
0

Dynamic programming

abbreviation: DP

ALG 10

A4B33ALG 2015/10

Sources, overviews, examples see

https://cw.fel.cvut.cz/wiki/courses/ae4b33alg/links

1

Dynamic programming

DP is a general strategy applicable to many different optimisation
problems in diverse fields of computer science.
In this respect it is similar to Divide and conquer strategy.

1. The desired optimal solution is composed of suitably chosen
optimal solutions of the same problem with reduced data.

2. The recursive formulation of the solution depends on many
identical and repeated subproblems.
DP avoids unnecessary repeated computations by the method
of tabelation (memoization) of the results of the subproblems.

Important properties

A4B33ALG 2015/10

2

Dynamic programming

Application examples:

 Optimal paths in graphs
 Longest subsequences with prescribed properties
 Knapsack problem
 Optimal scheduling of interdependent processes
 Approximate matching of patterns in text (bioinformatics)
 Longest common subsequence
 Optimal order of matrix multiplication
 Optimal binary search tree
 Optimal node/edge covering of a tree
 And many more....

A4B33ALG 2015/10

3

Dynamic programming

List of DP algorithms on en.wikipedia.org/wiki/Dynamic_programming

Illustrative screen copy

A4B33ALG 2015/10

def f(x, y):
if (x == 0) or (y == 0): return 1
return 2*f(x,y-1) + f(x-1,y)

print(f(10,10));

f(10,10) = 127 574 017

f(x,y) =
1 (x = 0) || (y = 0)

(x > 0) && (y > 0)2f(x, y-1) + f(x-1,y)

f(10,10) = ?

Function
definition

Problem

Program

Solution

Tabelation in DP - example

4

A4B33ALG 2015/10

count = 0

def f(x, y):
global count
count += 1
if (x == 0) or (y == 0):

return 1
return 2*f(x,y-1) + f(x-1,y)

f(10,10)
print(count)

count = 369 511
Analysis

result

Simple
analysis

5

A4B33ALG 2015/10

Tabelation in DP - example

f(10,6) 8,89,7 8,89,79,7 7,98,8 8,89,7 7,98,8 7,98,8 7,9 f(6,10)

f(10,10)

f(10,9) f(9,10)

f(10,8) f(9,9) f(9,9)

f(9,8) f(8,9)

f(8,10)

f(8,9) f(7,10)f(8,9)f(9,8)f(9,8)f(10,7)

More detailed analysis – recursion tree

... repetitive calculations, many of them!f(x,y)

6

A4B33ALG 2015/10

Tabelation in DP - example

8,89,7 7,98,8 7,98,8 7,9 f(6,10)

f(10,10)

f(9,10)

f(9,9)

f(9,8) f(8,9)

f(8,10)

f(8,9) f(7,10)

count: calls values
1

2

4

8

16

1

2

3

4

5

512 10

8,8 7,98,8

f(9,9)

f(8,9)f(9,8)

9,7

Detailed analysis continues – recursive calls effectivity

7

A4B33ALG 2015/10

Tabelation in DP - example

f(x,y) =
1 (x = 0) || (y = 0)

(x > 0) && (y > 0)

f(10,10)
f(10,9)
f(10,8)

f(9,10)f(8, 10)

f(0,2)
f(0,1)
f(0,0) f(2,0)f(1,0)

f(x,y)
f(x,y-1)

f(x-1,y)

f(10,0)

f(0,10)

f(1,1)

f(9,9)

2

2f(x, y-1) + f(x-1,y)

0 21 3 109
0
1
2
3

9
10

x

y

Table in general

8

A4B33ALG 2015/10

Tabelation in DP - example

f(x,y) =
1 (x = 0) || (y = 0)

(x > 0) && (y > 0)

127574017

32978945

8085505

6161612728000257

1
1
1 11

f(x,y)
f(x,y-1)

f(x-1,y)

1

1

3

16807935

2

2 f(x, y-1) + f(x-1,y)

