Graph

* Nodes, Vertices
* Servers, cities...
* Persons, people...
* Objects in comp. science
* ... etc.
* Edges
* Connections, roads...
* Personal relations
* Relations among objects * ... etc.

Usual graph representations

nodes
$=$ indices
Node
Lists of degrees neighbours

0	2	\ldots	2	3			
1	3	3	4	5		
2	2	0	3			
3	5	0	2	1	4	5
4	3	\ldots	1	3	5		
5	3	1	3	4		

1D/2D array, vector, ArrayList...
Less obvious, more effective

Adjacency matrix

Nodes $=$ indices	0	1	2	3	4	5
0	0	0	1	1	0	0
1	0	0	0	1	1	1
2	1	0	0	1	0	0
3	1	1	1	0	1	1
4	0	1	0	1	0	1
5	0	1	0	1	1	0

2D array, matrix

Plain, obvious, less effective

\author{

* Connected graph * Disconnected - graph
}

* Cycle / circle
* N nodes, N edges

* Path
* N nodes, $\mathrm{N}-1$ edges

* Tree
* Connected
* N nodes, N-1 edges
* is bipartite

* Complete graph
* N nodes
* $\left(N^{2}-N\right) / 2$ edges

* Regular graph
* All node degrees are the same

Small graph zoo

* Weighted graph
* Each edge has its cost (length, weight)

Cycle in a graph

* path which first and last node are the same

* Path between A and B
* Path visits each node at most once

* Bipartite graph
* two-colorable
* cycles only of even length
* No edges inside partitions

* Spanning tree
* subgraph which is a tree and it contains all nodes

* Complete bipartite graph
* M and N nodes in partitions
* M x N edges

* Directed acyclic graph (DAG)
* No directed loops

* Topological order of the same DAG

A few apparently innocuous problems related to graphs

A few apparently innocuous problems related to graphs

Easy problem = a complete solution may be taught in bachelor courses.

Hard problem = a complete solution is unknow to this day.
(However, there often exist satisfactory approximate solutions.
Typically, they are quite advanced)

Clay Mathematics Institute

http://www.claymath.org/millennium-problems/rules-millennium-prizes
offers prize $\mathbf{1 0 0 0} \mathbf{0 0 0} \mathbf{\$}$ for a complete solution of any of those hard questions.
The prize exists since the year 2000.
Nobody has claimed it yet :-(...

Connectivity

Is there a path between any two nodes?

Easy problem

Algorithm: DFS, BFS, Union-Find
Complexity: DFS, BFS $\mathrm{O}(|\mathrm{V}|+|E|)$, Union-Find $\mathrm{O}(|E| \cdot \alpha(|\mathrm{V}|))$

Yes, one connected component.

No, four connected components.

Connectivity

Is there a path between any two nodes?

Easy problem

Connectivity

Is there a path between any two nodes?

Easy problem

Is the graph connected?

No,
it consists of two components.

Independence

Maximum size of a set of nodes in which no two nodes are adjacent.

Hard problem in general

Easy problem on graphs with some particular structure

* Bipartite graph * Tree is always bipartite

* Cycle

* Complete graph

Independence

Maximum size of a set of nodes in which no two nodes are adjacent.
Ex: How many of them in this graph? more than 23?
Hard problem

Dominance

Maximum size of such set M of nodes that each node in the graph is either in M or is a neighbour of some node in M .
Ex. A fire station must be located either in a village or in the immediately neighbour village. How many fire stations are enough to serve the region?

Hard problem

Easy problem on graphs with some particular structure

* Tree, apply Dynamic programming

* Circle

* Complete graph

Dominance

Ex. A fire station must be located either in a village or in the immediately neighbour village. Can there be less than 17 fire stations to serve the region?

Hard problem

Colorability, chromatic number

Minimum number of colors needed to color each node so that any two neighbours have different color.

Is $\mathbf{2}$ colors enough? -- Easy problem. Graph must be bipartite.

2 colors, bipartite graph

2 colors for any tree

2 colors are not enough in a cycle of odd length.

2colors are not enough, there is a cycle of odd length in the graph

Is graph bipartite? Apply BFS.
Mark by 1 all nodes in odd distance from the start and mark by 0 all nodes in even distance from start. If any two nodes with the same mark are connected by an edge, the graph is not bipartite (two-colorable).

Colorability, chromatic number

Minimum number of colors needed to color each node so that any two neighbours have different color.
Hard problem -- Are 3 colors enough?

3 colors suffice

4 colors.
The node colors are chosen WLOG, the color of node at the bottom right cannot be any of a, b, c.

5 colors.
The graph contains a clique (complete subgraph) of size 5 .
Clique detection is a hard problem.

Colorability, chromatic number

Minimum number of colors needed to color each node so that any two neighbours have different color.

Hard problem -- Are 3 colors enough?

4 colors are suffice in this graph. Maybe 3 colors would suffice too? ... ??

Shortest paths

Minimum possible number of edges (nodes) on a path from A to B.

Easy problem

Algorithms: BFS, Dijkstra, Bellman-Ford, Floyd-Warshall, Johnson... Complexities: Polynomial, mostly less than $\mathrm{O}\left(|\mathrm{V}|^{3}\right)$.

Longest paths

Typically, each node/edge can be visited at most once.
Hard problem for general graphs

Easy problem for trees and DAGs
Algorithm: Dynamic programming
Compexity: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$

Minimum spanning tree

Minimum total cost (weight) of selected edges which connect all nodes in the graph. The selected edges form a tree.

