
B4M36DS2 – Database Systems 2

Yuliia Prokop
prokoyul@fel.cvut.cz, Telegram @Yulia_Prokop

https://cw.fel.cvut.cz/b231/courses/b3b36prg/start

Lecture 6 – Key-Value stores: Redis
30. 10. 2023

mailto:prokoyul@fel.cvut.cz
https://cw.fel.cvut.cz/b231/courses/b3b36prg/start


Outline

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  2

Examples

Publish / Subscribe

Geospatial

Transactions

RediSearch

RedisJSON

Persistence

Redis Architectures



EXAMPLES

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  3



We want to place banners on the page at a certain position. We want to
make them rotate evenly, that is, after each reload of the page these
banners change.

Redis example - Banners

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  4

ZADD banners 0 {banner}
Add a banner to the rotation

ZRANGE banners 1
Will return a banner with fewer views

ZINCRBY banners 1 {banner}
Increase banner’s views



Purchasing and payment

Redis example - Payment

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  5

ZINCRBY balance 500 {User.id}
Top up balance

ZDECRBY balance 500 {User.id}
Withdraw the sum 

ZADD purchases {Info}
Add information to a log



We want to show user activity ranking on the site – from the most active in
descending order

Redis example – Rating of the most popular

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  6

ZREVRANGE user_rating 1 -1
Return the list in reverse order

ZRANGEBYSCORE user_rating 50 -1
Get everyone with more than 50 points

ZRANGEBYSCORE products 5000 10000
Get all the items in our online store that cost between 5k and 10k

ZRANGEBYSCORE logs timestamp1 timestamp2
Get logs accumulated for the period from timestamp1 to timestamp2



Publish / Subscribe 

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  7
https://hevodata.com



• First user subscribes to certain channel "news"

• Another user sends messages to the same channel "news"

• Learn more at http://redis.io/commands#pubsub

SUBSCRIBE news
1) "subscribe"
2) "news"
3) (integer) 1

PUBLISH news "hello"
(integer) 1

Publish / Subscribe

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  8

For notifications and allerts

Redis is also a message broker that supports typical pub/sub operations.

http://redis.io/commands


GEOSPATIAL

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  9



Redis geospatial indexes let you store coordinates and search for them. This
data structure is useful for finding nearby points within a given radius or
bounding box.

Redis geospatial

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  10

GEOADD
adds a location to a given geospatial index
(note that longitude comes before latitude with this command).

GEOSEARCH
returns locations with a given radius or a bounding box.

GEODIST
returns the distance between two members in the geospatial index
represented by the sorted set.



Redis example – Data format

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  11

For Redis geospatial commands, the correct format is longitude followed

by latitude. Examples:

12.4964 41.9028

12.4964, 41.9028

The first number is the longitude, and the second is the latitude.

An option like

longitude 2.2945  latitude 48.8584 

is not in the correct format for Redis geospatial commands because it

includes additional text.



Redis example – Filter by location

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  12

GEOADD Addresses 43.361389 18.115556 "Addr1"
25.087269 37.502669 "Addr2"

GEODIST Addresses Addr1 Addr2
Distance between two addresses

GEOSEARCH Addresses FROMLONLAT 15 37 BYRADIUS 15 km ASC
Everything within a 15-kilometer radius of the point

More about geospatial: https://redis.io/docs/data-types/geospatial/



Transactions

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  13



Transaction

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  14

• All commands are serialized and executed sequentially
• Either all commands or no commands are processed
• Keys must be explicitly specified in Redis transactions
• Redis commands for transactions:

ü WATCH
§ Marks the given keys to be watched for conditional execution of

a transaction.
ü MULTI

§ Marks the start of a transaction block. Subsequent commands will be
queued for atomic execution using EXEC.

ü DISCARD
§ Flushes all previously queued commands in a transaction

ü EXEC
§ Executes all previously queued commands in a transaction

ü UNWATCH



Transaction - Example

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  15

MULTI
OK
INCR counter1
QUEUED
INCR counter1
QUEUED
DECR counter2
QUEUED
EXEC
1) (integer) 1 
2) (integer) 2 
3) (integer) -1

MULTI
OK
INCR counter1
QUEUED
INCR counter1
QUEUED
DECR counter2
QUEUED
DISCARD
OK



Transaction - Errors inside a transaction

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  16

ü Before EXEC is called 

§ The command may be syntactically wrong (wrong number of arguments,
wrong command name, ...),

§ There may be some critical conditions like an out-of-memory condition.

