
1

PRG – PROGRAMMING ESSENTIALS

1

Lecture 12 – Practical Examples
https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start

Milan Nemy
Czech Technical University in Prague,

Faculty of Electrical Engineering, Dept. of Cybernetics
https://beat.ciirc.cvut.cz/people/milan-nemy/

milan.nemy@cvut.cz

12/01/24 Milan Nemy, Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start
https://beat.ciirc.cvut.cz/people/milan-nemy/
mailto:milan.nemy@cvut.cz

2

DEBUGGING

2

12/01/24 Milan Nemy, Czech Technical University in Prague

source https://realpython.com/python-debugging-pdb/

• Debugging in Python (pdb) vs. debugging in PyCharm (IDE)

• Reference for pdb debugging:
https://realpython.com/python-debugging-pdb/

https://realpython.com/python-debugging-pdb/
https://realpython.com/python-debugging-pdb/
https://realpython.com/python-debugging-pdb/
https://realpython.com/python-debugging-pdb/

3

DEBUGGING

3

12/01/24 Milan Nemy, Czech Technical University in Prague

source https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html

Quadratic formula - known as the A, B, C formula, it’s used for solving a
simple quadratic equation: ax2 + bx + c = 0
https://www.khanacademy.org/math/algebra/quadratics/solving-quadratics-
using-the-quadratic-formula/a/quadratic-formula-explained-article

https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.khanacademy.org/math/algebra/quadratics/solving-quadratics-using-the-quadratic-formula/a/quadratic-formula-explained-article
https://www.khanacademy.org/math/algebra/quadratics/solving-quadratics-using-the-quadratic-formula/a/quadratic-formula-explained-article
https://www.khanacademy.org/math/algebra/quadratics/solving-quadratics-using-the-quadratic-formula/a/quadratic-formula-explained-article
https://www.khanacademy.org/math/algebra/quadratics/solving-quadratics-using-the-quadratic-formula/a/quadratic-formula-explained-article

4

DEBUGGING

4

12/01/24 Milan Nemy, Czech Technical University in Prague

source https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html

https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html

5

DEBUGGING

5

12/01/24 Milan Nemy, Czech Technical University in Prague

source https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html

https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html

6

DEBUGGING – PLACING BREAKPOINTS

6

12/01/24 Milan Nemy, Czech Technical University in Prague

source https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html

https://www.jetbrains.com/help/pycharm/using-breakpoints.html

https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/using-breakpoints.html
https://www.jetbrains.com/help/pycharm/using-breakpoints.html

7

DEBUGGING – ADVANCED TOOLS

7

12/01/24 Milan Nemy, Czech Technical University in Prague

source https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html

Stepping toolbar
https://www.jetbrains.com/help/pycharm/debug-tool-
window.html#steptoolbar

https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/debug-tool-window.html#steptoolbar
https://www.jetbrains.com/help/pycharm/debug-tool-window.html#steptoolbar
https://www.jetbrains.com/help/pycharm/debug-tool-window.html#steptoolbar
https://www.jetbrains.com/help/pycharm/debug-tool-window.html#steptoolbar

8

DEBUGGING

8

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

The first step in debugging is to figure out which kind of
error you are dealing with:
1. Syntax errors
2. Runtime errors
3. Semantic errors

http://openbookproject.net/thinkcs/python/english3e/app_a.html
http://openbookproject.net/thinkcs/python/english3e/app_a.html

9

SYNTAX ERRORS

9

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

• In case of syntax errors the error messages may not be often
that helpful. The most common messages are:

SyntaxError: invalid syntax
SyntaxError: invalid token

http://openbookproject.net/thinkcs/python/english3e/app_a.html
http://openbookproject.net/thinkcs/python/english3e/app_a.html

10

SYNTAX ERRORS

10

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

• Unterminated string (especially multiline) may cause
an invalid token error at the end of your program, or it may
treat the following part of the program as a string until it
comes to the next string. In the second case, it might not
produce an error message at all!

• Unclosed bracket — (, {, or [— Python continues with the
next line as part of the current statement. Generally, an error
occurs almost immediately in the next line.

