STATISTICAL MACHINE LEARNING (WS2023/24) SEMINAR 1

Assignment 1. Assume a prediction problem with a scalar observation $\mathcal{X} = \mathbb{R}$, two classes $\mathcal{Y} = \{-1, +1\}$ and 0/1-loss $\ell(y, y') = [[y \neq y']]^1$. The observations of both classes are generated from normal distributions, i.e.

$$p(x,y) = p(y) \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu_y)^2\right), \qquad y \in \mathcal{Y},$$

where p(y) is the prior distribution of the hidden state, $\sigma_+, \sigma_- \in \mathbb{R}_+$ are the standard deviations and $\mu_+, \mu_- \in \mathbb{R}$ are the mean values.

a) Assume $\mu_{-} < \mu_{+}$ and $\sigma_{+} = \sigma_{-}$. Show that under this assumption the optimal prediction strategy is the thresholding rule

$$h(x) = \begin{cases} -1 & \text{if } x < \theta, \\ +1 & \text{if } x \ge \theta, \end{cases}$$

parametrized by the scalar $\theta \in \mathbb{R}$. Write an explicit formula for computing θ . **b**) Deduce the optimal prediction strategy for the case $\mu_+ = \mu_-$ and $\sigma_+ \neq \sigma_-$.

Assignment 2. Let $S^l = ((x^i, y^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, ..., l)$ be a test set i.i.d drawn from some p(x, y) and let $\ell \colon \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ be a loss function. The test error $R_{S^l}(h) = \frac{1}{l} \sum_{i=1}^l \ell(y^i, h(x^i))$ is an unbiased estimator of the generalization error $R(h) = \mathbb{E}_{(x,y) \sim p} \ell(y, h(x))$.

a) What does it mean that the test error is an unbiased estimator of the generalization error?b) Prove that it holds true.

(*) Can you deduce something about the variance of the test error?

Assignment 3. We are given a prediction strategy $h: \mathcal{X} \to \mathcal{Y} = \{1, \ldots, Y\}$ assigning observations $x \in \mathcal{X}$ into one of Y classes. Our task is to estimate the generalization error $R(h) = \mathbb{E}_{(x,y)\sim p}\ell(y,h(x))$ where $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ is a chosen loss function. To this end, we collect a test set $\mathcal{S}^{l} = ((x^{i}, y^{i}) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \ldots, l)$ i.i.d. drawn from the distribution p(x, y), compute the test error $R_{\mathcal{S}^{l}}(h) = \frac{1}{l} \sum_{i=1}^{l} \ell(y^{i}, h(x^{i}))$ and use it to construct the confidence interval such that

$$R(h) \in (R_{\mathcal{S}^l}(h) - \varepsilon, R_{\mathcal{S}^l}(h) + \varepsilon) \quad \text{holds with probability } 1 - \delta \in (0, 1) \text{ at least }.$$
(1)

The number of test examples $l \in \mathbb{N}$, the precision parameter $\varepsilon > 0$ and the error level $\delta \in (0, 1)$ are three interdependent variables, i.e., fixing two of the variables allows to compute the third one.

a) Use the Hoeffding's inequality to derive a formula to compute ε as a function of l and δ such that (1) holds.

 $^{{}^{1}[}e]$ denotes the Iverson bracket with value 1 if the expression in the brackets is true and 0 otherwise.

SEMINAR 1

b) Use the Hoeffding's inequality to derive a formula to compute l as a function of ε and δ such that (1) holds.

c) Instantiate the formulas derived in a) and b) for the following loss functions:

- (1) $\ell(y, y') = [\![y \neq y']\!]$ (2) $\ell(y, y') = |y - y'|$
- (3) $\ell(y, y') = \llbracket |y y'| \ge K \rrbracket$ where K < Y.

d) Assume that we use the loss $\ell(y, y') = [\![y \neq y']\!]$. Plot the precision ε as a function of the number of examples $l \in \{10, 100, \dots, 100000\}$ for $\delta \in \{0.1, 0.05, 0.01\}$.

e) Assume that we use the loss $\ell(y, y') = [\![y \neq y']\!]$. What is the minimal number of examples l we need to use to have a guarantee that the test error will approximate the generalization error $\pm 1\%$ with probability 95% at least?