Ao

PRG — PROGRAMMING ESSENTIALS

Milan Nemy

Czech Technical University in Prague,
Faculty of Electrical Engineering, Dept. of Cybernetics

https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start
https://beat.ciirc.cvut.cz/people/milan-nemy/
mailto:milan.nemy@cvut.cz

REFERENCES

Lambda functions

List comprehensions

Map — Filter — Reduce

Iterators & Generators

Itertools by example

https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/license.html#history-and-license
http://book.pythontips.com/en/latest/map_filter.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://book.pythontips.com/en/latest/generators.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://realpython.com/python-itertools/
https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/license.html#history-and-license
http://book.pythontips.com/en/latest/map_filter.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://book.pythontips.com/en/latest/generators.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://realpython.com/python-itertools/

®)

/% LAMBDA FUNCTIONS

(i

Small functions can be created with
the keyword

EXAMPLE: This function returns the sum of its two arguments:

lambda a, b: a+b

 Lambda functions can be used wherever function objects are
required

e Syntactically restricted to a

e Like nested function definitions, lambda functions can
reference variables from the

https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3/license.html#history-and-license
https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3/license.html#history-and-license

LAMBDA FUNCTIONS ®

Lambdas are one line functions. They are also known as anonymous functions in some other
languages. You might want to use lambdas when you don’t want to use a function twice in a

| program. They are just like normal functions and even behave like them.

Blueprint

lambda argument: manipulate(argument)

Example

add = lambda x, y: X + vy

print(add(3, 5))
Output: 8

http://book.pythontips.com/en/latest/lambdas.htm| LICENSE

http://book.pythontips.com/en/latest/lambdas.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://book.pythontips.com/en/latest/lambdas.html
https://creativecommons.org/licenses/by-nc-sa/4.0/

ok LAMBDA FUNCTIONS ®

Lambdas are one line functions. They are also known as anonymous functions in some other

languages. You might want to use lambdas when you don’t want to use a function twice in a

program. They are just like normal functions and even behave like them.

Blueprint

lambda argument: manipulate(argument)

List sorting

a=[(1, 2), (4, 1), (9, 10), (13, -3)]
a.sort(key=lambda x: x[1])

print(a)
Output: [(13, -3), (4, 1), (1, 2), (9, 10)]

http://book.pythontips.com/en/latest/lambdas.htm| LICENSE

http://book.pythontips.com/en/latest/lambdas.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://book.pythontips.com/en/latest/lambdas.html
https://creativecommons.org/licenses/by-nc-sa/4.0/

LAMBDA FUNCTIONS @

>>> def make incrementor(n):
return lambda x: x + n

>>> f = make incrementor(42)
>>> £(0)

42

>>> f(1)

43

The above example uses a lambda expression to return a function. Another use is to pass a small
function as an argument:

>>> pairs = [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')]
>>> pairs.sort(key=lambda pair: pair[1l])

>>> pairs

[(4, 'four'), (1, 'one'), (3, 'three'), (2, 'two')]

https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3/license.html#history-and-license
https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3/license.html#history-and-license

N

LIST COMPREHENSIONS ®

—,

The provide a concise way to

It consists of | | containing an expression followed by a
clause, then zero or more or if clauses

The (any kind of objects in lists)
The result will be a created by evaluating the
expression in the context of the for and it clauses

The list comprehension always returns a result

Common applications are to:

Make new lists where each element is the result of some
operations applied to each member of another sequence or
iterable, or to create a subsequence of those elements that
satisfy a certain condition

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/license.html#history-and-license
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/license.html#history-and-license

LIST COMPREHENSIONS

Python 3.6.7 (default, Oct 21 2018, ©08:56:20)
squares = []
for x in range{10):
squares.append{x**2)

squares
Qut[3]: [e, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Python 3.6.7 (default, Oct 21 2018, ©08:56:20)
squares = [xxx2 for x in range(10)]
squares

Out[2]: [e, 1, 4, 9, 16, 25, 36, 49, 64, 81]

vec = [_41' _21' @f 2! 4]

result = [xk2 for x in vec]
result

OQut[2]: [-8, -4, 0, 4, 8]