• Comparison vs. assignment, i.e. = instead of == inside a
conditional.

http://openbookproject.net/thinkcs/python/english3e/app_a.html
http://openbookproject.net/thinkcs/python/english3e/app_a.html

11

SYNTAX ERRORS

11

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

• Keywords – double check not to use a Python keyword as
variable name

• Colon presence – make sure to have a colon at the end of the
header of every compound statement, including for, while, if,
and def statements

• Indentation consistency – indentation must be consistent
throughout the whole code; indent with either spaces or tabs
but but do not mix both approaches; each level should be
nested the same amount

• String consistency – strings in the code should have matching
quotation marks, do not mix different styles

http://openbookproject.net/thinkcs/python/english3e/app_a.html
http://openbookproject.net/thinkcs/python/english3e/app_a.html

12

PROGRAM „HANGS“

12

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

• Infinite loop
• Infinite recursion
• Flow of execution

http://openbookproject.net/thinkcs/python/english3e/app_a.html
http://openbookproject.net/thinkcs/python/english3e/app_a.html

13

GETTING EXCEPTIONS

13

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

Error during runtime: Python
prints a message that includes
the name of the exception, the
line of the program where the
problem occurred, and a
traceback

http://openbookproject.net/thinkcs/python/english3e/app_a.html
http://openbookproject.net/thinkcs/python/english3e/app_a.html

14

GETTING EXCEPTIONS

14

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

• Using breakpoints – Put a breakpoint on the line causing the
exception and explore the state of flow and variables

• Explore the traceback – The traceback identifies the function
that is currently running, and then the function that invoked
it, and then the function that invoked that function (tracing
the complete list of invocations up to the critical point)
including the line number in your file where each of these
calls occurs.

• Explore different levels on the stack – The first step is to
examine the place in the program where the error occurred
and then trace the origin

http://openbookproject.net/thinkcs/python/english3e/app_a.html
http://openbookproject.net/thinkcs/python/english3e/app_a.html

15

GETTING EXCEPTIONS

15

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

• NameError
• TypeError

http://openbookproject.net/thinkcs/python/english3e/app_a.html
http://openbookproject.net/thinkcs/python/english3e/app_a.html

16

GETTING EXCEPTIONS

16

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

• KeyError
• AttributeError
• IndexError

http://openbookproject.net/thinkcs/python/english3e/app_a.html
http://openbookproject.net/thinkcs/python/english3e/app_a.html

17

SEMANTIC ERRORS

17

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

• Semantic errors are the hardest – The compiler and the
runtime system provide no information about what is wrong.

• Formulate hypothesis & validate – The first step is to make a
connection between the program text and the behavior;
formulate hypothesis about what the program is actually
doing.

http://openbookproject.net/thinkcs/python/english3e/app_a.html
http://openbookproject.net/thinkcs/python/english3e/app_a.html

18

SEMANTIC ERRORS

18

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

• Placing print statements and
break points (conditional break
points)

• Use trivial data (back to basics) or
dummy inputs to simulate desired
behavior as well as failures

• Walking the program step-by-step
• Writing unit tests and integration

tests to avoid future breaking
changes (testing is our save game
button!)

http://openbookproject.net/thinkcs/python/english3e/app_a.html
http://openbookproject.net/thinkcs/python/english3e/app_a.html

19

DEBUGGING – SIMPLE vs. COMPLEX

19

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

1. Start with simple, better readable and more verbose code
2. Verify the functionality

(solve syntax, runtime and semantic errors)
3. Write tests to ensure the code does not break with changes
4. Perform refactoring and optimization

http://openbookproject.net/thinkcs/python/english3e/app_a.html
http://openbookproject.net/thinkcs/python/english3e/app_a.html

20

DEBUGGING – SIMPLE vs. COMPLEX

20

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

• Complex expressions – Writing complex expressions is fine as
long as they are readable; try to break a complex expression
into a series of assignments to temporary variables

• Explicit vs. implicit – The explicit version is easier to read
because the variable names provide additional
documentation; easier to debug because the types of the
intermediate variables can be inspected for correct values

http://openbookproject.net/thinkcs/python/english3e/app_a.html
http://openbookproject.net/thinkcs/python/english3e/app_a.html

21

RECAP: PROGRAM DEVELOPMENT

21

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/fruitful_functions.html

• Incremental development technique – avoid long debugging
sessions by adding and testing only a small amount of code at
a time.

