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Dynamic programming

abbreviation:  DP 

ALG 10
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Sources, overviews, examples see

https://cw.fel.cvut.cz/wiki/courses/ae4b33alg/links
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Dynamic programming

DP is a general strategy applicable to many different optimisation
problems in diverse fields of computer science. 
In this respect it is  similar to Divide and conquer strategy.

1. The desired optimal solution is composed of suitably chosen
optimal solutions of the same problem with reduced data. 

2. The recursive formulation of the solution depends on many
identical and repeated subproblems.
DP avoids unnecessary repeated computations by the method
of tabelation (memoization) of the results of the subproblems.

Important properties
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Dynamic programming

Application examples:

 Optimal paths in graphs
 Longest subsequences with prescribed properties
 Knapsack problem
 Optimal scheduling of interdependent processes
 Approximate matching of patterns in text (bioinformatics)
 Longest common subsequence
 Optimal order of matrix multiplication
 Optimal binary search tree
 Optimal node/edge covering of a tree
 And many more....
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Dynamic programming

List of DP algorithms on en.wikipedia.org/wiki/Dynamic_programming

Illustrative screen copy
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def f(x, y):
if (x == 0) or (y == 0): return 1
return 2*f(x,y-1) + f(x-1,y)

print( f(10,10) );

f(10,10) = 127 574 017

f(x,y) = 
1 (x = 0)   ||   (y = 0)

(x > 0)  && (y > 0)2f(x, y-1) + f(x-1,y)

f(10,10) = ?

Function 
definition

Problem

Program

Solution

Tabelation in DP - example
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count = 0

def f(x, y):
global count
count += 1
if (x == 0) or (y == 0):

return 1
return 2*f(x,y-1) + f(x-1,y)

f(10,10)
print(count)

count = 369 511
Analysis

result

Simple
analysis
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f(10,6) 8,89,7 8,89,79,7 7,98,8 8,89,7 7,98,8 7,98,8 7,9 f(6,10)

f(10,10)

f(10,9) f(9,10)

f(10,8) f(9,9) f(9,9)

f(9,8) f(8,9)

f(8,10)

f(8,9) f(7,10)f(8,9)f(9,8)f(9,8)f(10,7)

More detailed analysis – recursion tree

...   repetitive calculations, many of them!f(x,y)
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8,89,7 7,98,8 7,98,8 7,9 f(6,10)

f(10,10)

f(9,10)

f(9,9)

f(9,8) f(8,9)

f(8,10)

f(8,9) f(7,10)

count:  calls values
1

2

4

8

16

1

2

3

4

5

512 10

8,8 7,98,8

f(9,9)

f(8,9)f(9,8)

9,7

Detailed analysis continues – recursive calls effectivity
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f(x,y)  = 
1 (x = 0)   ||   (y = 0)

(x > 0)  && (y > 0)

f(10,10)
f(10,9)
f(10,8)

f(9,10)f(8, 10)

f(0,2)
f(0,1)
f(0,0) f(2,0)f(1,0)

f(x,y)
f(x,y-1)

f(x-1,y)

f(10,0)

f(0,10)

f(1,1)

f(9,9)

2

2f(x, y-1) +  f(x-1,y)

0 21 3 109
0
1
2
3

9
10

x

y

Table in general
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f(x,y)   = 
1 (x = 0)   ||   (y = 0)

(x > 0)  && (y > 0)

127574017

32978945

8085505

6161612728000257

1
1
1 11

f(x,y)
f(x,y-1)

f(x-1,y)

1

1

3

16807935

2

2  f(x, y-1)  +   f(x-1,y)

1

1
5

7
7

17
15

31
49

311

1
9

0 21 3 109
0
1
2
3

9
10

4

4 x

y

Table with numerical values

9

A4B33ALG  2015/10

Tabelation in DP - example



def dynTable(M, N):
# initialize by constant 1 for x = 0 or y = 0
t = [[1]*(N+1) for i in range(M+1)]

for y in range(1, M+1):
for x in range(1, N+1):

t[y][x] = 2*t[y-1][x] + t[y][x-1]

return t[M][N]

def f(x, y):
return dynTable(y, x)

All values are precomputed

Function call

10
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Path length in unweighted graph
= no. of edges in the path.

Ex. Length (B D E F C) = 4.

Path length in wighted graph
= sum of edge weights 

in the path.
Ex. Length (A E F C G) = 14. 

11

Optimal paths in graphs

Notation:
Graph G = (V, E), set of nodes resp. edges:  V(g) resp.  E(G),  
N = |V(G)|, M = |E(G)|, or n = |V|, m = |M| etc.

Path in a graph
= sequence of incident edges which contains each node 

at most once.

4 0

1

1

9

6

2

7A B C D

E F G

A B

C D E

F G
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Problem of finding a shortest path between two given nodes
or between more nodes or between all nodes in the graph.
(E.g. Minimizing resources necessary to travel from x to y.)

The problem is solved for all practical cases of graphs.
We met earlier BFS which solves simple cases,
in more complex cases, particularly of weighted graphs, 
specific algorithms are available  -- Dijkstra, Floyd-Warshall, 
Johnson, Bellman-Ford, etc.

