
1

PRG – PROGRAMMING ESSENTIALS

1

Lecture 5 – Collections, Sets, Dictionaries
https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start

Milan Nemy
Czech Technical University in Prague,

Faculty of Electrical Engineering, Dept. of Cybernetics
https://beat.ciirc.cvut.cz/people/milan-nemy/

milan.nemy@cvut.cz

27/10/23 Milan Nemy, Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start
https://beat.ciirc.cvut.cz/people/milan-nemy/
mailto:milan.nemy@cvut.cz

2

RECAP: MORE ABOUT PYTHON

2

27/10/23 Milan Nemy, Czech Technical University in Prague

source https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

• Everything in Python is object
• Python is dynamically typed language

• The methods and variables are created on the stack memory
• The objects and instances are created on the heap memory
• New stack frame is created on invocation of a

function / method and references are assigned & counted

• Stack frames are destroyed as soon as the
function / method returns

• Mechanism to clean up the dead objects is Garbage collector
(algorithm used is Reference Counting and immediate object
removal if count == 0)

https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s
https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

3

RECAP: LISTS

3

27/10/23 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/lists.html

• Lists are mutable (we can change their elements)

• Strings are immutable (we cannot change their elements)

• Use slicing principles (indexes in between characters / items)

http://openbookproject.net/thinkcs/python/english3e/lists.html
http://openbookproject.net/thinkcs/python/english3e/lists.html

4

RECAP: SLICING

4

27/10/23 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/strings.html

• A substring of a string is obtained by taking a slice
• Slice a list to refer to some sublist of the items in the list
• The operator [n:m] returns the part of the string from the n’th

character to the m’th character, including the first but
excluding the last (indices pointing between the characters)

• Slice operator [n:m] copies out the part of the paper between
the n and m positions

• Result of [n:m] will be of length (m-n)

http://openbookproject.net/thinkcs/python/english3e/strings.html
http://openbookproject.net/thinkcs/python/english3e/strings.html

5

RECAP: STRINGS vs. LISTS

5

27/10/23 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/lists.html

• Variables a and b refer to string object with letters "banana”
• Use is operator or id function to find out the reference
• Strings are immutable:

Python optimizes resources by making two names that refer to
the same string value refer to the same object

• Not the case of lists: a and b have the same value (content)
but do not refer to the same object

Strings

Lists

http://openbookproject.net/thinkcs/python/english3e/lists.html
http://openbookproject.net/thinkcs/python/english3e/lists.html

6

RECAP: LISTS – ALIASING, CLONING

6

27/10/23 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/lists.html

• If we assign one variable to another, both variables refer to
the same object

• The same list has two different names we say that it
is aliased (changes made with one alias affect the other)

• Recommendation is to avoid aliasing
• If need to modify a list and keep a copy of the original use the

slice operator (taking any slice of a creates a new list)

http://openbookproject.net/thinkcs/python/english3e/lists.html
http://openbookproject.net/thinkcs/python/english3e/lists.html

7

RECAP: LIST PARAMETERS

7

27/10/23 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/lists.html

• Passing a list as an argument passes a reference to the list,
not a copy or clone of the list

• So parameter passing creates an alias
(one of the most common sources of error)

http://openbookproject.net/thinkcs/python/english3e/lists.html
http://openbookproject.net/thinkcs/python/english3e/lists.html

8

RECAP: LIST PARAMETERS

8

27/10/23 Milan Nemy, Czech Technical University in Prague

• Concept: pure functions vs. modifiers
• Pure function does not produce side effects!
• Pure function communicates with the calling program only

through parameters (it does not modify) and a return value
• Do not alter the input parameters unless really necessary
• Programs that use pure functions are faster to develop and

less error-prone than programs that use modifiers
Source by Tomas Svoboda PRG 2016/2017

9

RECAP: FUNCTIONS PRODUCING LISTS

9

27/10/23 Milan Nemy, Czech Technical University in Prague

Source by Tomas Svoboda PRG 2016/2017

10

SEQUENCE TYPES

10

27/10/23 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

• Sequences of items support the following operations:

• membership operator in
• querying for size / number of items len
• indexing and slicing []
• are iterables

• string: immutable ordered sequence of characters
• tuple: immutable ordered sequence of items of any data type
• list: mutable ordered sequence of items of any data type

11

SET TYPES

11

27/10/23 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

• Set types support the following operations:

• membership operator in
• querying for size len
• are iterable
• set operations (comparisons, union, intersection, subset)

• Set: mutable unordered collection of unique items of any type
• Frozen set: immutable unordered collection of unique items

of any data type

12

SET TYPES

12

27/10/23 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

• Set types when iterated over provide items in
an arbitrary order

• Only hashable objects may be added to a set:

• Immutable data types are hashable (hash value does not
change, objects compare for equality to other objects: int,
float, str, tuple, frozenset)

