Ao

PRG — PROGRAMMING ESSENTIALS

Milan Nemy

Czech Technical University in Prague,
Faculty of Electrical Engineering, Dept. of Cybernetics

https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start
https://beat.ciirc.cvut.cz/people/milan-nemy/
mailto:milan.nemy@cvut.cz

INTRODUCTION ®

LECTURES = Milan Nemy

LABS Thursday — Akash Chaudhary

LABS Friday = Parakh M. Gupta

mailto:milan.nemy@cvut.cz
mailto:milan.nemy@cvut.cz
https://beat.ciirc.cvut.cz/people/milan-nemy/
mailto:milan.nemy@cvut.cz
https://beat.ciirc.cvut.cz/people/milan-nemy/
mailto:chaudaka@fel.cvut.cz
mailto:chaudaka@fel.cvut.cz
mailto:guptapar@fel.cvut.cz
mailto:guptapar@fel.cvut.cz

THE GOAL! ®

Develop skills with Python
Learn to "good" Python
Gain experience with tasks

Understand to choose Python ()

Ao

THE WAY OF THE PROGRAM

Think like a computer scientist

e Combines:
* mathematics
* engineering
* natural science

* Problem solving!
* formulate problems
* think about solutions
* implement solutions clearly & accurately

Ao

PROBLEM SOLVING!

Problem formulation
Formalism
Algorithm
Implementation

Testing

(®)

@ EXAMPLE — THE PROBLEM! o

Find a pair of numbers from a given list of N integers (both
sorted and unsorted) such that their sum is exactly as given
(in our case 8).

[1, 2, 3, 9] where SUM = 8 ... negative case
[1, 2, 4, 4] where SUM = 8 ... positive case

https://www.youtube.com/watch?v=XKu_SEDAykw
https://www.youtube.com/watch?v=XKu_SEDAykw

@ EXAMPLE - THE PROBLEM! @
1. Solution for sorted list: complexity using
2. Solution for sorted list: complexity using
unidirectional (halving the interval) for the
complement
3. Solution for sorted list: complexity using

such that if < SUM increase lower
and if > SUM decrease upper index (smallest possible sum
first two, largest possible sum last two)

4. Solution for unsorted list: build list of previously visited
complements and compare for a match while iterating
(hash table with constant time for look-up)

5. Final touch — edge cases, empty list

https://www.youtube.com/watch?v=XKu_SEDAykw
https://www.youtube.com/watch?v=XKu_SEDAykw

COURSE ADMINISTRATION

date

28.09.2023

topic

Introduction. Variables, expressions.

materials

10.

11.

12.

14.

06.10.2023

13.10.2023

20.10.2023

27.10.2022

03.11.2023

10.11.2023

17.11.2023

24.11.2023

01.12.2023

08.12.2023

15.12.2023

22.12.2023

12.01.2024

Primitive data types, program flow
Program structure, functions
Sequence data types, traversals
Collections (sets, dictionaries), iterators
Mid-term test

Modules, namespaces, conventions
Public holiday (no lectures)
Filesystem, file reading and writing
Debugging, code testing, exceptions
Objects, classes |

End-of-term test

Objects, classes I

Revision for the exam, Advanced concepts

Struggle for Freedom and Democracy Day

@ COURSE ADMINISTRATION @

Grading
Points: 50 homework (mostly coding), 20 tests during the term (2 tests, 10 points each), 30 final exam.

At least 30 points (out of 70) and regular lab attendance are needed before going to the final exam (in order to obtain “zapocet”). At least
10 points (out of 30) are needed to pass the final exam. To pass the course and get a grade, “zapocet” must be obtained, exam passed and
at least 51 points gained in total (see the table below). It is possible to get additional up to 20 points for extra activity during the semester,

such as completing a bonus homework.

A B c D E F

100-91 | 90-81 | 80-71 | 70-61 | 60-51 | 50-0

F means fail.

