One dimensional searching

Searching in an array
naive search, binary search, interpolation search

Binary search tree (BST)
operations Find, Insert, Delete

Naive search in a sorted array - linear, SLOW.

Array

Size $=\mathbf{N}$

363	369	388	603	638	693	803	833	836	839	860	863	938	939	966	968	983	993

Find 993 !

Find 363!

Find 863 !

Find $q=863!$

Typically, on average, the query value is encountered and/or found later in the search.

It takes too much time to test each value in the tree during the search descent to the leaf.

Therefore, the method first finds the exact place where the query value should be located and only then it checks if the value is really there.

During the search, the current segment is divided to two halves and the unpromissing half is discarded. The final test "Is q in the array?" is performed only once, when the current segment length is 1.

Search in a sorted array - binary, FASTER

Binary search -- fast variant

```
def binarySearch( arr, value ):
    low = 0; high = len(arr)-1
    while low < high: # while segment length > 1
        mid = (low + high) // 2 # bug ?
            # fix: mid = low + (high-low)/2;
        if arr[mid] < value: low = mid+1
        else: high = mid
    if arr[low] == value: return low # found or
    return -1 # not found
```

Bug? : When low + high > INT_MAX in some languages overflow appears https://research.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html

Interpolation search

Array a[] Find q = 939

| 363 | 369 | 388 | 603 | 638 | 693 | 803 | 833 | 836 | 839 | 860 | 863 | 938 | 939 | 966 | 968 | 983 | 993 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | | | | | | | | | 13 | 15 | | 17 | | | |
| first | | | | | | | | | | | | | | | | | |

When the values are expected to be more or less evenly distrubuted over the range then the interpolation search might help. The position of the element should roughly correspond to its value.

$$
\begin{aligned}
& \text { q - a[first] } \\
& \text { position <-- first + ------------- * (last - first) } \\
& \text { a[last]-a[first] }
\end{aligned}
$$

Interpolation search

Array a[] Find q = 939

363	369	388	603	638	693	803	833	836	839	860	863	938	939	966	968	98*993
0	1	2											13	14	15	17

If the query value is not found in the first attempt then continue the search recursively in the remaining part of the array which was not excluded from the search yet.

Interpolation search

Array a[] Find q = 939

363	369	388	603	638	693	803	833	836	839	860	863	938	939	966	$9 \% 8$	98*293
0	1	2											13		15	17
first												posit	tion	las		

If the query value is not found in the next attempt then continue the search recursively in the remining part of the array which was not excluded from the search yet.

Interpolation search

```
def interpolationSearch( arr, q ): # q is the query
    first = 0; last = len(arr)-1
    while True:
    # found?
    if first == last :
        if arr[first] == q: return pos
        else: return -1
    # continue search
pos = first + round( (q-arr[first])/
    (arr[last]-arr[first]) * (last-first) )
    if arr[pos] == q: return pos
    if}\operatorname{arr[pos] < q: \overline{first = pos+1 # check left side}
    else: last = pos-1 # check right side
```


Search in a sorted array - speed comparison

	Method		
Array size N	Linear search average case	Interpolation search average case	Binary search all cases
10	5.5	15.5	2.60

Binary search tree

For each node Y it holds:

Keys in the left subtree of Y are smaller than the key of \mathbf{Y}.

Keys in the right subtree of Y are bigger than the key of Y.

Binary search tree

BST may not be balanced and usually it is not.

BST may not be regular and usually it is not.

Apply the INORDER traversal to obtain sorted list of the keys of BST.

BST is flexible due to the operations:
Find - return the pointer to the node with the given key (or null). Insert - insert a node with the given key.
Delete - (find and) remove the node with the given key.

Binary search tree implementation -- Python

Binary search tree implementation -- Python

Operation Find in BST

Operation Find in BST

Operation Insert in BST

Operation Insert in BST iteratively
def InsertIter(self, key):
if self. root == None: \# empty tree
self.root $=\overline{\text { Node }}($ key);
return self.root

```
node = self.root
while True:
    if key == node.key: return None # no duplicates!
    if key < node.key:
    if node.left == None:
        node.left = Node( key )
                return node.left
    else: node = node.left
    else:
        if node.right == None:
        node.right = Node( key )
        return node.right
        else: node = node.right
```


Operation Insert in BST recursively

```
def Insert( self, key, node ):
    if key == node.key: return None # no duplicates
    if key < node.key:
        if node.left == None: node.left = Node( key )
        else:
        self.Insert( key, node.left )
        else:
        if node.right == None: node.right = Node( key )
        else: self.Insert( key, node.right )
# call
if self.root == None:
    self.root = Node( key )
else: Insert( key, self.root )
```


Building BST by repeated Insert

insert 40
insert 60
insert 50
insert 20
40
insert 70

insert 30

insert 10

The shape of the BST depends on the order in which data are inserted.
insert 50
insert 30
insert 60
insert 20

insert 70

insert 10

insert 40

Operation Delete in BST (Case 1)

Delete the key in a node with 0 children (= leaf)

Delete I. Find the node (like in Find operation) with the given key and set the reference to it from its parent to null (None).