• EXAMPLE: We want to find the distance between two points,
given by the coordinates (x1, y1) and (x2, y2).
(Pythagorean theorem)

What are the inputs (parameters)?
What is the output (return value)?

http://openbookproject.net/thinkcs/python/english3e/fruitful_functions.html
http://openbookproject.net/thinkcs/python/english3e/fruitful_functions.html

22

RECAP: PROGRAM DEVELOPMENT

22

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/fruitful_functions.html

Define interface

Process parameters

Temporary variables

Return result

http://openbookproject.net/thinkcs/python/english3e/fruitful_functions.html
http://openbookproject.net/thinkcs/python/english3e/fruitful_functions.html

23

DEBUGGING – SIMPLE vs. COMPLEX

23

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

• Use parentheses – Whenever the order of evaluation is not
clear, use parentheses. This way mistakes will be avoided and
the code will be more readable especially for those who did
not memorize the rules of precedence …

http://openbookproject.net/thinkcs/python/english3e/app_a.html
http://openbookproject.net/thinkcs/python/english3e/app_a.html

24

DEBUGGING – CALL FOR HELP!

24

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_a.html

• Asking for help is essential, https://stackoverflow.com/ is the
best friend, you can learn a lot from the mistakes of others!

• Make sure you ask the right question! (not easy)
• When you bring someone in to help, be sure to give them the

right & complete information they need:

• If there is an error message, what is it and what part of the
program does it indicate?

• What was the last thing you did before errors occurred?
• What version of OS and packages do you use?
• What were the last lines of code that you wrote,

or what is the new test case that fails?
• What have you tried so far, and what have you learned?

http://openbookproject.net/thinkcs/python/english3e/app_a.html
http://openbookproject.net/thinkcs/python/english3e/app_a.html
https://stackoverflow.com/
https://stackoverflow.com/

25

TIPS & HINTS: FUNCTIONS

25

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

There are two kinds of functions:

• fruitful, or value-returning functions, which calculate and
return a value that we want

• void (non-fruitful) functions that perform actions that we
want done

http://openbookproject.net/thinkcs/python/english3e/app_e.html
http://openbookproject.net/thinkcs/python/english3e/app_e.html

26

TIPS & HINTS: FUNCTIONS

26

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

http://openbookproject.net/thinkcs/python/english3e/app_e.html
http://openbookproject.net/thinkcs/python/english3e/app_e.html

27

TIPS & HINTS: FLOW OF CONTROL

27

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

• Solve the problem: “Does the list have any odd numbers?”
• The logic “If I find an odd number I can return True” is fine.
• There are two issues (bugs) – which ones?

http://openbookproject.net/thinkcs/python/english3e/app_e.html
http://openbookproject.net/thinkcs/python/english3e/app_e.html

28

TIPS & HINTS: FLOW OF CONTROL

28

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

• PROBLEM 1: Cannot return False after only looking at one
item — False can be returned only after all the items were
explored, and none of them were odd
(line 6 should not be there, line 7 has to be outside the loop)

• PROBLEM 2: ??

http://openbookproject.net/thinkcs/python/english3e/app_e.html
http://openbookproject.net/thinkcs/python/english3e/app_e.html

29

TIPS & HINTS: FLOW OF CONTROL

29

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

• PROBLEM 1: Cannot return False after only looking at one
item — False can be returned only after all the items were
explored, and none of them were odd
(line 6 should not be there, line 7 has to be outside the loop)

• PROBLEM 2: Consider what happens if this function is called
with an argument that is an empty list: any_odd([]), the for
cycle ends immediately

http://openbookproject.net/thinkcs/python/english3e/app_e.html
http://openbookproject.net/thinkcs/python/english3e/app_e.html

30

TIPS & HINTS: FLOW OF CONTROL

30

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

• PROBLEM 1: Cannot return False after only looking at one
item — False can be returned only after all the items were
explored, and none of them were odd
(line 6 should not be there, line 7 has to be outside the loop)

• PROBLEM 2: Consider what happens if this function is called
with an argument that is an empty list: any_odd([]), the for
cycle ends immediately

http://openbookproject.net/thinkcs/python/english3e/app_e.html
http://openbookproject.net/thinkcs/python/english3e/app_e.html

31

TIPS & HINTS: FLOW OF CONTROL

31

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

• Different solution …

• PROBLEM 3: What is the disadvantage of this code?

