Ao

PRG — PROGRAMMING ESSENTIALS

Milan Nemy

Czech Technical University in Prague,
Faculty of Electrical Engineering, Dept. of Cybernetics

https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start
https://beat.ciirc.cvut.cz/people/milan-nemy/
mailto:milan.nemy@cvut.cz

Ao

PROBLEM SOLVING!

 Problem formulation

e Formalism

* Algorithm

* Implementation

* Testing

VARIABLES

Python Console

» /opt/local/bin/python3.6 /Applications/PyCharm.a) BE Special Variables
® python 3.6.3 (default, Oct 5 2017, 23:34:28)

X

my_name
my_age 17
my_height 183.5

=

=

=

my_age = 17
my_height = 183.5
my_name = 'Bob’

We use variables to things!
The assighment statement gives a value to a variable

Do not confuse = and !

=is token such that name_of variable = value

== |s operator to
Key property of a variable that
Naming convention:

http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html
http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

(®)

VARIABLES o

>>> ‘Jetrombones = "big parade"
SyntaxError: invalid syntax

>>> more$ = 1000000

SyntaxError: invalid syntax

>>> class = "Computer Science 101"
SyntaxError: invalid syntax

The longer life the longer name:

The more important the longer name

Meaningful name does not add the ,
the code must do this!

lllegal name causes a

Capitals: VS

http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html
http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

ik KEYWORDS
and as assert | break class | continue
det del | elif clse except | exec
finally | for | from global if import
n 1S lambda | nonlocal | not or
pass raise | return | try while | with
yield | True | False None

Python keywords have
Always choose names

Use

and

purpose

to human readers
to improve readability

http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html
http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

BUILT-IN FUNCTIONS

abs()

all()

any()
ascii()
bin()
bool()
bytearray()
bytes()
callable()
chr()
classmethod()
compile()
complex()
delattr()

dict()
dir()
divmod()
enumerate()
eval()
exec()
filter()
float()
format()
frozenset()
getattr()
globals()
hasattr()
hash()

Built-in Functions

help()

hex ()

id()
input()
int()
isinstancel()
issubclass()
iter()

len()

list()
locals()
map ()

max ()

memoryview()

e Built-in functions have

e Study

min()
next()
object()
oct()
open()
ord()
pow()
print()
property()
range()
repr()
reversed()
round()
set()

purpose

setattr()
slice()
sorted()
staticmethod()
str()
sum()
super()
tuplel()
type()
vars()
zip()

__import__()

http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html
http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html
https://docs.python.org/3.4/library/functions.html
https://docs.python.org/3.4/library/functions.html

DATA TYPES @

Python 3.6.3 (default, Oct 5 2017, 23:34:28)
¢ [GCC 4.2.1 Compatible Apple LLVM 8.1.0 (clang-802.0.42)] on darwin
T type(11)
~ Out[2]: int
= type(11.1234)
~ Out[3]: float

type()
Out[4]: str

type(
Out[5]: str

type(
Qut[6]: str

Integers (int) 1,10, 124
Strings (str) "Hello, World!”
Float () 1.0, 9.999

Strings in Python can be enclosed in either single quotes (') or
double quotes ("), or three of each ("' or """)

http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html
http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

ik OPERATORS & OPERANDS C

Python Console

» /opt/local/bin/python3.6 /Applications/PyCharm.app/) =8 Special Variables
® python 3.6.3 (default, Oct 5 2017, 23:34:28)
minutes = 635 W _ =
hours = minutes / 60 B __ =
hours_floor_division minutes 60 —

| hours = 10.583333333333334
hours_floor_division = 10
minutes = 635

« OPERAND OPERAND

* QOperators are that represent computations like
addition, subtraction, multiplication, division etc

* The values the operator uses are called

 When a variable name appears in the place of an operand, it
is replaced with its value before the operation is performed

* Division / vs floor division

http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html
http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

@ ORDER OF OPERATIONS — PEMDAS | (@

Python Console

» Jopt/localsbin/python3.6 fApplications/PyCharm.app/Contents/helpers/pydev
| Byt i e = B = diaF = i 1 E 2T e T

