0-1 loss), we can simply pick the maximum posterior, resulting in
d = 1 for both x = 0 and x = 1.

In the second part with loss Wb we compute the partial risks
∑

k p(k|x)W (k, d).

d = 1 d = 2 d = 3
x = 0 0.697 1.303 0.901
x = 1 0.878 1.122 0.778

We pick the decision with minimal partial risk: q∗(x = 0) = 1 and q∗(x = 1) = 3.

Finally, the probability of incorrect decision with Wa and x = 1 is 0.299 + 0.099 = 0.398.

Problem 2.2

q∗(x) =

{
1 : x ∈ [0, T ]
2 : otherwise

, where T = 3
2
√

5
− 1

2
≈ 0.17082.

Problem 2.3

a)

We define the objective function of the minimax task as

arg min
q:X→Y

max
y∈Y

∑
x:q(x)6=y

p(x | y), (19)

where Y = {1, 2, . . . , N} are classes, X is a set of observations x, p(x | y) are conditionals
that are known ∀y ∈ Y , and q : X → Y is a strategy.

b)

For a 2-class 2-decision Minimax problem there is always only one likelihood threshold. This
comes from the fact that the decision q∗(x) = d∗ is the solution of the system of inequalities

γ(x)c1(d∗) + c2(d∗) ≤ γ(x)c1(d) + c2(d), d ∈ D \ {d∗}, (20)

where c1, c2 are constants, and γ(x) is the likelihood ratio. The system is linear with respect to
the likelihood ratio. Therefore, in case of two decisions, e.g. D = {1, 2}, there will be only one
threshold.
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c)

First, we plot the probability distributions and the likelihood ratio:

Fig. 1.a: Probability density functions. Fig. 1.b: Likelihood ratio γ(x) = p(x|y=1)
p(x|y=2)

.

The minimax task
arg min
q:X→Y

max
y∈Y

∑
x:q(x)6=y

p(x | y), (21)

can be rewritten as

arg min
q(x)

max


∫
X2

p(x | y = 1) dx,

∫
X1

p(x | y = 2) dx

 (22)

where

X1 ⊆ X, x ∈ X1 : q(x) = 1, (23)
X2 ⊆ X, x ∈ X2 : q(x) = 2, (24)

X1 ∪X2 = X, (25)
X1 ∩X2 = ∅. (26)

We are looking for t ∈ 〈−1, 1〉, where

X1 = 〈−1,−t〉 ∪ 〈t, 1〉, (27)
X2 = 〈−t, t〉. (28)

Therefore the task is now

arg min
q(x)

max


t∫

−t

p(x | y = 1) dx,

−t∫
−1

p(x | y = 2) dx+

1∫
t

p(x | y = 2) dx

 (29)

and thanks to the likelihood ratio γ(x) being symmetrical around x = 0

= arg min
q(x)

max


0∫
−t

p(x | y = 1) dx,

−t∫
−1

p(x | y = 2)

 . (30)

If exists q(x) such that
0∫
−t

p(x | y = 1) dx =

−t∫
−1

p(x | y = 2) dx (31)

then −t, t are points where q(x) changes and q(x) is the optimal strategy.
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0∫
−t

−x dx =

−t∫
−1

1 + x dx (32)

−
[
x2

2

]0

−t
=

[
x+

x2

2

]−t
−1

(33)

t2

2
=
t2

2
− t+ 1− 1

2
(34)

t =
1

2
(35)

X1 =

〈
−1,−1

2

〉
∪
〈

1

2
, 1

〉
(36)

X2 =

〈
−1

2
,
1

2

〉
(37)

Now, we compute the likelihood ratio threshold θ. Since we compute the threshold by substitut-
ing to the functions for x ∈ (−1, 0), we substitute the x in both p(x | y = 1) and p(x | y = 2)
for the value of −t = −1

2
.