ü After EXEC is called

§ If we operated against a key with the wrong value (like calling a list
operation against a string value).

q Redis does not support rollbacks of transactions.

q DISCARD can be used to abort a transaction. In this case, no commands are
executed, and the state of the connection is restored to normal.



RediSearch

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  17



RediSearch

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  18

ü RediSearch is a Secondary Index over Redis

§ Take a document

§ Break it apart

§ Map terms/properties and get a list of terms

§ Searching is getting documents that are linked to the terms

ü Full-Text engine (Prefix, Fuzzy, Phonetic, Stemming, Synonyms…)

ü Incremental indexing without performance loss

ü Data aggregation

ü Auto-complete suggestions

ü Geo indexing and filtering



Iverted index

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  19



RediSearch - example

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  20

hset user:1 name "Anna" year "2000" friends "Tom, Michael, Helen"
hset user:2 name "Alex" year "1998" friends "Jakub, Helen"
hset user:3 name "Sandra" year "1999" friends "Jonas"

FT.CREATE usr_ind prefix 1 user: SCHEMA name TEXT year NUMERIC friends TEXT

Search for users, whose friend is Helen
FT.SEARCH usr_ind "Helen" 
1) (integer) 2
2) "user:1"
3) 1) "name"

2) "Anna"
3) "year"
4) "2000"
5) "friends"
6) "Tom, Michael, Helen"

4) "user:2"
5) 1) "name"

2) "Alex"
3) "year"
4) "1998"
5) "friends"
6) "Jakub, Helen"

FT.SEARCH usr_ind "@friends:Helen"
1) (integer) 2
2) "user:1"
3) 1) "name"

2) "Anna"
3) "year"
4) "2000"
5) "friends"
6) "Tom, Michael, Helen"

4) "user:2"
5) 1) "name"

2) "Alex"
3) "year"
4) "1998"
5) "friends"
6) "Jakub, Helen"



Aggregation

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  21

Ø Perform a search query, filtering for records you wish to process.

Ø Build a pipeline of operations that transform the results by zero or more
steps of:

• Group and Reduce: grouping by fields in the results, and applying
reducer functions on each group.

• Sort: sort the results based on one or more fields.

• Apply Transformations: Apply mathematical and string functions on
fields in the pipeline, optionally creating new fields or replacing existing
ones

• Limit: Limit the result, regardless of sorting the result.

• Filter: Filter the results (post-query) based on predicates relating to its
values.



Aggregation - example

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  22

Log of visits to our website, each record containing the following fields/properties:
§ url (text, sortable)
§ timestamp (numeric, sortable) - unix timestamp of visit entry.
§ country (tag, sortable)
§ user_id (text, sortable, not indexed)

Select all records in the index, group the results by hour, 
and count the distinct user IDs in each hour.
Then, format the hour as a human-readable timestamp

FT.AGGREGATE myIndex "*" 
APPLY "@timestamp - (@timestamp % 3600)" AS hour 
GROUPBY 1 @hour 

REDUCE COUNT_DISTINCT 1 @user_id AS num_users
SORTBY 2 @hour ASC 
APPLY timefmt(@hour) AS hour

https://redis.io/docs/interact/search-and-query/search/aggregations/



RedisJASON

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  23



RedisJSON

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  24

The JSON capability of Redis Stack provides JavaScript Object Notation (JSON)
support for Redis.

ü Full support for the JSON standard

ü A JSONPath syntax for selecting/updating elements inside documents

ü Documents are stored as binary data in a tree structure, allowing fast access

to sub-elements

ü Typed atomic operations for all JSON value types

§ Store, update, and retrieve JSON values. 
§ Index and query JSON documents.



JSON – Basic commands

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  25

JSON.SET key path value [NX | XX]
• Sets the JSON value at path in key

§ Key is a key to modify
§ Path is JSONPath to specify. The default is root $
§ Value is value to set at the specified path
§ NX sets the key only if it does not already exist
§ XX sets the key only if it already exists.

JSON.GET key [INDENT indent] [NEWLINE newline] [SPACE space] [path [path ...]]