* Lectures and computer labs

* Homework assignments

* Tests (2x) during the lectures

* Final exam test

* Extra points: activity, finding bugs, errors ...

e Automatic evaluation & plagiarism detection

COURSE ADMINISTRATION @

10

PLAGIARISM WARNING

https://cw.fel.cvut.cz/wiki/help/common/plagiarism cheating

Plagiarism

It is required that all work you submit in this course is original and your own. It is not allowed to copy homework solutions from other
students or from the internet, to provide your homework solutions to other students, or to publish them on the internet. You may freely
discuss your solutions with other students, buf code sharing is prohibited.l;ee plagiarism_cheating for more details.

It is your responsibility that you do not share your code. In case of discovery, the person who provided the code is punished as well.
Sufficient evidence of plagiarism is even when a student is unable to explain how his code works.

There are very strict punishments with regard to plagiarism and cheating during tests and exams. The First discovered plagiarism/cheating
leads to zero points from the assignment/test. In case of an assignment, it is further necessary to submit a new, original, solution for zero
points. The second occurrence means an F from the course and any subsequent plagiarism/cheating leads to disciplinary actions at the
fFaculty level. It is important to note that every discovered plagiarism/cheating gets into your record - the plagiarism/cheating occurrences
are counted cumulatively across all courses during your studies.

https://cw.fel.cvut.cz/wiki/help/common/plagiarism_cheating

https://cw.fel.cvut.cz/wiki/help/common/plagiarism_cheating
https://cw.fel.cvut.cz/wiki/help/common/plagiarism_cheating
https://cw.fel.cvut.cz/wiki/help/common/plagiarism_cheating
https://cw.fel.cvut.cz/wiki/help/common/plagiarism_cheating

COURSE ADMINISTRATION @

11

Exams and Tests

There will be two tests during the semester (mid-term and end-of-term) and a final exam during the exam period. The format of both the
exam and the mid-term/end-of-term tests will be specified during the semester.

The content of the exam / test will be based on the content of:

1. Lectures before the date of the exam / test (not limited but including the slides released after each lecture)
2. Exercises and home-works practiced before the date of the exam / test
3. Relevant chapters of the & Wentworth2012 book

4. Collection of Python multiple-choice question to practice for the exam & http://www.sanfoundry.com/1000-python-questions-
answers/ related to the content of the lectures

@ COURSE ADMINISTRATION @

Additional Online Resources

Course o
Get Unstuck Tools Q) Try Pro For Free
- Menu

A

[T Learn | & x script.py v Hello and welcome

My
Home

HELLO WORLD print({"Hello and welcome")

Welcome

Python is a programming
language. Like other languages, it

gives us a way to communicate

12

https://cw.fel.cvut.cz/wiki/courses/be5b33prg/resources
https://cw.fel.cvut.cz/wiki/courses/be5b33prg/resources

)

ik WHY PYTHON? G
13
According to
1. - one of the easiest programming languages
to learn, known for high reliability and simple syntax
(rapid prototyping, steep learning curve)
2.
(, , /,
L)
3. available for many operating

systems, often used to command other programs

https://www.techrepublic.com/google-amp/article/why-python-is-so-popular-with-developers-3-reasons-the-language-has-exploded/
https://www.techrepublic.com/google-amp/article/why-python-is-so-popular-with-developers-3-reasons-the-language-has-exploded/
https://www.techrepublic.com/
https://www.tensorflow.org/
https://www.scipy.org/
http://scikit-learn.org/stable
http://playground.arduino.cc/Interfacing/Python
https://www.techrepublic.com/
https://www.tensorflow.org/
https://www.scipy.org/
http://scikit-learn.org/stable
http://playground.arduino.cc/Interfacing/Python

Ao

WHY PYTHON?

@

Sep 2022

1

Sep 2021

2

Change Programming Language
@ Python
v (E!' Cc
Java

CH

\‘.9 C++
C

Ratings

15.74%

13.96%

1n.72%

9.76%

4.88%

Change

+4.07%

+2.13%

+0.60%

+2.63%

-0.89%

14

September 2020: Python enters the TIOBE index top 3 for the first time in 2018
and holds top 3 position ever since

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/programming-languages-definition/

WHY PYTHON?

COMPANIES USING PYTHON
X [pvre Googl
E) .‘A
reddit 1;:?“ yelpss

Companies using python #1: Google: The company that needs no
introduction, Google. Its video platform Youtube is all written on python!