θ =
−x

1 + x
=

1
2

1− 1
2

= 1. (38)

Finally, we define the optimal strategy

q(x) =

{
1, if γ(x) ≥ θ

2, else.
(39)

Problem 3.1

a)

We define the probability model as

p(H) = π, (40)
p(T ) = 1− π, (41)

where p(H) is the probability of head and p(T ) is the probability of tail. Now lets consider
the given sequence S = (H,H,H, T, T ) of N = 5 draws of k = 3 heads. The probability
(likelihood) of this sequence is

p(S|π) = πk(1− π)N−k . (42)

From the sequence we can derive the ML estimate of π as

π̂ = arg max
π

p(S|π) = arg max
π

πk(1− π)N−k . (43)

To find the arg max we compute the derivative of the expression and set it equal to zero
∂p

∂π
= kπk−1(1− π)N−k − (N − k)πk(1− π)N−k−1 = 0 . (44)
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Solving this equation gets

π̂ =
k

N
, (45)

and in the particular case of our sequence S we get π = 3/5.

b)

Let P (H) be

p(H) =
1

1 + e−η
, (46)

then for P (T ) we have

p(T ) = 1− p(H) =
e−η

1 + e−η
. (47)

For some sequence S of N draws with k heads, we have the likelihood

p(S|η) = p(H)kp(T )N−k =

(
1

1 + e−η

)k (
e−η

1 + e−η

)N−k
(48)

Now we need to find the ML estimate of η:

η̂ = arg max
η

p(S|η) = arg max
η

(
1

1 + e−η

)k (
e−η

1 + e−η

)N−k
(49)

To simplify the derivative we can use logarithm of the equation

η̂ = arg max
η

log(p(S|η)) (50)

= arg max
η

−klog(1 + e−η)− (N − k)log(1 + e−η)− (N − k)η (51)

Now we again use derivative to get the optimal η̂
∂ log p(S|η)

∂η
=

ke−η

1 + e−η
+

(N − k)e−η

1 + e−η
+ (N − k) =

Ne−η

1 + e−η
− (N − k) = 0 , (52)

which leads to the following

Ne−η = Ne−η − ke−η +N − k (53)

e−η =
N + k

k
(54)

η = −log
(
N − k
k

)
= log

(
k

N − k

)
. (55)

So for our sequence (H,H,H, T, T ), we get

η̂ = log
3

2
. (56)

Problem 3.2

a)

We need to define probability of some random sequence of draws. Draw with replacement
means that when you draw a sock you put it back in the box and mix it with the others in the
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box. When we draw N socks where R are red, we can write the probability of this sequence S
as

p(S|r) =

(
N

R

)
rR(1− r)(N−R) . (57)

We can see that the distribution is binomial, that is because we need to count every combination
with exactly R red socks and the total amount of those combination is

(
N
R

)
.

b)

So the probability of drawing 2 red socks (R = 2) will be

p(R = 2|r) =

(
2

2

)
r2 = r2 . (58)

c)

The likelihood of drawing R = 2 red socks of N = 10 draws is

p(S|r) =

(
N

R

)
rR(1− r)N−R =

(
10

2

)
r2(1− r)8. (59)

d)

To find the ML estimate of r we will compute the derivative of the likelihood and set it to zero
∂p(S|r)
∂r

=

(
10

2

)
(2r(1− r)8 − 8r2(1− r)7) = 0 (60)

We now divide the equation with r(1− r)7 and get(
10

2

)
(2(1− r)− 8r) = 0 (61)

r =
2

10
= 0.2 . (62)

Problem 3.3

Since xi are i.i.d., the log-likelihood of observing x1, . . . xN is given by the sum

l(µ,Σ) =
N∑
i=1

(
log det(Σ)−

1
2 − 1

2
(xi − µ)TΣ−1(xi − µ)

)
+ const. (63)
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a)

We find the optimal µ as a critical point of l(µ,Σ) in µ:

0 =
dl

dµ
=
∑
i=1

(xi − µ)TΣ−1, (64)∑
i=1

µTΣ−1 =
∑
i=1

xiΣ
−1, (open brackets)

Σ−1Nµ = Σ−1
∑
i=1

xi, (transpose)