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/license.html#history-and-license
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/license.html#history-and-license

LIST COMPREHENSIONS

default, Oct 21 2018, 08:56:20)
-2, 0, 2, 4]

result = [x for x in vec if x >= 0]
result

out[2]: [0, 2, 4]

Python 3 6 7

{default Oct 21 2018, 08:56:20)
[-4, 0, 2, 4]

result = [abs(x) for x in vec]
result

out[2]: [4, 2, 0, 2, 4]

Python 3.6.7 (default, Oct 21 2018, 08:56:20)

freshfruit = [' banana', ' loganberry ', 'passion fruit ']

result = [weapon.strip() for weapon in freshfruit]
result

Out[2]: ['banana', 'loganberry', 'passion fruit']

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/license.html#history-and-license
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/license.html#history-and-license

Out[3]:

LIST COMPREHENSIONS

3.6.7 (default, Oct 21 2018, 08:56:20)
[(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]
[(1, 3), (1, &), (2, 3), (2, 1), (2, &), (3, 1), (3, 4)]

3.6.7 (default, Oct 21 2018, 08:56:20)
[(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]
combs = []
for x in [1,2,3]:
for y in [3,1,4]:
if x 1= y:
combs.append((x, y))

combs

[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4),

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/license.html#history-and-license
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/license.html#history-and-license

LIST COMPREHENSIONS

Python 3.6.7 (default, Oct 21 2018, 08:56:20)

result = [(x, x sk 2) for x in range(6)]
result

out[2]: [(e, @), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]

Python 3.6.7 (default, Oct 21 2018, 08:56:20)
vec = [[1, 2, 31, [4, 5, 6], [7, 8, 9]]
result = [num for elem in vec for num in elem]
result

Out[2]: [1, 2, 3, 4, 5, 6, 7, 8, 9]

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/license.html#history-and-license
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/license.html#history-and-license

@ MAP - FILTER — REDUCE @

12

Blueprint

map (function_to_apply, list_of_inputs)

Most of the times we want to pass all the list elements to a function one-by-one and then collect
the output. For instance:

items = [1, 2, 3, 4, 5]

squared = []

for i in items:
squared.append (i**2)

http://book.pythontips.com/en/latest/map_filter.html# LICENSE

http://book.pythontips.com/en/latest/map_filter.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://book.pythontips.com/en/latest/map_filter.html
https://creativecommons.org/licenses/by-nc-sa/4.0/

MAP — FILTER — REDUCE @

13

Map allows us to implement this in a much simpler and nicer way. Here you go:

items

= [1, 2, 3, 4, 5]
squared =

list(map(lambda x: x*%2, items))

Most of the times we use lambdas with map so | did the same. Instead of a list of inputs we can

even have a list of functions!

http://book.pythontips.com/en/latest/map_filter.html# LICENSE

http://book.pythontips.com/en/latest/map_filter.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://book.pythontips.com/en/latest/map_filter.html
https://creativecommons.org/licenses/by-nc-sa/4.0/

Ao

MAP - FILTER — REDUCE

def multiply(x):
return (xxx)

def add(x):
return (x+x)

funcs = [multiply, add]

for i in range(5):
value = list(map(lambda x: x(i), funcs))
print(value)

Output:
[0, 0]
[1, 2]
[4, 4]
[9, 6]
[16, 8]

S T T

14

http://book.pythontips.com/en/latest/map_filter.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://book.pythontips.com/en/latest/map_filter.html
https://creativecommons.org/licenses/by-nc-sa/4.0/

MAP - FILTER — REDUCE @

15

As the name suggests, filter creates a list of elements for which a function returns true. Here is a

short and concise example:

number_list = range(-5, 5)
less_than_zero = list(filter(lambda x: x < @, number_list))
print(less_than_zero)

Output: [-5, -4, -3, -2, -1]

The filter resembles a for loop but it is a builtin function and faster.