1

1
5

7
7

17
15

31
49

311

1
9

0 21 3 109
0
1
2
3

9
10

4

4 x

y

Table with numerical values

9

A4B33ALG 2015/10

Tabelation in DP - example

def dynTable(M, N):
initialize by constant 1 for x = 0 or y = 0
t = [[1]*(N+1) for i in range(M+1)]

for y in range(1, M+1):
for x in range(1, N+1):

t[y][x] = 2*t[y-1][x] + t[y][x-1]

return t[M][N]

def f(x, y):
return dynTable(y, x)

All values are precomputed

Function call

10

A4B33ALG 2015/10

Tabelation in DP - example

Path length in unweighted graph
= no. of edges in the path.

Ex. Length (B D E F C) = 4.

Path length in wighted graph
= sum of edge weights

in the path.
Ex. Length (A E F C G) = 14.

11

Optimal paths in graphs

Notation:
Graph G = (V, E), set of nodes resp. edges: V(g) resp. E(G),
N = |V(G)|, M = |E(G)|, or n = |V|, m = |M| etc.

Path in a graph
= sequence of incident edges which contains each node

at most once.

4 0

1

1

9

6

2

7A B C D

E F G

A B

C D E

F G

A4B33ALG 2015/10

12

Problem of finding a shortest path between two given nodes
or between more nodes or between all nodes in the graph.
(E.g. Minimizing resources necessary to travel from x to y.)

The problem is solved for all practical cases of graphs.
We met earlier BFS which solves simple cases,
in more complex cases, particularly of weighted graphs,
specific algorithms are available -- Dijkstra, Floyd-Warshall,
Johnson, Bellman-Ford, etc.

Asymptotic complexity is always polynomial in number of
nodes and edges. Typically, the complexity of finding one path
is at most O(N2), often less.

Shortest paths

Methods

Complexity

A4B33ALG 2015/10

Optimal paths in graphs

13

Find a longest path between two given nodes or the longest
path in the graph at whole.
(E.g. maximize the profit of temporary related processes.)

No systematic satisfactory solution has been found yet.

1. Brute force -- exponential complexity, useless when N > cca 20.

2. Algorithms for approximate solutions with polynomial complexity
-- either find optimum with limited probability < 1
-- or can guarantee only a suboptimal solution
-- are often non-trivial and requiring advanced impementation.

Possible strategies

Longest paths

Exponential complexity
NP - hard problem

A4B33ALG 2015/10

Optimal paths in graphs

14

3. Some specific types of graph allow for application
of specific and effective algorithms (limited to that type of graph)

3A.
Graph is a tree (both weighted or unweighted and both directed
or undirected). Optimum path can be found in time (N) by
easy postorder traversal modification.

3B.
Graph is directed and acyclic, may be weighted or unweighted.
Standard abbreviation: DAG (Directed Acyclic Graph)

Possible strategies

Opportunity for DP approach

Most simple cases

A4B33ALG 2015/10

Optimal paths in graphs

15

Topological order od DAG is such ordering of its nodes
in which each edge points from the node with the lower order
to the node with the higher order.

Each DAG can be topologically ordered, usually in more ways.

Any directed graph which contains at least one cycle
cannot be topologically ordered.

Graphs in some DP problems are implicitely or naturally
topologically ordered from the moment of problem posing.

Topological order of any DAG (at least one) can be found
in time (M), i.e. in time proportional to the nuber of edges.

Topological order of DAG nodes
A4B33ALG 2015/10

16

2 3 4 5 6 8 971

1

2

3

46

5 8

7

9

DAG and its topological order

Example 1

A4B33ALG 2015/10

17

Example 2a

9

1 2 3 4

5 6 7 8

10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

A4B33ALG 2015/10

DAG and its various topological orders

18

3

1 4 7 10

2 5 8 11

6 9 12

1 2 3 4 5 6 7 8 9 10 11 12

A4B33ALG 2015/10

Example 2b

DAG and its various topological orders

19

4

1 3 6 9

2 5 8 11

7 10 12

1 2 3 4 5 6 7 8 9 10 11 12

A4B33ALG 2015/10

Example 2c

DAG and its various topological orders

20

The order in which nodes are inserted into the queue is the topological order of DAG.