Nµ =
∑
i=1

xi. (multiply with Σ)

Therefore µ = 1
N

∑
i=1 xi – the sample mean.

b)

Instead of finding optimal covariance matrix Σ, we will find optimal precision matrix Λ = Σ−1.
It is a one-to-one parameterization, which simplifies the differentiation. We have

l(µ,Λ) =
N

2
log det(Λ)− 1

2

N∑
i=1

(xi − µ)TΛ(xi − µ)
)

+ const. (65a)

To differentiate det(Λ) we use the identity d
dΛ

det(Λ) = det(Λ)Λ−1. To differentiate the
quadratic form aTΛa i Λ we can inspect in components that

d

dΛij

∑
i′

ai′
∑
j′

Λi′j′aj′ = aiaj (65b)

and therefore d
dΛ
aTΛa = aaT, the outer product. We thus obtain

0 =
dl

dΛ
= N

1

det(Λ)
det(Λ)Λ−1 −

N∑
i=1

(xi − µ)(xi − µ)T = 0, (65c)

NΛ−1 =
N∑
i=1

(xi − µ)(xi − µ)T, (65d)

Σ = Λ−1 =
1

N

N∑
i=1

(xi − µ)(xi − µ)T, (65e)

i.e. Σ is the sample covariance matrix of the data.

Problem 4.4

Top: the kernel density estimate, bottom: copies of the kernels placed at data points. Note that
some isolated points jump up because the kernels are uniform over closed intervals. However,
these points are not important for the resulting distribution because they have a zero measure.
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Problem 5.2

a) Show that σ(−z) = 1− σ(z):

σ(z) =
1

1 + e−z
(66)

σ(−z) =
1

1 + ez
· e
−z

e−z
=
e−z + 1− 1

1 + e−z
= 1− 1

1 + e−z
= 1− σ(z) (67)

b) Show that ∂
∂z
σ(z) = σ(z)(1− σ(z)):

∂

∂z
σ(z) = − 1

(1 + e−z)2
· e−z · (−1) (68)

= e−z · 1

(1 + e−z)2
(69)

=
e−z

1 + e−z
· 1

1 + e−z
(70)

=
e−z

e−z
· 1

1− ez
· 1

1− e−z
(71)

= σ(−z)σ(z) (72)
= (1− σ(z))σ(z) (73)

c) Compute ∂
∂z

log σ(z) using b):

∂

∂z
log σ(z) =

1

σ(z)

∂σ(z)

∂z
=

1

σ(z)
(1− σ(z))σ(z) = 1− σ(z) = σ(−z). (74)

d) Compute ∂
∂x

log σ(wTx) using c):

Letting z = wTx and using the chain rule of derivative we get:

∂

∂x
log(σ(z)) =

∂ log(σ(z))

∂z

∂z

∂x
= σ(−z)

∂wTx

∂x
= σ(−wTx)wT. (75)

e) Show that − log σ(z) is convex (using monotonicity of the first derivative or non-negativity
of the second derivative):

We decided to show convexity using non-negativity of the second derivative. Using c) we get
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first derivative:
∂(− log σ(z))

∂z
= −σ(−z) = − 1

1 + ez
(76)

And using equation above, a) and b) we get

∂2(− log σ(z))

∂z2
= −∂σ(−z)

∂z
=
∂(σ(z)− 1)

∂z
= σ(z)(1− σ(z)) =

e−z

(1 + e−z)2
(77)

The second derivative is positive, because both the numerator and the denominator are positive
for any real z. Therefore the function is convex.

Problem 6.1

a) The distance is d = |aTx+b|
‖a‖ .

Problem 6.4

First, we augment the training data by appending 1 to each xi and multiplying by the class ki,
resulting in T̄ = {(2,−1,−1), (0, 0,−1), (0, 2, 1), (0, 3,−1), (2, 2, 1)}. After this change from
xi to x̄i, we will be looking for w̄ ∈ R3 satisfying w̄Tx̄i > 0 for all i. The new w̄ vector is
composed from the original w and the bias term b, in particular w̄ = (w1, w2, b).