Source http://book.pythontips.com/en/latest/map_filter.html# LICENSE

http://book.pythontips.com/en/latest/map_filter.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://book.pythontips.com/en/latest/map_filter.html
https://creativecommons.org/licenses/by-nc-sa/4.0/

MAP — FILTER — REDUCE @

16

Reduce is a really useful function for performing some computation on a list and returning the

result. It applies a rolling computation to sequential pairs of values in a list. For example, if you

wanted to compute the product of a list of integers.

So the normal way you might go about doing this task in python is using a basic for loop:

product = 1
list = [1, 2, 3, 4]
for num in list:
product = product * num

product = 24

from functools import reduce
product = reduce((lambda x, y: x * vy), [1, 2, 3, 4])

Output: 24

http://book.pythontips.com/en/latest/map_filter.html# LICENSE

http://book.pythontips.com/en/latest/map_filter.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://book.pythontips.com/en/latest/map_filter.html
https://creativecommons.org/licenses/by-nc-sa/4.0/

N

GENERATORS ®

—

17

Generators are “functions” that can be
on the fly, returning an object that can be iterated over

Unlike lists, generators are and thus
and

Generators are when dealing
with large datasets (often the only way to handle large data)

One of the advanced python concepts is:
How to create generator functions and expressions as well
as why you would want to use them in the first place

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions

@% GENERATORS — TERMINOLOGY @

3.1. Iterable

An iterable is any objectin Python whichhasan _ iter_ ora _ getitem__ method defined

which returns an iterator or can take indexes (You can read more about them here). In short an
iterable is any object which can provide us with an iterator. So what is an iterator?

3.2. Iterator

An iterator is any object in Python which has a next (Python2)or _ next__ method defined.

That's it. That's an iterator. Now let’s understand iteration.

3.3. Iteration

In simple words it is the process of taking an item from something e.g a list. When we use a loop to
loop over something it is called iteration. It is the name given to the process itself. Now as we have
a basic understanding of these terms let’s understand generators.

18

http://book.pythontips.com/en/latest/generators.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://book.pythontips.com/en/latest/generators.html
https://creativecommons.org/licenses/by-nc-sa/4.0/

GENERATORS ®

19

Generators are iterators, but you can only iterate over them once. It's because they do not store all

the values in memory, they generate the values on the fly. You use them by iterating over them,
either with a ‘for’ loop or by passing them to any function or construct that iterates. Most of the
time generators are implemented as functions. However, they do not return avalue, they yield

it. Here is a simple example of a generator function:

def generator_function():
for i in range(10):
yield i

for item in generator_function():
print(item)

Output: @

H OH HH B H B H B
OoONOOULAEWNR

nttp://bookK.pythontips.com/en/latest/generators.ntml LICENSE

http://book.pythontips.com/en/latest/generators.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://book.pythontips.com/en/latest/generators.html
https://creativecommons.org/licenses/by-nc-sa/4.0/

GENERATORS

Here is an example generator which calculates fibonacci numbers:

generator version
def fibon(n):

a=b=1
for i in range(n):
yield a

a, b=>b, a+b

Now we can use it like this:

for x in fibon(1000000):
print(x)

This way we would not have to worry about it using a lot of resources. However, if we would have
implemented it like this:

def fibon(n):
a=>b=1
result = []
for i in range(n):
result.append(a)
a, b=Db, a+b
return result

http://book.pythontips.com/en/latest/generators.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://book.pythontips.com/en/latest/generators.html
https://creativecommons.org/licenses/by-nc-sa/4.0/

GENERATORS ®

It would have used up all our resources while calculating a large input. We have discussed that we
can iterate over generators only once but we haven'’t tested it. Before testing it you need to know

about one more built-in function of Python, next() . It allows us to access the next element of a

sequence. So let’s test out our understanding:

def generator_function():
for i in range(3):
yield i

gen = generator_function()

print(next(gen))

Output: @

print(next(gen))

Output: 1

print(next(gen))

Output: 2

print(next(gen))