Companies using python #2: Instagram: An image sharing platform was a
simple language developed on Django (Python framework) before it was
acquired by Facebook.

Companies using python #3: Netflix: The video streaming platform offer
suggestions to its users constantly. Do you know what makes this possible.
Yes, it's THE PYTHON!

Companies using python #4: Facebook: According to the official blog from
facebook, 21% of facebook codebase is based on Python.

Stack Overflow

Ratings (%

15

TIOBE Index for Python

Source: www.tiobe.com

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

a good friend of yours:

for learning from others but not for copy-pasting others code!

https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://hackernoon.com/future-of-python-language-bright-or-dull-uv41u3xwx
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://hackernoon.com/future-of-python-language-bright-or-dull-uv41u3xwx
https://stackoverflow.com/

THE PROGRAM ®

16

input program output

is a sequence of instructions that specifies how to
perform a computation.
- get data from the keyboard, a file, device ..
- display data on the screen or send data to a file or
other device (client/server, local/remote).
- perform mathematical operations ()
- Check for certain conditions and
execute the appropriate sequence of statements.
- Perform some action repeatedly

OUR PROGRAM

text editor 4’[source code }

ascil text

python3 interpreter

original slide by Tomas Svoboda, BE5SB33PRG 2016/2017

17

@ PYTHON INTERPRETER @

18

Entering commands - in two modes:
1. Immediate mode using python console (quick testing)
2. Script mode using IDE or text editor (development)
3. IPython Notebook (presentation)

input python3 interpreter output

Ao

PYTHON INTERPRETER

TIME TO CODE!

THE ZEN OF PYTHON

michalreinstein@MacBook-Pro:~$~ $ python3

Python 3.6.2 (default, Sep 21 2017, 00:54:38)

[GCC 4.2.1 Compatible Apple LLVM 8.1.0 (clang-802.0.42)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import this

The Zen of Python, by Tim Peters

Beautiful 1is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex 1is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

Although never 1is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good 1idea.

Namespaces are one honking great idea -- let's do more of those!
>>>

artifex.org/~hblanks

http://artifex.org/~hblanks/talks/2011/pep20_ by example.html

le.html

https://artifex.org/~hblanks/talks/2011/pep20_by_example.html
http://artifex.org/~hblanks/talks/2011/pep20_by_example.html
http://artifex.org/~hblanks/talks/2011/pep20_by_example.html

Ao

WHAT IS PYTHON?

Integrated Development Environment, IDE

Python program, code,
expressions

Python interpreter

Operating System
MS Win, Mac OSX, Linux

computer - hw

21

@% DEBUGGING — HUNTING ERRORS | (@

22

Formal tokens & structure of the code must obey rules (IDE)
Python executes only syntactically correct code

Discovered during runtime (program fails!)
* Exceptions — something exceptional happens
(we can catch and handle exceptions!)

 The meaning of the program (semantics) is wrong
Program runs but does something different than we want

ik DATA TYPES ®

>>> type("Hello, World!") >>> type(3.2) >>> type ("17")
<class ’"str’> <class ’float’> <class ’"str’>
>>> type(l7) >>> type ("3.2")
<class "int’> <class ’"str’>

Strings in Python can be enclosed in either single quotes (’) or double quotes ("), or three of
each (ﬂ r or nmmn I'I')

>>> type(’'This is a string.’)
<class 'str’>

>>> type("And so is this.")
<class ’'str’>

>>> type(ll n |land this-ll'ﬂ'")
<class 'str’>
>>> type(’'’"and even this...’'’")

<class "str">

* Integers (int) 1,10, 124
e Strings (str) "Hello, World!”
* Float (float) 1.0, 9.999

http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html
http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

ik VARIABLES ®

24

The assignment statement gives a value to a variable:

>>> message = "What’s up, Doc?" >>> day = "Thursday"

>>»> n = 17 >>> day

>>> pi = 3.14159 "Thursday’

>>> message >>> day = "Friday"

"What’s up, Doc?’ >>> day

>>> n "Friday’

17 >>> day = 21

>>> pi >>> day

3.14159 21

 We use variables to things!

e Do not confuse = and == !