Out[2]: 512
X (2 %k 3) dok 2
Out[3]: 64

 Evaluation depends on the rules of precedence:
arentheses (for order, readability)
Xponentiation
ultiplication and Division
ddition and Subtraction
e Order evaluation on the same level, with the
exception of exponentiation ()

http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html
http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

@é MODULUS OPERATOR ®

10

Python Console

» /opt/local/bin/python3.6 /Applications/PyCharm.app/Contents/helpers). magpacial Variables
B python 3.6.3 (default, Oct 5 2017, 23:34:28)
total_secs = int(input()) -=
hours = total_secs 3600 =
secs_still_remaining total_secs 3600 —
minutes secs_still_remaining 60 -

secs_finally_remaining = secs_still_remaining 60 hours = 58
minutes = 59

secs_finally_remaining = 5

print(hours minutes
: secs_finally_remaining) : __
? How many seconds, in total? =~ 212345 [®] secs_still_remaining = 3545

Za Hrs= 58 mins= 59 secs= 5 [®] total_secs = 212345

* The modulus operator works on (integer expressions)

e Definition: modulus is the when the first number is
divided by the second

* Modulus operator is a percent sign

e Syntax is the same as for other operators

* The same as the operator

http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html
http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

ik TYPE CONVERSION C

>»> int(3.14)

3

>>> int(3.9999) # This doesn't round to the closest int!
3

»»> int(3.0)

3

»>>> int(-3.999) # Note that the result is closer to zero
-3

>>> int(minutes / 68)

1e

>>> int("2345") # Parse a string to produce an int

2345

>»> int(17) # It even works if arg is already an int
17

>>> int("23 bottles") Traceback (most recent call last):

File "<interactive input>", line 1, in <module>
ValueError: invalid literal for int() with base 1@: '23 bottles'

* Functions, , and convert their arguments into
types int, and str respectively.

* The type converter can turn an integer, a float, or a
syntactically legal string into a float

 The type converter turns its argument into a string

 One symbol can have different meaning depending on the
data type(s) - try & &

http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html
http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

ik OPERATIONS ON STRINGS C

12
>>> message - 1 # Error
>>> "Hello" / 123 # Error
>>> message * "Hello" # Error
>>> "15" + 2 # Error

Python Console
3 /opt/local/bin/python3.6 /Applications/PyCharm.app/Contents/helpers/pyc p =3 gpacial Variables

name -=

age = 17 m_ =

b 4 description str(age) —
print(description) -

» My name is Boband my age is 17 [# age = 17

- description = 'My name is Boband my age is 17'
name = 'Bob’

=

* You cannot perform mathematical operations on strings, even
if the strings look like numbers

 The + operator represents , hot addition

 The " operator also works on strings; it performs
(one of the operands has to be a string;
the other has to be an integer)

http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html
http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

INPUT

Python Console

13

3 /opt/local/bin/python3.6 /Applications/PyCharm.app/Contents/he) "= Special Variables

response input(

r
area
prin
What is you

- The area 1is

e Built-in function to get input from a user:

float(response)
.

t(
r radius?
380.13239

)

m_ = "
m_ = "

B =

8] area = 380.13239
r= 11.0

response = '11°

("Message to the user!”)

e Userinput is stored as
 Combine with type conversion

http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html
http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

ik COMPOSITION C

Python Console

> /Opt/losallglr)/pythonB.B /Appllcatlonf(?(‘:ha\rm.app/Contents/helpers/pydev/pydevcc » B2 Special Variables
Python 3.6.3 (default, Oct 5 2017, 23:34:28)
response = input() @ _ =
r = float(response) ®__ =
area 3.14159 r**x2

print(area)
» what is your radius? 11 [®] area = 380.13239
» The area is 380.13239 Br= 11.0

r = float(input()) [B] response = '11'
— print(3.14159 % rkx2) ponse =
—? What is your radius? 11
o, The area is 380.13239
print(3.14159xfloat (input(

~ What is your radius? 11
" The area is 380.13239

 Combination of the elements of a program: variables,
expressions, statements, and function calls

* One of the most useful features of programming languages

* Take small building blocks and compose them into larger
chunks

http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html
http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

ik THE FOR LOOP CAm ¢

15

+ /opt/local/bin/python3.6 /Applications/PyCharm.app/Contents/helpers/pydev/pydevconsol: p =3 gpacial Variables

u Python 3.6.3 (default, Oct 5 2017, 23:34:28) _
friend [1: ®_=

invite = + friend + B®_ =
)4 print(invite) =
'Paris’
Hi Zoe. Please come to my party on Saturday! [®] invite = 'Hi Paris. Please come to my party on Saturday!’
Hi Brad. Please come to my party on Saturday!