Output: Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration

http://book.pythontips.com/en/latest/generators.htm| LICENSE

http://book.pythontips.com/en/latest/generators.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://book.pythontips.com/en/latest/generators.html
https://creativecommons.org/licenses/by-nc-sa/4.0/

GENERATORS ®

22

As we can see that after yielding all the values next() causeda stopIteration error. Basically this

error informs us that all the values have been yielded. You might be wondering that why don’t we

get this error while using a for loop? Well the answer is simple. The for loop automatically
catches this error and stops calling next . Do you know that a few built-in data types in Python

also support iteration? Let’s check it out:

my_string = "Yasoob"

next(my_string)

Output: Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: str object is not an iterator

http://book.pythontips.com/en/latest/generators.htm| LICENSE

http://book.pythontips.com/en/latest/generators.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://book.pythontips.com/en/latest/generators.html
https://creativecommons.org/licenses/by-nc-sa/4.0/

GENERATORS ®

23

Well that's not what we expected. The error says that str is not an iterator. Well it’s right! It's an

iterable but not an iterator. This means that it supports iteration but we can't iterate over it directly.
So how would we iterate over it? It's time to learn about one more built-in function, iter . It

returns an iterator object from an iterable. While an int isn't an iterable, we can use it on string!

int_var = 1779

iter(int_var)

Output: Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'int' object is not iterable

This is because int is not iterable

my_string = "“Yasoob"
my_iter = iter(my_string)
print(next(my_iter))

Output: 'Y'

Now that is much better. | am sure that you loved learning about generators. Do bear it in mind that
you can fully grasp this concept only when you use it. Make sure that you follow this pattern and
use generators Whenever they make sense to you. You won't be disappointed!

http://book.pythontips.com/en/latest/generators.htm| LICENSE

http://book.pythontips.com/en/latest/generators.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://book.pythontips.com/en/latest/generators.html
https://creativecommons.org/licenses/by-nc-sa/4.0/

ok GENERATORS — SUMMARY G

24

Generators:

A generator is a function that produces or yields a sequence of values using yield method.

Every next() method call on generator object(for ex: £ as in below example) returned by
generator function(for ex: foo() function in below example), generates next value in sequence.

When a generator function is called, it returns an generator object without even beginning
execution of the function. When next() method is called for the first time, the function starts

executing until it reaches yield statement which returns the yielded value. The yield keeps track of
i.e. remembers last execution. And second next() call continues from previous value.

Source http://openbookproject.net/thinkcs/python/english3e/app_a.html

http://openbookproject.net/thinkcs/python/english3e/app_a.html
http://openbookproject.net/thinkcs/python/english3e/app_a.html

REFERENCES

)

o

(

LS

This lecture re-uses selected parts of the OPEN BOOK PROJECT

available under)

Version date: October 2012

by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers
(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris Meyers)
Source repository is at

For offline use, download a zip file of the html or a pdf version
from

OTHER SOURCES USED:
Lambda functions
List comprehensions

Map — Filter — Reduce
Iterators & Generators
Itertools by example

25

http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/
https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/license.html#history-and-license
http://book.pythontips.com/en/latest/map_filter.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://book.pythontips.com/en/latest/generators.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://realpython.com/python-itertools/
http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/
https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/license.html#history-and-license
http://book.pythontips.com/en/latest/map_filter.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://book.pythontips.com/en/latest/generators.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://realpython.com/python-itertools/

0)

@ EXAMPLE — PRIME NUMBERS

(i

26

TASK:

* Before starting it is important to note what a prime number is:
* A prime number has to be a positive integer
 Divisible by exactly 2 integers (1 and itself)
* 1isnotaprime number
* While there are many different ways to solve this problem,
here are a few different approaches

SOURCE:

https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19
https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19
https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19
https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19

@ EXAMPLE — PRIME NUMBERS ®

27

primes = []
possiblePrime range(2, 21):

isPrime =

num range(2, possiblePrime):
possiblePrime % num ==
isPrime =

isPrime:
primes.append(possiblePrime)

* Example of a solution

https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19
https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19