=is token such that name_of variable = value

== |s operator to
* Key property of a variable that we can change its value
* Naming convention:
* lllegal name causes a

(variable name must begin with letter or underscore)

http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html
http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

ik VARIABLES ®

25

humber >>> 7Jetrombones = "big parade"
SyntaxError: invalid syntax
$ >>> moreS = 1000000
SyntaxError: invalid syntax
| >>> class = "Computer Science 101"
class SyntaxError: invalid syntax
* We use variables to things!
* Do not confuse = and == |
=is token such that name_of variable = value

== |s operator to

Key property of a variable that we can change its value
Naming convention:

lllegal name causes a (begin with letter or)

http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html
http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

ik KEYWORDS
and as assert | break class | continue
det del | elif clse except | exec
finally | for | from global if import
n 1S lambda | nonlocal | not or
pass raise | return | try while | with
yield | True | False None

Python keywords have
Always choose names

Use

purpose

to human readers
to improve readability and clarity

26

http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html
http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

COMMENTS @

27

This demo program shows off how elegant Python is!
Written by Joe Soap, December 2010.
Anyone may freely copy or modify this program.

print ("Hello, World!™) # Isn’t this easy!

Big & complex programs == difficult to read

Comments and blank lines are for human readers only,
ignored by the interpreter

Use this token # to start a comment

Use to make the code visually more appealing

http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html
http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

STATEMENTS

python3.6 /Applications/Py -

S|

Ll LVULS, VU AT

in students:

j len(sfudent) i
print(student)

David
= Brandon

Statement is an executable in Python
Statements

So far only assignment statements

Statement examples:

28

http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html
http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

EXPRESSIONS ®

Python Console
/opt/local/bln/pythonB 6 /Appllcatlons/Py -
|) 10

on 2 aftault, Sep 21 2017,
students =]

for student in students:
len(student) >= 5:
print(student)

David
—a» Brandon

G =5

En-
Xy

Expression is a combination of , ,

and to functions

Built-in Python functions:

Value by itself is an expression

Expression (right side of an assignment)

29

http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html
http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

REFERENCES

)

(8

30

https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start
http://openbookproject.net/thinkcs/python/english3e/
https://cw.fel.cvut.cz/wiki/courses/be5b33prg/tutorials/python#watching_and_listening
https://cw.fel.cvut.cz/wiki/courses/be5b33prg/tutorials/python#watching_and_listening
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
http://stanfordpython.com/
https://www.sanfoundry.com/1000-python-questions-answers/
https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start
http://openbookproject.net/thinkcs/python/english3e/
https://cw.fel.cvut.cz/wiki/courses/be5b33prg/tutorials/python#watching_and_listening
https://cw.fel.cvut.cz/wiki/courses/be5b33prg/tutorials/python#watching_and_listening
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
http://stanfordpython.com/
https://www.sanfoundry.com/1000-python-questions-answers/

	Slide 1: PRG – PROGRAMMING ESSENTIALS
	Slide 2: INTRODUCTION
	Slide 3: THE GOAL!
	Slide 4: THE WAY OF THE PROGRAM
	Slide 5: PROBLEM SOLVING!
	Slide 6: EXAMPLE – THE PROBLEM!
	Slide 7: EXAMPLE – THE PROBLEM!
	Slide 8: COURSE ADMINISTRATION
	Slide 9: COURSE ADMINISTRATION
	Slide 10: COURSE ADMINISTRATION
	Slide 11: COURSE ADMINISTRATION
	Slide 12: COURSE ADMINISTRATION
	Slide 13: WHY PYTHON?
	Slide 14: WHY PYTHON?
	Slide 15: WHY PYTHON?
	Slide 16: THE PROGRAM
	Slide 17: OUR PROGRAM
	Slide 18: PYTHON INTERPRETER
	Slide 19: PYTHON INTERPRETER
	Slide 20: THE ZEN OF PYTHON
	Slide 21: WHAT IS PYTHON?
	Slide 22: DEBUGGING – HUNTING ERRORS
	Slide 23: DATA TYPES
	Slide 24: VARIABLES
	Slide 25: VARIABLES
	Slide 26: KEYWORDS
	Slide 27: COMMENTS
	Slide 28: STATEMENTS
	Slide 29: EXPRESSIONS
	Slide 30: REFERENCES