Asymptotic complexity is always polynomial in number of 
nodes and edges. Typically, the complexity of finding one path
is at most O(N2), often less.

Shortest paths

Methods

Complexity
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Optimal paths in graphs
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Find a longest path between two given nodes or the longest
path in the graph at whole.
(E.g. maximize the profit of temporary related processes.)

No systematic satisfactory solution has been found yet.

1. Brute force -- exponential complexity, useless when N > cca 20.

2. Algorithms for approximate solutions with polynomial complexity
-- either find optimum with limited probability < 1
-- or can guarantee only a suboptimal solution
-- are often non-trivial and requiring advanced impementation.

Possible strategies

Longest paths

Exponential complexity
NP - hard problem
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Optimal paths in graphs
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3. Some specific types of graph allow for application
of specific and effective algorithms (limited to that type of graph)

3A.
Graph is a tree (both weighted or unweighted and both directed
or undirected). Optimum path can be found in time (N) by 
easy postorder traversal modification. 

3B. 
Graph is directed and acyclic, may be weighted or unweighted.
Standard abbreviation: DAG (Directed Acyclic Graph)

Possible strategies

Opportunity for DP approach

Most simple cases

A4B33ALG  2015/10

Optimal paths in graphs
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Topological order od DAG is such ordering of its nodes
in which each edge points from the node with the lower order 
to the node with the higher order.

Each DAG can be topologically ordered, usually in more ways.

Any directed graph which contains at least one cycle
cannot be topologically ordered.

Graphs in some DP problems are implicitely or naturally 
topologically ordered from the moment of problem posing. 

Topological order of any DAG (at least one ) can be found
in time (M), i.e. in time proportional to the nuber of edges.

Topological order of DAG nodes
A4B33ALG  2015/10
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2 3 4 5 6 8 971

1

2

3

46

5 8

7

9

DAG and its topological order

Example 1
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Example 2a

9

1 2 3 4

5 6 7 8

10 11 12

1 2 3 4 5 6 7 8 9 10 11 12
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DAG and its various topological orders
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3

1 4 7 10

2 5 8 11

6 9 12

1 2 3 4 5 6 7 8 9 10 11 12
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Example 2b

DAG and its various topological orders
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4

1 3 6 9

2 5 8 11

7 10 12

1 2 3 4 5 6 7 8 9 10 11 12
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Example 2c

DAG and its various topological orders
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The order in which nodes are inserted into the queue is the topological order of DAG. 

0. new queue Q of Node

1. for each x in V(G):
if x.indegree == 0: # x is a root

Q.insert(r)

2. while !Q.empty(): 
v = Q.pop()
for each edge (v, w)  E(G):

G.removeEdge((v, w))
if w.indegree == 0:    # w is a root

Q.insert(w)   

We suppose that operation 
G.removeEdge((v, w))
has constant complexity*).

0.  Complexity  O(N)
1.  Complexity (N)
2.  Complexity (M), 

each edge is visited exactly
once and it is processed in 
constant time.

Topological sort 

Complexity : (N+M)   

Algorithm Complexity

A4B33ALG  2015/10

*). Often it is enough to just mark the edge as deleted, without physically deleting it. 

Topological order
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1 1

2

1

2

3

3

2

3

Queue:  1, 2, 3. Queue:  2, 3, 4.

4

4 1

2

3

4

Queue: 3, 4.

Topological sort -- example

Queue: 4.
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1

2

3

4

Queue: 5, 6.

6

5

1

2

3

4

Queue: 6, 7, 8.

6

5

7

8

1

2

3

4

Queue: 7, 8.

6

5

7

8

1

2

3

4

Queue: 8, 9.

6

5 8

7

9
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1

2

3

4

Queue: 9.

6

5 8

7

9

1

2

3

4

Queue: Empty.

6

5 8

7

9

2 3 4 5 6 8 971

Topological order
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We process nodes of DAG in their topological order.
Denote by d[x] length of the path  which ends in x and its length  is maximal.

Charakteristic DP view "from the end to the beginning":
-- d[x] is set when values of d are known for all previous 

(= already processed) nodes in the topological order.
-- d[x] is the maximum of values

{d[y1] + w1,   d[y2] + w2, ..., d[yk] + wk}, 
where (y1, x), (y2, x) , ... are all edges ending in x 
and w1, w2, ..., are their respective weights. 

Longest path in DAG

y3y2y1

Topological order

Processed part of DAG Progress direction

w1

w2

w3 x

A4B33ALG  2015/10
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-- d[x]is the maximum of values
{d[y1] + w1,   d[y2] + w2, ..., d[yk] + wk}, 
where (y1, x), (y2, x) , ... are all edges ending in x 
and w1, w2, ..., are their respective weights.

-- If all values {d[y1] + w1,  d[y2] + w2, ..., d[yk] + wk}
are negative then none of them contributes to the longest path
and the value of d[x] is reset:  d[x] = 0.