Ao

EXAMPLE — PRIME NUMBERS @

28

primes = []
possiblePrime range(2, 21):

isPrime =

num range(2, possiblePrime):
possiblePrime % num ==
isPrime =

isPrime:
primes.append(possiblePrime)

 Approach 1: notice that as soon isPrime is False, it is

inefficient to keep on iterating. It would be more efficient to
exit out of the loop.

https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19
https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19

Ao

EXAMPLE — PRIME NUMBERS @

29

primes = []
possiblePrime range(2, 21):

isPrime =

num range(2, possiblePrime):
possiblePrime % num ==
isPrime =

isPrime:
primes.append(possiblePrime)

* Approach 2 is more efficient than approach 1 because as soon

as you find a given number isn’t a prime number you can exit
out of loop using break.

https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19
https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19

o
/@ EXAMPLE — PRIME NUMBERS @, [ulie

primes = []
possiblePrime range(2, 21):

isPrime =
num range(2, int(possiblePrime xx 0.5) + 1):
possiblePrime % num == 0:
isPrime =

isPrime:
primes.append(possiblePrime)

* Approach 3:is similar to approach 2 except the inner range
function. Notice that the inner range function is now:
range(2, int(possiblePrime ** 0.5) + 1)

https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19
https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19

EXAMPLE — PRIME NUMBERS @

31

We use the properties of
Composite number is a number that is
(which has factors other than 1 and itself)
Every composite number has a
(proof).

EXAMPLE: Factors of 15 below; the factors in red are just the
reverses of the green factors so by the commutative property
of multiplication 3 x5 =5 x 3 we just need to include the
“green” pairs to be sure that we have all the factors.

Factors of 15
Factor 1 1 3
Factor 2 15 5

http://mathworld.wolfram.com/Factor.html
http://mathandmultimedia.com/2012/06/02/determining-primes-through-square-root/
http://mathworld.wolfram.com/Factor.html
http://mathandmultimedia.com/2012/06/02/determining-primes-through-square-root/
https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19
https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19

Ao

EXAMPLE — PRIME NUMBERS @

32

print(timeit.timeit('approachl(500)" =globals() =100000))

print(timeit.timeit('approach2(500)" =globals() =100000))

!

print(timeit.timeit('approach3(500)" =globals() =100000))

Evaluating performance

REFERENCE:

https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19
https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19
https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19
https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19
https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19
https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19

	Slide 1: PRG – PROGRAMMING ESSENTIALS
	Slide 2: REFERENCES
	Slide 3: LAMBDA FUNCTIONS
	Slide 4: LAMBDA FUNCTIONS
	Slide 5: LAMBDA FUNCTIONS
	Slide 6: LAMBDA FUNCTIONS
	Slide 7: LIST COMPREHENSIONS
	Slide 8: LIST COMPREHENSIONS
	Slide 9: LIST COMPREHENSIONS
	Slide 10: LIST COMPREHENSIONS
	Slide 11: LIST COMPREHENSIONS
	Slide 12: MAP – FILTER – REDUCE
	Slide 13: MAP – FILTER – REDUCE
	Slide 14: MAP – FILTER – REDUCE
	Slide 15: MAP – FILTER – REDUCE
	Slide 16: MAP – FILTER – REDUCE
	Slide 17: GENERATORS
	Slide 18: GENERATORS – TERMINOLOGY
	Slide 19: GENERATORS
	Slide 20: GENERATORS
	Slide 21: GENERATORS
	Slide 22: GENERATORS
	Slide 23: GENERATORS
	Slide 24: GENERATORS – SUMMARY
	Slide 25: REFERENCES
	Slide 26: EXAMPLE – PRIME NUMBERS
	Slide 27: EXAMPLE – PRIME NUMBERS
	Slide 28: EXAMPLE – PRIME NUMBERS
	Slide 29: EXAMPLE – PRIME NUMBERS
	Slide 30: EXAMPLE – PRIME NUMBERS
	Slide 31: EXAMPLE – PRIME NUMBERS
	Slide 32: EXAMPLE – PRIME NUMBERS