» Hi Joe. Please come to my party on Saturday! [®&] friend =

-

—3 Hi Angelina. Please come to my party on Saturday!
—? Hi Zuki. Please come to my party on Saturday!

ow] Hi Thandi. Please come to my party on Saturday!

~—' Hi Paris. Please come to my party on Saturday!

* The variable at line 1 is the

* Lines 2 and 3 are the

* The loop body is

 The indentation determines exactly what statements are

V4

* At the end of each execution of the body of the loop, Python
returns to the statement, to see if there are more items to
be handled, and to assign the next one to the loop variable

http://openbookproject.net/thinkcs/python/english3e/hello_little_turtles.html
http://openbookproject.net/thinkcs/python/english3e/hello_little_turtles.html

THE FOR LOOP

+ /opt/local/bin/python3.6 /Applications/PyCharm.af B3 Special Variables
B python 3.6.3 (default, Oct 5 2017, 23:34:28)
for number in range(5): m_ =
print(number) —

_ =
number = 4

On each iteration or pass of the loop:

Check to see if there are still more

If there are none left (the

the loop has finished

If there are items still to be processed, the
to refer to the next item in the list

Program execution

loop body

To explore: early , Or loop

16

of the loop)

after the

http://openbookproject.net/thinkcs/python/english3e/hello_little_turtles.html
http://openbookproject.net/thinkcs/python/english3e/hello_little_turtles.html

@ THE FOR LOOP — CONTROL FLOW ®

17

e Control flow (control of the flow of
execution of the program)
e As program executes, the

Have all items in
sequence had their
turn?

Yes

v interpreter of
Assignnext et cop which statement is about to be
executed
e Control flow until now has been
‘ strictly ,one
e onbocy e statement at a time,

http://openbookproject.net/thinkcs/python/english3e/hello_little_turtles.html
http://openbookproject.net/thinkcs/python/english3e/hello_little_turtles.html

Ao

-
o
i

CONDITIONAL EXECUTION @

Falze

statements 2

if BOOLEAN EXPRESSION:

STATEMENTS 1 # Executed 1if condition evaluates to True
else:

STATEMENTS_2 # Executed 1if condition evaluates to False

l

if True:
True pass
condition else:
H“aih pass
staterments 1 o e
r Condition

e Conditional statement — the
ability to check conditions and

change the behavior of the
program accordingly

18

http://openbookproject.net/thinkcs/python/english3e/conditionals.html
http://openbookproject.net/thinkcs/python/english3e/conditionals.html

CONDITIONAL EXECUTION @

19

True
 Condition
\ * No ELSE statement
s * To control flow only for
specific condition
if x < 9:
print("The negative number ", x, " is not valid here.")
X = 42

print("I've decided to use the number 42 instead.")

print("The square root of ", x, "is", math.sqrt(x))

http://openbookproject.net/thinkcs/python/english3e/conditionals.html
http://openbookproject.net/thinkcs/python/english3e/conditionals.html

Ao

CONDITIONAL EXECUTION @

;:;hhh“nxh_ True

Falz&

statements ¢

if x < y:

STATEMENTS_A
elif x > y:
STATEMENTS_B

else:

STATEMENTS_C

v

ctatements a

statements b

20

if choice == "a":
function one()
elif choice == "b":
function two()
elif choice == "c":
function three()
else:
print("Invalid choice.")

Condition chaining

Recommendation: handle
all distinctive options by
separate condition, use else
to handle all other

http://openbookproject.net/thinkcs/python/english3e/conditionals.html
http://openbookproject.net/thinkcs/python/english3e/conditionals.html

Ao

CONDITIONAL EXECUTION @

-
o
i

if 0 < x:

if x < 10:

statements_c

Assume x 1s an int here

print("x is a positive single digit.")

