
STATISTICAL MACHINE LEARNING (WS2023/24)
SEMINAR 1

Assignment 1. Assume a prediction problem with a scalar observation X = R, two classes
Y = {−1,+1} and 0/1-loss `(y, y′) = [[y 6= y′]]1. The observations of both classes are
generated from normal distributions, i.e.
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where p(y) is the prior distribution of the hidden state, σ+, σ− ∈ R+ are the standard devia-
tions and µ+, µ− ∈ R are the mean values.
a) Assume µ− < µ+ and σ+ = σ−. Show that under this assumption the optimal prediction
strategy is the thresholding rule

h(x) =

{
−1 if x < θ ,
+1 if x ≥ θ ,

parametrized by the scalar θ ∈ R. Write an explicit formula for computing θ.
b) Deduce the optimal prediction strategy for the case µ+ = µ− and σ+ 6= σ−.

Assignment 2. Let S l = ((xi, yi) ∈ (X×Y) | i = 1, . . . , l) be a test set i.i.d drawn from some
p(x, y) and let ` : Y ×Y → R be a loss function. The test error RSl(h) = 1

l

∑l
i=1 `(y

i, h(xi))
is an unbiased estimator of the generalization error R(h) = E(x,y)∼p`(y, h(x)).
a) What does it mean that the test error is an unbiased estimator of the generalization error?
b) Prove that it holds true.

(*) Can you deduce something about the variance of the test error?

Assignment 3. We are given a prediction strategy h : X → Y = {1, . . . , Y } assigning ob-
servations x ∈ X into one of Y classes. Our task is to estimate the generalization error
R(h) = E(x,y)∼p`(y, h(x)) where ` : Y × Y → R is a chosen loss function. To this end, we
collect a test set S l = ((xi, yi) ∈ (X × Y) | i = 1, . . . , l) i.i.d. drawn from the distribu-
tion p(x, y), compute the test error RSl(h) = 1

l

∑l
i=1 `(y

i, h(xi)) and use it to construct the
confidence interval such that

R(h) ∈ (RSl(h)− ε, RSl(h) + ε) holds with probability 1− δ ∈ (0, 1) at least . (1)

The number of test examples l ∈ N, the precision parameter ε > 0 and the error level δ ∈ (0, 1)
are three interdependent variables, i.e., fixing two of the variables allows to compute the third
one.

a) Use the Hoeffding’s inequality to derive a formula to compute ε as a function of l and δ
such that (1) holds.

1JeK denotes the Iverson bracket with value 1 if the expression in the brackets is true and 0 otherwise.
1



STATISTICAL MACHINE LEARNING (WS2023/24) SEMINAR 1 2

b) Use the Hoeffding’s inequality to derive a formula to compute l as a function of ε and δ
such that (1) holds.

c) Instantiate the formulas derived in a) and b) for the following loss functions:
(1) `(y, y′) = [[y 6= y′]]
(2) `(y, y′) = |y − y′|
(3) `(y, y′) = [[|y − y′| ≥ K]] where K < Y .

d) Assume that we use the loss `(y, y′) = [[y 6= y′]]. Plot the precision ε as a function of the
number of examples l ∈ {10, 100, . . . , 100000} for δ ∈ {0.1, 0.05, 0.01}.

e) Assume that we use the loss `(y, y′) = [[y 6= y′]]. What is the minimal number of examples l
we need to use to have a guarantee that the test error will approximate the generalization error
±1% with probability 95% at least?