• Returns the value at path in JSON serialized form

Example:
JSON.SET doc $ '{"a":2, "b": 3, "nested": {"a": 4, "b": null}}'
OK
JSON.GET doc $..b 
"[3]"



B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  26

RedisJSON - Example

https://redis.io/docs/interact/search-and-query/indexing/

JSON.SET item:1 $ '{"name":"Noise-cancelling Bluetooth headphones",

"description":"Wireless Bluetooth headphones with noise-cancelling technology",
"connection":{"wireless":true,"type":"Bluetooth"},"price":99.98,"stock":25,

"colors":["black","silver"],"embedding":[0.87,-0.15,0.55,0.03]}'

OK

JSON.SET item:2 $ '{"name":"Wireless earbuds",
"description":"Wireless Bluetooth in-ear headphones",

"connection":{"wireless":true,"type":"Bluetooth"},"price":64.99,"stock":17,

"colors":["black","white"],"embedding":[-0.7,-0.51,0.88,0.14]}'
OK



B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  27

RedisJSON - Indexing

FT.CREATE {index_name} 
ON JSON SCHEMA {json_path} AS {attribute} {type}

Example:
Create an index that indexes the name, description, price, and image vector
embedding of each JSON document that represents an inventory item

FT.CREATE itemIdx
ON JSON PREFIX 1 item: SCHEMA $.name AS name TEXT $.description as description TEXT
$.price AS price NUMERIC $.embedding AS embedding VECTOR FLAT 6 DIM 4
DISTANCE_METRIC L2 TYPE FLOAT32

https://redis.io/docs/interact/search-and-query/indexing/



B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  28

RedisJSON - Search the index

https://redis.io/docs/interact/search-and-query/indexing/

Search for earbuds:

FT.SEARCH itemIdx '@name:(earbuds)'

1) (integer) 1
2) "item:2"

3) 1) "$"

2) "{\"name\":\"Wireless earbuds\",
\"description\":\"Wireless Bluetooth in-ear headphones\",

\"connection\":{\"wireless\":true,\"type\":\"Bluetooth\"}, 
\"price\":64.99,\"stock\":17,\"colors\":[\"black\",\"white\"],

\"embedding\":[-0.7,-0.51,0.88,0.14]}"



B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  29

RedisJSON - Search the index

Search for Bluetooth headphones with a price of less than 70:

FT.SEARCH itemIdx '@description:(bluetooth headphones) @price:[0 70]'

1) (integer) 1

2) "item:2"

3) 1) "$"

2) "{\"name\":\"Wireless earbuds\",

\"description\":\"Wireless Bluetooth in-ear headphones\",

\"connection\":{\"wireless\":true,\"type\":\"Bluetooth\"},\"price\":64.99,\"stock\":17,

\"colors\":[\"black\",\"white\"],\"embedding\":[-0.7,-0.51,0.88,0.14]}"

Read more: 
https://redis.io/docs/interact/search-and-query/query/
https://redis.io/docs/interact/search-and-query/indexing/

https://redis.io/docs/interact/search-and-query/query/
https://redis.io/docs/interact/search-and-query/indexing/


PERSISTENCE

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  30



Persistance

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  31

Source: https://architecturenotes.co/redis/

Datasets can be saved to disk
Persistence refers to the writing of data to durable storage, such as a solid-state
disk (SSD).



Persistence

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  32

Redis provides a range of persistence options. These include:

• RDB (Redis Database): RDB persistence performs point-in-time
snapshots of your dataset at specified intervals.

• AOF (Append Only File): AOF persistence logs every write operation the
server receives. These operations can then be replayed at server startup,
reconstructing the original dataset.

• No persistence: You can disable persistence completely. This is
sometimes used when caching.

• RDB + AOF: You can combine AOF and RDB in the same instance.



RDB Example

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  33

Example 1: RDB Persistence with Custom Save Points

# In redis.conf, set the following options 

save 900 1 

# Save the DB if at least 1 key changed in 900 seconds 

save 300 10 

# Save the DB if at least 10 keys changed in 300 seconds 

save 60 10000 

# Save the DB if at least 10000 keys changed in 60 seconds



AOF Example

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  34

Example 2: AOF Persistence with Every Second fsync

# In redis.conf, set the following options 

appendonly yes 

# Enable AOF persistence 

appendfsync everysec

# fsync every second



RDB and AOF Example

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  35

Example: RDB + AOF Persistence with No fsync

# In redis.conf, set the following options 

save 3600 1 

# Save the DB if at least 1 key changed in 3600 seconds 

appendonly yes 

# Enable AOF persistence 

appendfsync no 

# Do not fsync, leave it to the OS



RDB advantages and disadvantages

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  36

ü RDB is a very compact single file for backups and disaster recovery.