http://openbookproject.net/thinkcs/python/english3e/app_e.html
http://openbookproject.net/thinkcs/python/english3e/app_e.html

32

TIPS & HINTS: FLOW OF CONTROL

32

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

• Different solution …

• PROBLEM 3: The performance disadvantage of this one is
that it traverses the whole list, even if it knows the results
already

http://openbookproject.net/thinkcs/python/english3e/app_e.html
http://openbookproject.net/thinkcs/python/english3e/app_e.html

33

TIPS & HINTS: FLOW OF CONTROL

33

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

This code is tighter but it is not as nice as the one that did the
short-circuit return as soon as the first odd number was found

http://openbookproject.net/thinkcs/python/english3e/app_e.html
http://openbookproject.net/thinkcs/python/english3e/app_e.html

34

TIPS & HINTS: BOOLEAN VALUES

34

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

http://openbookproject.net/thinkcs/python/english3e/app_e.html
http://openbookproject.net/thinkcs/python/english3e/app_e.html

35

TIPS & HINTS: STRINGS

35

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

Four really important operations on strings:

• len(str) finds the length of a string
• str[i] the subscript operation extracts the i’th

character of the string, as a new string
• str[i : j] the slice operation extracts a substring out of

a string
• str.find(target) returns the index where target occurs within

the string, or -1 if it is not found

http://openbookproject.net/thinkcs/python/english3e/app_e.html
http://openbookproject.net/thinkcs/python/english3e/app_e.html

36

TIPS & HINTS: STRINGS

36

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

• Task is to read lines of some data (e.g. python code file), find
function definitions and print their names

• The name of the function has to be isolated properly:
def some_function_name(x, y):

• There are a few issues with this solution …

http://openbookproject.net/thinkcs/python/english3e/app_e.html
http://openbookproject.net/thinkcs/python/english3e/app_e.html

37

TIPS & HINTS: STRINGS

37

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

• PROBLEM: What if the function def is indented and does not
start at column 0?

• The code needs adjustment to detection of spaces – make
sure the characters in front of the def_pos position are spaces

• Handle special cases like comments:

I def initely like Python!

http://openbookproject.net/thinkcs/python/english3e/app_e.html
http://openbookproject.net/thinkcs/python/english3e/app_e.html

38

TIPS & HINTS: STRINGS

38

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

Verification of assumptions is necessary!
• ASSUMPTION 1: we assume on line 4 that we will find an

open parenthesis – this should be checked that it was done!

• ASSUMPTION 2: we assume that there is exactly one space
between the keyword def and the start of the function name;
this will not work for multiple spaces: def f(x)

http://openbookproject.net/thinkcs/python/english3e/app_e.html
http://openbookproject.net/thinkcs/python/english3e/app_e.html

39

TIPS & HINTS: LOOPING

39

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

• Loops are a key feature for most of the programs: to repeat
computation, accurately and fast

• EXAMPLE: Two functions sum1 and sum2 both generate ten
million random numbers and return their sum; both work!

• PROBLEM: What is the key performance difference?

http://openbookproject.net/thinkcs/python/english3e/app_e.html
http://openbookproject.net/thinkcs/python/english3e/app_e.html

40

TIPS & HINTS: LOOPING EXAMPLE

40

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

http://openbookproject.net/thinkcs/python/english3e/app_e.html
http://openbookproject.net/thinkcs/python/english3e/app_e.html

41

TIPS & HINTS: LOOPING

41

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

• Simple performance monitoring: Open a tool like the
Performance Monitor (e.g. htop on Linux) on your computer,
and watch the memory usage.

How big can you make the list before you get a fatal memory
error in sum1?