• Mutable values are (usually) not hashable (list, dict, set)

https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html

13

HASHABLE – THE DEFINITION

13

27/10/23 Milan Nemy, Czech Technical University in Prague

source https://docs.python.org/3/glossary.html

• An object is hashable if it has a hash value which never changes during its
lifetime: it needs a __hash__() method and to be compared to other objects it
needs an __eq__() method

• Hashable objects which compare equal must have the same hash value

• Hashability makes an object usable as a dictionary key and a set member,
because these data structures use the hash value internally

• All of Python’s immutable built-in objects are hashable;
mutable containers (such as lists or dictionaries) are not hashable

• Objects which are instances of user-defined classes are hashable by default.
They all compare unequal (except with themselves) and their hash value is
derived from their id()

https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/reference/datamodel.html#object.__hash__
https://docs.python.org/3/reference/datamodel.html#object.__eq__
https://docs.python.org/3/library/functions.html#id
https://docs.python.org/3/reference/datamodel.html#object.__hash__
https://docs.python.org/3/reference/datamodel.html#object.__eq__
https://docs.python.org/3/library/functions.html#id

14

SET USAGE

14

27/10/23 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

15

SET USAGE

15

27/10/23 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

16

SET OPERATIONS

16

27/10/23 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

(not in both sets)

17

SET OPERATIONS

17

27/10/23 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

18

SET OPERATIONS

18

27/10/23 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

19

SET OPERATIONS

19

27/10/23 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

20

SET OPERATIONS

20

27/10/23 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

21

MAPPING TYPES

21

27/10/23 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

• A mapping type is an unordered collection of key-value pairs

• They support:
• membership operator in
• querying for size / number of items len
• are iterable

• Only hashable (i.e. immutable) objects can be used as keys

• Each key's associated value may be of any data type

22

DICTIONARIES

22

27/10/23 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017

• Strings, lists, and tuples are sequence types using integers as
indices to access the values they contain within them

• Dictionaries are Python’s built-in mapping type
• They map keys, any immutable type, to values that can be

any type

• EXAMPLE: Create a dictionary to translate English words into
Spanish (the keys are strings). One way to create a dictionary
is to start with the empty dictionary and add key : value pairs.

• The empty dictionary is denoted {}

23

DICTIONARIES

23

27/10/23 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

http://openbookproject.net/thinkcs/python/english3e/dictionaries.html
http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

24

DICTIONARIES

24

27/10/23 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

• To create a dictionary is to provide a list of key : value pairs
using the same syntax as the previous output

• Order of pairs does not matter – the values in a dictionary are
accessed with keys, not with indices, no order guaranteed

• Key is used to look up the corresponding value:
EXAMPLE: the key "two" yields the value "dos"

• Lists, tuples, and strings have been called sequences, because
their items occur in order

• The dictionary is compound type that is not a sequence
(no indexing or slicing)

http://openbookproject.net/thinkcs/python/english3e/dictionaries.html
http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

25

DICTIONARIES

25

27/10/23 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

• Keys and values can be defined as separate lists
(order matters in this case!)

• Lists can be paired using zip
• Once paired, a dictionary can be created using dict

http://openbookproject.net/thinkcs/python/english3e/dictionaries.html
http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

26

DICTIONARIES

26

27/10/23 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik PRG 2016/2017

27

DICTIONARIES

27

27/10/23 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik PRG 2016/2017

28

DICTIONARIES

28

27/10/23 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik PRG 2016/2017

29

DICTIONARIES

29

27/10/23 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik PRG 2016/2017

30

DICTIONARIES

30

27/10/23 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik PRG 2016/2017

31

DICTIONARIES – GET METHOD

31

27/10/23 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik PRG 2016/2017

dict.get() method

• Returns the value corresponding to the key, if the key exists
in the dictionary

• Returns None if key is not in the dictionary and no default
value is given

• Returns a default value, if key does not exist in the dictionary
and the default value is specified

32

DICTIONARIES

32

27/10/23 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik PRG 2016/2017

33

DICTIONARIES

33

27/10/23 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik PRG 2016/2017

• Counter is a special kind of a mapping type (dictionary)
• Collection of elements which are stored as keys, and

their counts are stored as values
• Values are counts, i.e. any integers, including negative
• Defined in collections module

34

DICTIONARIES

34

27/10/23 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik PRG 2016/2017

35

DICTIONARIES

35

27/10/23 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik PRG 2016/2017

36

DICTIONARIES

36

27/10/23 Milan Nemy, Czech Technical University in Prague

source courtesy of Petr Posik PRG 2016/2017

37

DICTIONARIES

37

27/10/23 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

• As in the case of lists, because dictionaries are mutable, we
need to be aware of aliasing (!!)