0. new queue Q of Node

1. for each x in V(G):
if x.indegree == 0: # x is a root

Q.insert(r)

2. while !Q.empty():
v = Q.pop()
for each edge (v, w) E(G):

G.removeEdge((v, w))
if w.indegree == 0: # w is a root

Q.insert(w)

We suppose that operation
G.removeEdge((v, w))
has constant complexity*).

0. Complexity O(N)
1. Complexity (N)
2. Complexity (M),

each edge is visited exactly
once and it is processed in
constant time.

Topological sort

Complexity : (N+M)

Algorithm Complexity

A4B33ALG 2015/10

*). Often it is enough to just mark the edge as deleted, without physically deleting it.

Topological order

21

1 1

2

1

2

3

3

2

3

Queue: 1, 2, 3. Queue: 2, 3, 4.

4

4 1

2

3

4

Queue: 3, 4.

Topological sort -- example

Queue: 4.

A4B33ALG 2015/10

22

1

2

3

4

Queue: 5, 6.

6

5

1

2

3

4

Queue: 6, 7, 8.

6

5

7

8

1

2

3

4

Queue: 7, 8.

6

5

7

8

1

2

3

4

Queue: 8, 9.

6

5 8

7

9

A4B33ALG 2015/10

Topological sort -- example

23

1

2

3

4

Queue: 9.

6

5 8

7

9

1

2

3

4

Queue: Empty.

6

5 8

7

9

2 3 4 5 6 8 971

Topological order

A4B33ALG 2015/10

Topological sort -- example

24

We process nodes of DAG in their topological order.
Denote by d[x] length of the path which ends in x and its length is maximal.

Charakteristic DP view "from the end to the beginning":
-- d[x] is set when values of d are known for all previous

(= already processed) nodes in the topological order.
-- d[x] is the maximum of values

{d[y1] + w1, d[y2] + w2, ..., d[yk] + wk},
where (y1, x), (y2, x) , ... are all edges ending in x
and w1, w2, ..., are their respective weights.

Longest path in DAG

y3y2y1

Topological order

Processed part of DAG Progress direction

w1

w2

w3 x

A4B33ALG 2015/10

25

-- d[x]is the maximum of values
{d[y1] + w1, d[y2] + w2, ..., d[yk] + wk},
where (y1, x), (y2, x) , ... are all edges ending in x
and w1, w2, ..., are their respective weights.

-- If all values {d[y1] + w1, d[y2] + w2, ..., d[yk] + wk}
are negative then none of them contributes to the longest path
and the value of d[x] is reset: d[x] = 0.

-- The node yj, for which the value d[yj] + wj is maximal and non-negative,
is set as a predecessor of x on the longest path.

y3y2y1

30

40

10 x

A4B33ALG 2015/10

d[y1]=10 d[y2]=20
p[x]=y2
d[x]=60d[y3]=35

Longest path in DAG

26

61 2 3 4 5 6 72 -2 4 2

7

5

-1

3
8

-2

-1
1

-3

3

A4B33ALG 2015/10

Example

Find the longest path and its length.