• Similar when working with files: option to read the whole file
contents into a single string, or read one line at a time and
process each line as it is read.
Line-at-a-time is the more traditional and safer way to do
things — work comfortably no matter how large the file is.

http://openbookproject.net/thinkcs/python/english3e/app_e.html
http://openbookproject.net/thinkcs/python/english3e/app_e.html

42

TIPS & HINTS: LOOPING EXAMPLE

42

12/01/24 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/app_e.html

http://openbookproject.net/thinkcs/python/english3e/app_e.html
http://openbookproject.net/thinkcs/python/english3e/app_e.html

43

REFERENCES

43

12/01/24 Milan Nemy, Czech Technical University in Prague

• https://www.jetbrains.com/help/pycharm/part-1-debugging-python-
code.html

• https://realpython.com/python-debugging-pdb/

• https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19

• http://openbookproject.net/thinkcs/python/english3e/app_a.html

• http://openbookproject.net/thinkcs/python/english3e/app_e.html

• http://openbookproject.net/thinkcs/python/english3e/app_b.html

https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://realpython.com/python-debugging-pdb/
https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19
http://openbookproject.net/thinkcs/python/english3e/app_a.html
http://openbookproject.net/thinkcs/python/english3e/app_a.html
http://openbookproject.net/thinkcs/python/english3e/app_e.html
http://openbookproject.net/thinkcs/python/english3e/app_b.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://realpython.com/python-debugging-pdb/
https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19
http://openbookproject.net/thinkcs/python/english3e/app_a.html
http://openbookproject.net/thinkcs/python/english3e/app_e.html
http://openbookproject.net/thinkcs/python/english3e/app_b.html

44

REFERENCES

44

12/01/24 Milan Nemy, Czech Technical University in Prague

This lecture re-uses selected parts of the OPEN BOOK PROJECT
Learning with Python 3 (RLE)

http://openbookproject.net/thinkcs/python/english3e/index.html
available under GNU Free Documentation License Version 1.3)

• Version date: October 2012
• by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers

(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris
Meyers)

• Source repository is at https://code.launchpad.net/~thinkcspy-rle-
team/thinkcspy/thinkcspy3-rle

• For offline use, download a zip file of the html or a pdf version
from http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/
http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

	Slide 1: PRG – PROGRAMMING ESSENTIALS
	Slide 2: DEBUGGING
	Slide 3: DEBUGGING
	Slide 4: DEBUGGING
	Slide 5: DEBUGGING
	Slide 6: DEBUGGING – PLACING BREAKPOINTS
	Slide 7: DEBUGGING – ADVANCED TOOLS
	Slide 8: DEBUGGING
	Slide 9: SYNTAX ERRORS
	Slide 10: SYNTAX ERRORS
	Slide 11: SYNTAX ERRORS
	Slide 12: PROGRAM „HANGS“
	Slide 13: GETTING EXCEPTIONS
	Slide 14: GETTING EXCEPTIONS
	Slide 15: GETTING EXCEPTIONS
	Slide 16: GETTING EXCEPTIONS
	Slide 17: SEMANTIC ERRORS
	Slide 18: SEMANTIC ERRORS
	Slide 19: DEBUGGING – SIMPLE vs. COMPLEX
	Slide 20: DEBUGGING – SIMPLE vs. COMPLEX
	Slide 21: RECAP: PROGRAM DEVELOPMENT
	Slide 22: RECAP: PROGRAM DEVELOPMENT
	Slide 23: DEBUGGING – SIMPLE vs. COMPLEX
	Slide 24: DEBUGGING – CALL FOR HELP!
	Slide 25: TIPS & HINTS: FUNCTIONS
	Slide 26: TIPS & HINTS: FUNCTIONS
	Slide 27: TIPS & HINTS: FLOW OF CONTROL
	Slide 28: TIPS & HINTS: FLOW OF CONTROL
	Slide 29: TIPS & HINTS: FLOW OF CONTROL
	Slide 30: TIPS & HINTS: FLOW OF CONTROL
	Slide 31: TIPS & HINTS: FLOW OF CONTROL
	Slide 32: TIPS & HINTS: FLOW OF CONTROL
	Slide 33: TIPS & HINTS: FLOW OF CONTROL
	Slide 34: TIPS & HINTS: BOOLEAN VALUES
	Slide 35: TIPS & HINTS: STRINGS
	Slide 36: TIPS & HINTS: STRINGS
	Slide 37: TIPS & HINTS: STRINGS
	Slide 38: TIPS & HINTS: STRINGS
	Slide 39: TIPS & HINTS: LOOPING
	Slide 40: TIPS & HINTS: LOOPING EXAMPLE
	Slide 41: TIPS & HINTS: LOOPING
	Slide 42: TIPS & HINTS: LOOPING EXAMPLE
	Slide 43: REFERENCES
	Slide 44: REFERENCES