• Aliasing: whenever two variables refer to the same object,
changes to one affect the other

• If we want to modify a dictionary and keep a copy of the
original, use the copy method

• EXAMPLE: opposites is a dictionary that contains pairs of
opposites

http://openbookproject.net/thinkcs/python/english3e/dictionaries.html
http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

38

DICTIONARIES

38

27/10/23 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

• Alias and opposites refer to the same object;
• Copy refers to a fresh copy of the same dictionary.
• If alias is modified, opposites is changed as well:

• If copy is modified, opposites is unchanged:

http://openbookproject.net/thinkcs/python/english3e/dictionaries.html
http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

39

DICTIONARIES

39

27/10/23 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

• EXAMPLE: Function that counts the number of occurrences of
a letter in a string using a frequency table of the letters in the
string (how many times each letter appears)

• Compressing a text file: because different letters appear with
different frequencies, we can compress a file by using shorter
codes for common letters and longer codes for letters that
appear less frequently.

• Dictionary ideal for frequency tables

http://openbookproject.net/thinkcs/python/english3e/dictionaries.html
http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

40

DICTIONARIES

40

27/10/23 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

ALGORITHM:
• Start with an empty dictionary
• For each letter in the string, find the current count (possibly

zero) and increment it
• At the end the dictionary contains pairs of letters and their

frequencies
• To display the frequency table in alphabetical order use sort()
• NOTE: in the first line the type conversion function list is called

to get from items into a list (needed to use sort method)

http://openbookproject.net/thinkcs/python/english3e/dictionaries.html
http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

41

LINEAR SEARCH ALGORITHM

41

27/10/23 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

• EXAMPLE: Search algorithm – to find the index where a
specific item occurs within in a list of items then return the
index of the item if it is found or return -1 if the item doesn’t
occur in the list

http://openbookproject.net/thinkcs/python/english3e/dictionaries.html
http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

42

LINEAR SEARCH ALGORITHM

42

27/10/23 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

• Searching all items in a sequence from first to last is called
linear search

• Check whether v == target is called a probe
• Count probes as a measure of how efficient the algorithm is

(indication of how long the algorithm will take to execute)

• Linear searching is characterized by the fact that the number
of probes needed to find some target depends directly on the
length of the list

http://openbookproject.net/thinkcs/python/english3e/dictionaries.html
http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

43

LINEAR SEARCH ALGORITHM

43

27/10/23 Milan Nemy, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

• Test every item in the list from first to last such that the result
is returned by the function as it is found (early return)

• NEGATIVE: If searching for a target that is not present in the
list, then go all the way to the end before we can return the
negative value

• Search has linear performance
• Interested in the scalability of our algorithms

(how to solve this for million or ten million of items?)

http://openbookproject.net/thinkcs/python/english3e/dictionaries.html
http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

44

REFERENCES

44

27/10/23 Milan Nemy, Czech Technical University in Prague

This lecture re-uses selected parts of the OPEN BOOK PROJECT
Learning with Python 3 (RLE)

http://openbookproject.net/thinkcs/python/english3e/index.html
available under GNU Free Documentation License Version 1.3)

• Version date: October 2012
• by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers

(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris
Meyers)

• Source repository is at https://code.launchpad.net/~thinkcspy-rle-
team/thinkcspy/thinkcspy3-rle

• For offline use, download a zip file of the html or a pdf version
from http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/
http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

	Slide 1: PRG – PROGRAMMING ESSENTIALS
	Slide 2: RECAP: MORE ABOUT PYTHON
	Slide 3: RECAP: LISTS
	Slide 4: RECAP: SLICING
	Slide 5: RECAP: STRINGS vs. LISTS
	Slide 6: RECAP: LISTS – ALIASING, CLONING
	Slide 7: RECAP: LIST PARAMETERS
	Slide 8: RECAP: LIST PARAMETERS
	Slide 9: RECAP: FUNCTIONS PRODUCING LISTS
	Slide 10: SEQUENCE TYPES
	Slide 11: SET TYPES
	Slide 12: SET TYPES
	Slide 13: HASHABLE – THE DEFINITION
	Slide 14: SET USAGE
	Slide 15: SET USAGE
	Slide 16: SET OPERATIONS
	Slide 17: SET OPERATIONS
	Slide 18: SET OPERATIONS
	Slide 19: SET OPERATIONS
	Slide 20: SET OPERATIONS
	Slide 21: MAPPING TYPES
	Slide 22: DICTIONARIES
	Slide 23: DICTIONARIES
	Slide 24: DICTIONARIES
	Slide 25: DICTIONARIES
	Slide 26: DICTIONARIES
	Slide 27: DICTIONARIES
	Slide 28: DICTIONARIES
	Slide 29: DICTIONARIES
	Slide 30: DICTIONARIES
	Slide 31: DICTIONARIES – GET METHOD
	Slide 32: DICTIONARIES
	Slide 33: DICTIONARIES
	Slide 34: DICTIONARIES
	Slide 35: DICTIONARIES
	Slide 36: DICTIONARIES
	Slide 37: DICTIONARIES
	Slide 38: DICTIONARIES
	Slide 39: DICTIONARIES
	Slide 40: DICTIONARIES
	Slide 41: LINEAR SEARCH ALGORITHM
	Slide 42: LINEAR SEARCH ALGORITHM
	Slide 43: LINEAR SEARCH ALGORITHM
	Slide 44: REFERENCES