Operation Delete in BST (Case 2)

Delete the key in a node with 1 child.

Change the 76 --> 68 reference to 76 --> 73 reference.

Delete II. Find the node (like in Find operation) with the given key and set the reference to it from its parent to its (single) child.

Operation Delete in BST (Case 2)

Delete a node with 1 child.

Operation Delete in BST (Case 3)
Delete the key in a node x with 2 children.
In the right subtree of x, locate node y with the smallest key.
Node y has either 0 or 1 child. It cannot have $\mathbf{2}$ children.
Equivalently (see next example), the the algorithm may, in the left subtree of x, locate node y with the biggest key.

The node containing 36 is a leaf, apply Case 1 to delete it.

Operation Delete in BST (Case 3)

Delete the key in a node with $\mathbf{2}$ children.

Delete 34

Operation Delete in BST (Case 3)

Delete 34 Alternative approach

previous
 new

1. After finding the node x with the key to be deleted find the leftmost node y in the right subtree of x.
2. Point from y to the children of x, from the parent of y point to null (None), from the parent of x point to y.

Operation Delete in BST (Case 3)
Delete the key in a node x with 2 children.
In the right subtree of x (see previous example), locate node y with the smallest key. Node y has either 0 or 1 child. It cannot have 2 children.

Equivalently (this example), in the left subtree of x, locate node y with the biggest key.

The node containing 22 has $\mathbf{1}$ child, apply Case 2 to delete it.

Operation Delete in BST (Case 3)

Delete 34

Operation Delete in BST (Case 3)

Delete 34 Alternative approach

1. After finding the node x with the key to be deleted find the rightmost node y in the left subtree of x.
2.

From y point to the children of x, from the parent of y point to the child of y, from the parent of x point to y.

Operation Delete in BST -- recursively

```
def delete( self, node, parent, key ):
```

```
# not found or search recursively in L or R subtree
if node == None: return None
if key < node.key: self.delete( node.left, node, key ); return
if node.key < key: self.delete( node.right, node, key ); return
# found in current node, delete the key/node
if node.left != None and node.right != None:
    # both children
    rightMinNode, rightMinParent = self.findMin( node.right, node )
    node.key = rightMinNode.key
    self.delNodeWithAtMost1Child( rightMinNode, rightMinParent )
else:
    # single child
    self.delNodeWithAtMost1Child( node, parent )
```


Operation Delete in BST -- support functions

def findMin(self, node, parent):

while node.left != None:
parent $=$ node; node $=$ node.left
return node, parent
def delNodeWithAtMost1Child(self, node, parent):
if node.left is None:
if node.right $==$ None: \# leaf, no child if parent.left == node: parent.left = None else: parent.right = None
else: \# single R child if parent.left == node: parent.left = node.right else: parent.right = node.right
else:
if node.right $==$ None:
\# single L chīld
if parent.left == node: parent.left = node.left else: parent.right $=$ node.left

Operation Delete in BST

Asymptotic complexities of operations Find, Insert, Delete in BST

	BST with n nodes	
Operation	Balanced Not guaranteed !! Must be induced by additional conditions.	Not balanced (expected general case)
Find	$O(\log (n))$	$O(n)$
Insert	$O(\log (n))$	$O(n)$
Delete	$O(\log (n))$	$O(n)$

Additional Fact :

The expected height of a randomly built binary search tree on n distinct keys is $\mathrm{O}(\log \mathrm{n})$. source: [CLRS]

Randomly, in this case: Each of the n! permutations of the input keys is equally likely.

Uniformly random BST Experiment

```def _depth( self, node ): if node == None: return -1 return 1 + max(self._depth(node.left def createRandomTree(self, Nkeys ): keys = list( range(0,Nkeys) ) random.shuffle ( keys ) for key in keys: self.insert( key )```	f._d	(no	right) )
	Experiment results   Uniformly Random BST with N nodes		
```for i in range( 1, 6 ): tree = BinarySearchTree() tree.createRandomTree( 10**i ) print( tree.N, tree.depth() \ "%4.1f"%(2*math.log2(tree.N)))```		depth	2* $\log 2(N)$
		4	6.6
	100	11	13.3
	1000	19	19.9
	10000	30	26.6
	100000	37	33.2
	1000000	48	39.9