-- The node yj, for which the value d[yj] + wj is maximal and non-negative,
is set as a predecessor of x on the longest path.

y3y2y1

30

40

10 x

A4B33ALG  2015/10

d[y1]=10 d[y2]=20
p[x]=y2
d[x]=60d[y3]=35

Longest path in DAG
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61 2 3 4 5 6 72 -2 4 2

7

5

-1

3
8

-2

-1
1

-3

3
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Example

Find the longest path and its length.

Longest path in DAG
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61 2 3 4 5 6 72 -2 4 2

7

5

-1

3
8

-2

-1
1

-3

3
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d=0

d = max {0+6} 
= 6

p=1

p=nil

Longest path in DAG
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61 2 3 4 5 6 72 -2 4 2

7

5

-1

3
8

-2

-1
1

-3

3
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d=0
d = max {0+-2,

6+2} 
= 8

p = 2

d=6
p=nil p=1

Longest path in DAG
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61 2 3 4 5 6 72 -2 4 2

7

5

-1

3
8

-2

-1
1

-3

3
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d=0 d=6 d=8
d = max {0+8,

6+3,
8+-2} 

= 9

p = 2

p=nil p=1 p=2

Longest path in DAG
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61 2 3 4 5 6 72 -2 4 2

7

5

-1

3
8

-2

-1
1

-3

3
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d=0 d=6 d=8
d = max {6+-1,

8+-1} 
= 7

p = 3

d=9
p=nil p=1 p=2 p=2

Longest path in DAG
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61 2 3 4 5 6 72 -2 4 2

7

5

-1

3
8

-2

-1
1

-3

3
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d=0 d=6 d=8
d = max {0+5,

8+1,
9+3,
7+4} 

= 12

p = 4

d=9 d=7
p=nil p=1 p=2 p=2 p=3

Longest path in DAG
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61 2 3 4 5 6 72 -2 4 2

7

5

-1

3
8

-2

-1
1

-3

3
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d=0 d=6 d=8
d = max {6+7,

7+-3,
12+2} 

= 14

p = 6

d=9 d=7 d=12
p=nil p=1 p=2 p=2 p=3 p=4

Longest path in DAG
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61 2 3 4 5 6 72 -2 4 2

7

5

-1

3
8

-2

-1
1

-3

3
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d=0 d=6 d=8 d=9 d=7 d=12 d=14
p=nil p=1 p=2 p=2 p=3 p=4 p=6

Length of the longest path:  14
The longest path itself:  1 -- 2 -- 4 -- 6 -- 7

Longest path in DAG
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0. allocate memory for distance and predecessor of each node 

1. for each x in V(G):
x.dist = negInfinity         
x.pred = null 

# supposing nodes are processed
# in ascending topological order
2. for each node x in V(G):

for each edge e = (y, x) in E(G):
if x. dist < y.dist + e.weight:  

x. dist = y.dist + e.weight
x.pred = y   

} 
if x. dist < 0: x.dist = 0;     # avoid negative path lengths

}

0.  Complexity (N)

1.  Complexity (N)

2.  Complexity (M), 
each edge is visited exactly
once and it is processed in 
constant time.

Complexity: (N+M)   

A4B33ALG  2015/10

Longest path in DAG
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2. for each node    x    in V(G):

if x. dist < 0: 
x.dist = 0  

for each edge e = (x, y) in E(G):
if y.dist < x.dist + e.weight:  

y.dist = x.dist + e.weight
y.pred = x   

2. for each node   x    in V(G): 

for each edge e = (y, x) in E(G):
if  x.dist < y.dist + e.weight:  

x.dist = y.dist + e.weight
x.pred = y  

if x. dist < 0:  
x.dist = 0 

yyy y yyx

order of processing 
= topological order 

order of processing 
= topological order 

Variant I

x

Variant II

A4B33ALG  2015/10

Longest path in DAG
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2

3

4

5

8
-3

22
-3

1
-1

2 1
-4

d= -3 d= -1 d= 1

d= -2
d= 0

d= -1 d= 1 d= 2

7

6

Actual maximum path is 3 -- 5 -- 7 which weight is 4.
Algorithm limited to non-negative weights finds
only suboptimal path 1 -- 2 -- 4 -- 6 which weight is 2. 

Algorithms presented in the literature and on the web
often solve the maximum path in DAG problem only for non-negative
edge weights and  do not mention explicitely this limitation.
Those algorithms cannot handle DAG containing negative weight edges.

Warning

Incorrect result produced by algorithm 
expecting only non-negative edge weights 

maximal d!
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1 20 N

1

2

N

a a a a

a a a a

a a a a

a a a a

b b b b

b b b b

b b b b

b b b b

Each path from the root to the leaf is 
optimal, its weight is N·(a+b).

Number of all paths is   Comb(2N, N),
and it holds    2N < Comb(2N, N) < 4N.

The numbert of optimal paths thus 
grows exponentially with the value of N.

0

N
1 

10 
20 
30 
40 

# of optimal paths
2 

184756 
137846528820 

118264581564861424 
107507208733336176461620 
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Problem of reconstucting all optimal paths
-- the number of paths can be too big.

Example

Longest path in DAG