Longest path in DAG

27

61 2 3 4 5 6 72 -2 4 2

7

5

-1

3
8

-2

-1
1

-3

3

A4B33ALG 2015/10

d=0

d = max {0+6}
= 6

p=1

p=nil

Longest path in DAG

28

61 2 3 4 5 6 72 -2 4 2

7

5

-1

3
8

-2

-1
1

-3

3

A4B33ALG 2015/10

d=0
d = max {0+-2,

6+2}
= 8

p = 2

d=6
p=nil p=1

Longest path in DAG

29

61 2 3 4 5 6 72 -2 4 2

7

5

-1

3
8

-2

-1
1

-3

3

A4B33ALG 2015/10

d=0 d=6 d=8
d = max {0+8,

6+3,
8+-2}

= 9

p = 2

p=nil p=1 p=2

Longest path in DAG

30

61 2 3 4 5 6 72 -2 4 2

7

5

-1

3
8

-2

-1
1

-3

3

A4B33ALG 2015/10

d=0 d=6 d=8
d = max {6+-1,

8+-1}
= 7

p = 3

d=9
p=nil p=1 p=2 p=2

Longest path in DAG

31

61 2 3 4 5 6 72 -2 4 2

7

5

-1

3
8

-2

-1
1

-3

3

A4B33ALG 2015/10

d=0 d=6 d=8
d = max {0+5,

8+1,
9+3,
7+4}

= 12

p = 4

d=9 d=7
p=nil p=1 p=2 p=2 p=3

Longest path in DAG

32

61 2 3 4 5 6 72 -2 4 2

7

5

-1

3
8

-2

-1
1

-3

3

A4B33ALG 2015/10

d=0 d=6 d=8
d = max {6+7,

7+-3,
12+2}

= 14

p = 6

d=9 d=7 d=12
p=nil p=1 p=2 p=2 p=3 p=4

Longest path in DAG

33

61 2 3 4 5 6 72 -2 4 2

7

5

-1

3
8

-2

-1
1

-3

3

A4B33ALG 2015/10

d=0 d=6 d=8 d=9 d=7 d=12 d=14
p=nil p=1 p=2 p=2 p=3 p=4 p=6

Length of the longest path: 14
The longest path itself: 1 -- 2 -- 4 -- 6 -- 7

Longest path in DAG

34

0. allocate memory for distance and predecessor of each node

1. for each x in V(G):
x.dist = negInfinity
x.pred = null

supposing nodes are processed
in ascending topological order
2. for each node x in V(G):

for each edge e = (y, x) in E(G):
if x. dist < y.dist + e.weight:

x. dist = y.dist + e.weight
x.pred = y

}
if x. dist < 0: x.dist = 0; # avoid negative path lengths

}

0. Complexity (N)

1. Complexity (N)

2. Complexity (M),
each edge is visited exactly
once and it is processed in
constant time.

Complexity: (N+M)

A4B33ALG 2015/10

Longest path in DAG

35

2. for each node x in V(G):

if x. dist < 0:
x.dist = 0

for each edge e = (x, y) in E(G):
if y.dist < x.dist + e.weight:

y.dist = x.dist + e.weight
y.pred = x

2. for each node x in V(G):

for each edge e = (y, x) in E(G):
if x.dist < y.dist + e.weight:

x.dist = y.dist + e.weight
x.pred = y

if x. dist < 0:
x.dist = 0

yyy y yyx

order of processing
= topological order

order of processing
= topological order

Variant I

x

Variant II

A4B33ALG 2015/10

Longest path in DAG

36

2

3

4

5

8
-3

22
-3

1
-1

2 1
-4

d= -3 d= -1 d= 1

d= -2
d= 0

d= -1 d= 1 d= 2

7

6

Actual maximum path is 3 -- 5 -- 7 which weight is 4.
Algorithm limited to non-negative weights finds
only suboptimal path 1 -- 2 -- 4 -- 6 which weight is 2.

Algorithms presented in the literature and on the web
often solve the maximum path in DAG problem only for non-negative
edge weights and do not mention explicitely this limitation.
Those algorithms cannot handle DAG containing negative weight edges.

Warning

Incorrect result produced by algorithm
expecting only non-negative edge weights

maximal d!

A4B33ALG 2015/10

Longest path in DAG

37

1 20 N

1

2

N

a a a a

a a a a

a a a a

a a a a

b b b b

b b b b

b b b b

b b b b

Each path from the root to the leaf is
optimal, its weight is N·(a+b).

Number of all paths is Comb(2N, N),
and it holds 2N < Comb(2N, N) < 4N.

The numbert of optimal paths thus
grows exponentially with the value of N.

0

N
1

10
20
30
40

of optimal paths
2

184756
137846528820

118264581564861424
107507208733336176461620

A4B33ALG 2015/10

Problem of reconstucting all optimal paths
-- the number of paths can be too big.

Example

Longest path in DAG