Easy problem

Algorithms: Prim's $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$ $\mathrm{O}(|\mathrm{E}| \cdot \log (|\mathrm{V}|))$
with matrix representation with linked list representation and with binary heap

Kruskal's O(|E|•log(|V|))
Borůvka's O(|E|•log(|V|))

Minimum spanning tree

Minimum total cost (weight) of selected edges which connect all nodes in the graph. The selected edges form a tree.

Easy problem

Here, the cost of an edge is proportional to its length (prefer shortest edges possible)

Travelling salesman problem (TSP)

Traverse a complete weighted graph, visit each node once and pay the minimum price for the journey = sum of costs of all visited edges.

Hard problem

Hamilton path

Is there a path in the graph which contains each node (exactly once)?

Hamilton cycle

Is there a cycle in the graph which contains each node?

Hard problem

Both Hamilton path and Hamilton cycle exist.

Only Hamilton path exists. There is no Hamilton cycle.

Neither a Hamilton path nor a Hamilton cycle exists.

Euler trail

A trail that visits every edge exactly once (allowing for revisiting vertices)? Ex: Can a postman walk through each street in their region exactly once?

Easy problem Graph must be connected

 and it must contain at most 2 nodes of odd degree.

Euler trail does not exist, there are >2 nodes with odd degree

Algorithm: Hierholzer's O(|E|)

The trail starts and ends in the nodes with odd degree

The trail is closed, all node degrees are even

Planar graph

Can the graph be drawn in a plane wihout crossing its edges?
Easy question (however, little bit more advanced) \because

$$
\begin{aligned}
& \text { Algorithms: } \text { Hopcroft and Tarjan, } O(|V|) \\
& \text { Boyer and Myrvold, } \\
& \mathrm{O}(|\mathrm{~V}|)
\end{aligned}
$$

The graph is planar, the blue edge can be drawn differently:

Not planar.
Non planar graphs "contain" either a complete graph on 5 nodes or a complete bipartite graph on 3 and 3 nodes.
The planar graphs do not "contain" them.

Planar graph

Can the graph be drawn in a plane wihout crossing its edges?

It is impossible here. Each black node is connected to each yellow node by a separate path. It is the case of a complete bipartite graph with partitions of size 3 and 3 (so called $\mathrm{K}_{3,3}$). That graph cannot be drawn in the plane without edges crossing(s).

Clique number

The size of the maximal clique, that is, of a subgraph which is complete, that is, of the subgraph where each node is connected to each other node. Ex. Choose a largest group of your friends in which everybody knows each other.

Hard problem

Clique number of all trees is 2. (Rather obviously)

Clique number

The size of the maximal clique, that is, of a subraph which is complete, that is, of the subgraph where each node is connected to each other node.

Clique of size 5 (or bigger) is not in the graph. To verify it mechanically, it is enough to check neighbour relations in all 5-element subsets of nodes. The number of those subsets is $\operatorname{COMB}(55,5)=3478761$.

Graph isomorphism

Is the structure of two graphs identical? In other words, can one graph be drawn in such way that it looks exactly as the other one?

It is not know if this is a hard problem or an easy problem.

A

B
A and B are not isomorphic, right central node in B has degree 5, there is no analogous node anywhere in A. The structure of A and B must be different.

C

D
C and D are isomorphic, the nodes with the same labels correspond to each other, the edges in both C and D connect the nodes with the same labels

Partial recapitulation of the jungle of graph problems and their complexities

Easy problem

Connectivity?
Shortest path?
Min. spanning tree?
Euler trail?
Planarity?

Colorability?

1,2 colors	easy
3 or more colors	hard

Isomorphism?

| Trees, ciculants... | easy |
| :--- | :--- | :--- |
| regular graphs... | hard | etc...

Longest path?
DAG, tree general graph

easy
hard

Hard problem

Travelling salesman?

Independence?

Dominancy?

Hamiltonicity?

Clique number?
\square
Many more questions ... ? Again, "it depends". There is no definite cookbook for determining the difficulty of a problem.

Graph most ususal representations

Graph most ususal representations

Undirected graph

Adjacency matrix

Linked list representation
$A \rightarrow B \rightarrow D$
$B \rightarrow D \rightarrow A$
$C \rightarrow D \rightarrow F \rightarrow G$
$D \rightarrow C \rightarrow G \rightarrow E \rightarrow B \rightarrow A$
$\mathrm{E} \rightarrow \mathrm{H} \rightarrow \mathrm{D}$
$\mathrm{F} \rightarrow \mathrm{C} \rightarrow \mathrm{G}$
$G \rightarrow C \rightarrow H \rightarrow D \rightarrow F$
$H \rightarrow G \rightarrow E$

Graph most ususal representations

Directed graph

Adjacency matrix

Linked list representation

Graph most ususal representations

Linked list representation
$A \rightarrow B / 9 \rightarrow D / 3$
$B \rightarrow D / 4 \rightarrow A$
$C \rightarrow D$ 55 $\rightarrow F$ 26 $\rightarrow E$ 12
$D \rightarrow C$ 55 $\rightarrow F|7 \rightarrow B| 4 \rightarrow A$
$E \rightarrow C$ 12 \rightarrow F 15
$F \rightarrow C|26 \rightarrow E| 15 \rightarrow D / 7$

Undirected weighted graph

Weight (cost) matrix

	A	B	C	D	E	F
A	0	9	0	3	0	0
B	9	0	0	4	0	0
C	0	0	0	55	12	26
D	3	4	55	0	0	7
E	0	0	12	0	0	15
F	0	0	26	7	15	0

Graph most ususal representations
Linked list/ array representation

Undirected weighted graph

The weights of edges are at the same index in the second list.

+ Pro: Simpler object or even no object at all in the arrays.
- Con: Keeping lists in sync needs more care and caution in the code.

The representation is usually a more or less obvious combination of the methods in the previous cases -Weight matrix or linked list.