The computation is carried out in the following table.

Iteration Weight vector w̄ Misclassified example: w̄Tx̄ ≤ 0

0 (0, 0, 0) (0, 0, 0)T(2,−1,−1) = 0 ≤ 0
1 (0, 0, 0) + (2,−1,−1) = (2,−1,−1) (2,−1,−1)T(0, 2, 1) = −3 ≤ 0
2 (2,−1,−1) + (0, 2, 1) = (2, 1, 0) (2, 1, 0)T(0, 0,−1) = 0 ≤ 0
3 (2, 1, 0) + (0, 0,−1) = (2, 1,−1) none

The Perceptron algorithm terminated after 3 steps with w = (2, 1) and b = −1, corresponding
to the visualization below. Note that picking misclassified examples differently in each step
would result in different iterates with possibly different number of steps and the final solution.

1−1

1

−1
2−2

2

−2

3−3

3

−3

x1

x2

+1
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Problem 7.2

a)

The unified form of the inequalities is

yi(w
Txi + b) ≥ ε

for all data points (xi, yi).

b)

We show one possible solution, but alternative solutions are possible.

We denote the two hyper-planes as

α1 : wTxi + b = ε (78)
α2 : wTxi + b = −ε . (79)

If we pick two points x ∈ α1 and y ∈ α2 then the projection of the vector (x − y) to the
hyper-plane normal w is computed as their dot product. If we compute the dot product with the
normal vector normalised to unit length, the length of the resulting projection is the distance of
the two hyper-planes. In particular

d =

〈
(x− y),

w

||w||

〉
=

1

||w||
(〈x,w〉 − 〈y,w〉) (80)

To simplify this, we need to express the formulas for x and y. We will multiply both hyper-plane
equations with vector w from left

wwTx + wb = wε (81)
wwTy + wb = −wε . (82)

Knowing that wTw = ||w||2 we can express x and y

x =
w

||w||2
(ε− b) (83)

y = − w

||w||2
(ε+ b) (84)

Then we substitute these formulas back into the expression for d

d =
1

||w||

(〈
w(ε− b)
||w||2

,w

〉
−
〈
−w(ε+ b)

||w||2
,w

〉)
(85)

=
ε− b
||w||3

〈w,w〉+
ε+ b

||w||3
〈w,w〉 (86)

=
2ε

||w||
. (87)

The distance d is called margin.
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c)

See the lecture slides. Start with the margin derived in b), solve the scale ambiguity (setting
ε = 1), change the maximisation into minimisation and go from a linear to a quadratic form.

Problem 7.6

To make the notation clear we will be using x,y instead of x,x′.

a)

For given φ(x) the corresponding kernel function k(x,y) is equal to dot product 〈φ(x), φ(y)〉
so

k(x,y) = 1 + x1y1 + x2y2 + x2
1y

2
1 + x2

2y
2
2 + x1y1x2y2 (88)

b)

Expanding the kernel function expression we get

k(x,y) = (1 + x1y1 + x2y2)2 (89)
= 1 + 2x1y1 + 2x2y2 + 2x1y1x2y2 + +x2

1y
2
1 + x2

2y
2
2. (90)

Since all equation elements contain both x1|2 and y1|2 we can easily see that the mapping φ(x)
corresponding to k(φ(x), φ(y)) = 〈φ(x), φ(y)〉 is

φ(x) = (1,
√

2x1,
√

2x2,
√

2x1x2, x
2
1, x

2
2) . (91)

c)

We can derive the proper mapping the same way as we did in b), first we need to expand the
kernel formula for a given D

k(x,y) =

(
1 +

D∑
i=1

xiyi

)d

(92)

To expand this expression we need multinomial theorem, and after the expansion we will do the
same thing as in section b). But we can see that it is much faster to compute just the dot product
〈x,y〉, add one and compute the power of d.

Problem 13.1

First split by the Nice weather attribute. IG(niceweather) = 3 log(3)
4
− 1 ≈ 0.189, while

IG(short) = IG(american) = 0.
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