>

-

if x < y:
l STATEMENTS_A
else:
fah“mah if x > y:
STATEMENTS B
else:
STATEMENTS_C

statements_a

* Nesting conditions builds

sttements_b hierarchy of decisions

(decision trees)

* Nesting may reduce

T readability and clarity

21

http://openbookproject.net/thinkcs/python/english3e/conditionals.html
http://openbookproject.net/thinkcs/python/english3e/conditionals.html

CONDITIONAL EXECUTION

22

for n in range(2, 190):
for x in range(2, n):
if n ¥ x ==
print(n, 'equals', x, '*', n/x)
break

for n in range(2, 10):
for x in range(2, n):
ifn% x ==
print(n, 'equals', x, '*', n/x)
break
else:

print(n, 'is a prime number')

* Early return / early break
e Can be used to speed-up code execution
e Special condition:

http://book.pythontips.com/en/latest/for_-_else.html
http://book.pythontips.com/en/latest/for_-_else.html

@ BOOLEAN VALUES & EXPRESSIONS | (@

23

>>> type(True)
<class 'bool'>
>>> type(true)
Traceback (most recent call last):
File "<interactive input>", line 1, in <module>
NameError: name 'true' is not defined

* Test conditions and depending
on the outcome of the tests

 Boolean value is either or

 Named after the British mathematician, , who

first formulated Boolean algebra

http://openbookproject.net/thinkcs/python/english3e/conditionals.html
http://openbookproject.net/thinkcs/python/english3e/conditionals.html

@ BOOLEAN VALUES & EXPRESSIONS @

24

»> 5 == (3 + 2) # Is five equal 5 to the result of 3 + 2?

True

> 5 ==6

False

>>> j = "hel

>>> j + "lo" == "hello

True

X ==Y =

X =y # ... x 1is
X >y # ... x 1s
X <y i X 18
X >= Yy # x is
X <=y # X is

Produce True if ... x 1is equal to y

not equal to y

greater than y

Less than y

greater than or equal to y
Less than or equal to y

* Boolean expression is an expression that evaluates to produce

a result which is a
e Six common

which all produce

a bool result (different from the mathematical symbols)

http://openbookproject.net/thinkcs/python/english3e/conditionals.html
http://openbookproject.net/thinkcs/python/english3e/conditionals.html

@é LOGICAL OPERATORS ®

» /opt/local/bin/python3.6 /Applications/PyCharm.app/Contents/helpers/pydev/pydevconsole.p
® python 3.6.3 (default, Oct 5 2017, 23:34:28)

n=24

print(n.%.2 == 0. 0or. n.%.3 == .0)

n==6
print(n % 2 == 0 or . n %.3 == .0)

n=.>5
print(n % 2 == 0 or. n % 3 == .0)

* three logical operators, , 0r, and , that allow to build
more complex expressions from simple Boolean expressions

e semantics () of these operators is similar to natural
language equivalent

http://openbookproject.net/thinkcs/python/english3e/conditionals.html
http://openbookproject.net/thinkcs/python/english3e/conditionals.html

ik TRUTH TABLES ®

a and a or
a b b a b b not
False False False F F F a a
False True False F T T F T
True False False T F T T F
True True True T TT

Short-circuit evaluation:
— if the expression on the left of the operator yields
Python does not evaluate the expression on the right
— if the expression on the left yields , Python does
not evaluate the expression on the right.
— list of all the possible inputs to give the results
for the logical operators

4

26

http://openbookproject.net/thinkcs/python/english3e/conditionals.html
http://openbookproject.net/thinkcs/python/english3e/conditionals.html

Ao

BOOLEAN ALGEBRA - LOGIC OPPOSITES @

operator logical opposite

A

if not (age »>= 17):
print("Hey, you're too young to get a driving licence!")

>=

>

<= if age < 17:

< print("Hey, you're too young to get a driving licence!")