ü RDB maximizes Redis performances since the only work the Redis parent
process needs to do to persist is forking a child that will do all the rest. The
parent process will never perform disk I/O or alike.

ü RDB allows faster restarts with big datasets compared to AOF.

§ Data Loss: RDB snapshots are taken periodically, which means that you
could lose data not yet included in the most recent snapshot in case of a
system crash.

§ Forking Overhead: The Redis process needs to fork a child process to
create the RDB snapshot, which can be resource-intensive for large
datasets.



B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  37

ü Better Durability: AOF provides better data durability, as it logs every
write operation, reducing the risk of data loss.

ü Human-Readable Format: AOF files store the commands in a plain text
format, making them easy to inspect and understand.

ü Flexible Configuration: You can configure the AOF fsync policy to balance
durability and performance based on your requirements.

AOF advantages and disadvantages

Disadvantages of AOF
§ Larger File Size: AOF files can be significantly larger than RDB files, as they

store every write operation.

§ Slower Recovery: The recovery process for AOF can be slower than RDB,
as Redis needs to replay all the logged commands to reconstruct the
dataset.



Persistence: RDB vs AOF

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  38

Source: https://www.slideshare.net/MaartenSmeets1/introduction-redis-93365594

RDB (Redis Database File) AOF (Append Only File)

Provides point in time snapshots Logs every write

Creates complete snapshot at 
specified interval

Replays at server startup. 
If log gets big, optimization takes 
place

File is in binary format File is easily readable

On crash minutes of data can be lost Minimal chance of data loss

Small files, fast (mostly) Big files, 'slow'



RDB related commands

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  39

BGSAVE

Save the DB in the background. Redis forks, the parent continues serving

the clients, and the child saves the dataset on disk and exits.

SAVE

Perform a synchronous save of the dataset. Other clients are blocked –

never use in production!

LASTSAVE

Return the Unix time of the last successful DB save.



AOF related commands

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  40

BGREWRITEAOF

Instruct Redis to start an AOF rewrite process. The rewrite will create a small

optimized version of the current AOF log.

If BGREWRITEAOF fails, no data gets lost, as the old AOF will be untouched



What persistence is used for? 

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  41

ü Backups

ü Disaster Recovery

ü Performance Maximization

ü Faster Restarts with Big Datasets

ü Replicas



Redis Architectures

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  42



Redis Architecture

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  43
Source: https://architecturenotes.co/redis/



Redis Architecture

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  44
Source: https://architecturenotes.co/redis/



B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  45

Redis and the CAP Theorem
Availability:
• Redis uses a master-slave replication model to ensure high availability.

§ There is a single “master” node that accepts all writes and multiple “slave” nodes that
replicate data from the master in real-time.

§ In the event of a failure of the master node, one of the slave nodes can be promoted to
become the new master.

Consistency:
• Redis provides strong consistency guarantees for single-key operations.

§ If a value is written to a key, it will be immediately available for reads from any node in the
cluster.

§ However, Redis does not provide transactional consistency for multi-key operations,
meaning that it is possible for some nodes to see a different view of the data than others.

Partitioning:
• Redis supports sharding, which allows the data set to be partitioned across multiple

nodes.
§ Redis uses a hash-based partitioning scheme, where each key is assigned to a specific node

based on its hash value.
§ Redis also provides a mechanism for redistributing data when nodes are added or removed

from the cluster.



Summary. Why Redis?

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  46

ü In-Memory Data Storage

ü Data Structure Support

ü Persistence Options

ü Pub/Sub Messaging

ü Caching

ü Distributed Architecture

ü Extensibility



1. Redis is ultra-fast in-memory data store
• Not a database, used along with databases

2. Supports strings, numbers, lists, hashes, sets, sorted sets, publish /
subscribe messaging

3. Used for caching / simple apps

Redis is a powerful tool for system design, but it may not be suitable for all
use cases. It is important to carefully consider its limitations when deciding
whether to use Redis in a particular application.

Summary

B4M36DS2 - Database Systems 2   |   Lecture 6 - Key-value stores   |  30. 10. 2023  47


