STATISTICAL MACHINE LEARNING (WS2023/24) SEMINAR 2

Assignment 1. Let $\mathcal{X} = [a, b] \subset \mathbb{R}$, $\mathcal{Y} = \{+1, -1\}$, $\ell(y, y') = [[y \neq y']]$, $p(x \mid y = +1) = p(x \mid y = -1)$ be uniform distributions on \mathcal{X} and p(y = +1) = 0.8. Consider the learning algorithm which for a given training set $\mathcal{T}^m = \{(x^1, y^1), \dots, (x^m, y^m)\}$ returns the strategy

$$h_m(x) = \begin{cases} y^j & \text{if } x = x^j \text{ for some } j \in \{1, \dots, m\} \\ -1 & \text{otherwise} \end{cases}$$

a) Show that the empirical risk $R_{\mathcal{T}^m}(h_m) = \frac{1}{m} \sum_{i=1}^m \ell(y^i, h_m(x^i))$ equals 0 with probability 1 for any finite m.

b) Show that the expected risk $R(h_m) = \mathbb{E}_{(x,y)\sim p}(\ell(y, h_m(x)))$ equals 0.8 with probability 1 for any finite m.

Assignment 2. The ULLN for finite hypothesis space $\mathcal{H} = \{h_1, \dots, h_K\}$ ensures that for every $\varepsilon > 0$ we have that

$$\mathbb{P}\left(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^m}(h) - R(h)| \ge \varepsilon\right) \le 2|\mathcal{H}|e^{-\frac{2m\varepsilon^2}{(\ell_{\max} - \ell_{\min})^2}},\tag{1}$$

where \mathcal{T}^m is a training set i.i.d. generated from an arbitrary p(x, y). Use (1) to prove validity of the generalization bound which states that for every $\delta \in [0, 1]$ the upper bound

$$R(h) \le R_{\mathcal{T}^m}(h) + (\ell_{\max} - \ell_{\min}) \sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}$$

holds true for all $h \in \mathcal{H}$ simultaneously with probability $1 - \delta$ at least.

Assignment 3. Assume we train a Convolution Neural Network (CNN) classifier $h: \mathcal{X} \to \mathcal{Y}$ to predict a digit $y \in \mathcal{Y} = \{0, 1, \dots, 9\}$ from an image $x \in \mathcal{X}$. We train the CNN by the Stochastic Gradient Descent (SGD) algorithm using 100 epochs. After each epoch we save the current weights so that at the end of training we have a set $\mathcal{H} = \{h_t: \mathcal{X} \to \mathcal{Y} \mid i = 1, \dots, 100\}$ containing 100 different CNN classifiers. We select the best CNN classifier \hat{h} out of \mathcal{H} based on the validation error $R_{\mathcal{V}^m}(h)$, i.e. $\hat{h} = \arg \min_{h \in \mathcal{H}} R_{\mathcal{V}^m}(h)$, where

$$R_{\mathcal{V}^m}(h) = \frac{1}{m} \sum_{i=1}^m \llbracket y^j \neq h(x^j) \rrbracket,$$

is computed from the validation set $\mathcal{V}^m = \{(x^i, y^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, ..., m\}$ i.i.d. drawn from p(x, y). The validation set \mathcal{V}^m has not been used by SGD for training. We

are left with no additional examples for testing and hence we use the validation error $R_{\mathcal{V}^m}(\hat{h})$ also as an estimate of the generalization error $R(\hat{h}) = \mathbb{E}[\ell(y, \hat{h}(x))]$.

a) Can you quantify how well the validation error $R_{\mathcal{V}^m}(\hat{h})$ estimates the generalization error $R(\hat{h})$?

b) What is the minimum number of examples in the validation set \mathcal{V}^m required to confidently assert, with a 99% probability, that the generalization error $R(\hat{h})$ exceeds the validation error $R_{\mathcal{V}^m}(\hat{h})$ by no more than 1% ?