Each of the six relational operators has a
Recommendation: operators may reduce readability, use
logical opposites instead

27

http://openbookproject.net/thinkcs/python/english3e/conditionals.html
http://openbookproject.net/thinkcs/python/english3e/conditionals.html

Ao

BOOLEAN ALGEBRA

n *o0 == 0

X and False == False
False and x == False
y and X == x and y

X and True ==

True and x == X

X and X == X

X or False == X
False or x ==

y or X == X or y

X or True == True
True or X == True

X or X == X

not (not x) == X

28

http://openbookproject.net/thinkcs/python/english3e/conditionals.html
http://openbookproject.net/thinkcs/python/english3e/conditionals.html

ik DE MORGAN'S LAWS C

not (x and y)
not (x or y)

(not x) or (not y)
(not x) and (not y)

if not ((sword_charge >= ©8.90) and (shield _energy >= 100)):
print("Your attack has no effect, the dragon fries you to a crisp!")

else:
print("The dragon crumples in a heap. You rescue the gorgeous princess!")

 De Morgan’s laws rules allow the expression
of and in terms of each other
via

 Example: suppose we can slay the dragon only if our magic
sword is charged to 90% or higher we have 100 or more
energy units in our protective shield

29

http://openbookproject.net/thinkcs/python/english3e/conditionals.html
http://openbookproject.net/thinkcs/python/english3e/conditionals.html

%@ DE MORGAN'S LAWS ®

if (sword charge < ©.98) or (shield energy < 100):

print("Your attack has no effect, the dragon fries you to a crisp!")
else:

print("The dragon crumples in a heap. You rescue the gorgeous princess!")

if (sword charge >= 0.90) and (shield energy >= 100):
print("The dragon crumples in a heap. You rescue the gorgeous princess!")
else:

print("Your attack has no effect, the dragon fries you to a crisp!")

 Example: suppose we can slay the dragon only if our magic
sword is charged to 90% or higher we have 100 or more
energy units in our protective shield

30

http://openbookproject.net/thinkcs/python/english3e/conditionals.html
http://openbookproject.net/thinkcs/python/english3e/conditionals.html

@ EXAMPLE

P qr (not (p and) orr
F F F ?
F F T ?
F T F ?
F T T ?
T F F ?
T F T ?
T T F ?
T TT ?

 Example: complete the table ..

31

http://openbookproject.net/thinkcs/python/english3e/conditionals.html
http://openbookproject.net/thinkcs/python/english3e/conditionals.html

N

REFERENCES @

A

—,

32

This lecture re-uses selected parts of the OPEN BOOK PROJECT

available under)

Version date: October 2012

by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers
(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris
Mevyers)

Source repository is at

For offline use, download a zip file of the html or a pdf version
from

http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/
http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

	Slide 1: PRG – PROGRAMMING ESSENTIALS
	Slide 2: PROBLEM SOLVING!
	Slide 3: VARIABLES
	Slide 4: VARIABLES
	Slide 5: KEYWORDS
	Slide 6: BUILT-IN FUNCTIONS
	Slide 7: DATA TYPES
	Slide 8: OPERATORS & OPERANDS
	Slide 9: ORDER OF OPERATIONS – PEMDAS
	Slide 10: MODULUS OPERATOR
	Slide 11: TYPE CONVERSION
	Slide 12: OPERATIONS ON STRINGS
	Slide 13: INPUT
	Slide 14: COMPOSITION
	Slide 15: THE FOR LOOP
	Slide 16: THE FOR LOOP
	Slide 17: THE FOR LOOP – CONTROL FLOW
	Slide 18: CONDITIONAL EXECUTION
	Slide 19: CONDITIONAL EXECUTION
	Slide 20: CONDITIONAL EXECUTION
	Slide 21: CONDITIONAL EXECUTION
	Slide 22: CONDITIONAL EXECUTION
	Slide 23: BOOLEAN VALUES & EXPRESSIONS
	Slide 24: BOOLEAN VALUES & EXPRESSIONS
	Slide 25: LOGICAL OPERATORS
	Slide 26: TRUTH TABLES
	Slide 27: BOOLEAN ALGEBRA – LOGIC OPPOSITES
	Slide 28: BOOLEAN ALGEBRA
	Slide 29: DE MORGAN‘S LAWS
	Slide 30: DE MORGAN‘S LAWS
	Slide 31: EXAMPLE
	Slide 32: REFERENCES

