
STATISTICAL MACHINE LEARNING: EXAM ASSIGNMENT EXAMPLES

Assignment 1 (6p). Assume you are going to learn a two-class classifier h : X →
{+1,−1} from examples with the goal to minimize the expected classification error.
The classifier is selected from a hypothesis space H based on the minimal training error
defined as the number of misclassified examples. Consider the following three cases of
hypothesis space:

(1) H1 = {h(x) = sign(x− θ) | θ ∈ R}.
(2) H2 = {h(x) = sign(|x− µ1| − |x− µ2|) | µ1 ∈ R, µ2 ∈ R}.
(3) H3 = {h(x) = sign(⟨w,x⟩+ b) | w ∈ Rd, b ∈ R}.

a) What is the Vapnik-Chervonenkis dimension ofH1,H2 andH3 ?
b) Assume that in all three cases your algorithm can find a classifier with the minimal
training error. In which cases is the algorithm statistically consistent?
Solution:
a) V C(H1) = 1, V C(H2) = 2, V C(H3) = d+ 1 (lecture 4, slide 5-6).
b) If the VC dimension of a hypothesis space is finite then ULLN applies, and in turn the
ERM is statistically consistent (lecture 4, slide 13). Hence the algorithm is statistically
consistent in all three cases.

Assignment 2. (6p) We are given a setH = {hi : X → {1, . . . , 100} | i = 1, . . . , 1000}
containing 1000 strategies each predicting the human age y ∈ {1, . . . , 100} from a facial
image x ∈ X . The quality of a single strategy is measured by the expected absolute
deviation between the predicted age and the true age

RMAE(h) = E(x,y)∼p(|y − h(x)|) ,

where the expectation is computed w.r.t. an unknown distribution p(x, y). The empirical
estimate of RMAE(h) reads

RT m(h) =
1

m

m∑
j=1

|yj − h(xj)|

where T m = {(xj, yj) ∈ (X × Y) | j = 1, . . . ,m} is a set of examples drawn from
i.i.d. random variables with the distribution p(x, y). What is the minimal number of
the training examples m which guarantees that RMAE(h) is in the interval (RT m(h) −
1, RT m(h) + 1) for every h ∈ H with probability at least 95%?
Solution:

The question can be restated as: what is the minimal number of examples m such that

P
(
max
h∈H

∣∣RT m(h)−RMAE(h)
∣∣ < ε

)
≥ γ (1)



2

holds, where ε = 1 and γ = 0.95? Using probability of a complementary event we get

P
(
max
h∈H

∣∣RT m(h)−RMAE(h)
∣∣ < ε

)
= 1− P

(
max
h∈H

∣∣RT m(h)−RMAE(h)
∣∣ ≥ ε

)
. (2)

Hoeffding inequality generalized for finite hypothesis space (lecture 3, slide 9) states that

P
(
max
h∈H

∣∣RT m(h)−R(h)
∣∣ ≥ ε

)
≤ 2 |H| e−

2mε2

(ℓmax−ℓmin)2 . (3)

Combining (2) and (3) yields

P
(
max
h∈H

∣∣RT m(h)−RMAE(h)
∣∣ < ε

)
≥ 1− 2 |H| e−

2mε2

(ℓmax−ℓmin)2 = γ . (4)

Solving (4) for m when everything else is fixed yields

m ≥ log(2|H|)− log(1− γ)

2 ε2
(ℓmax − ℓmin)

2 .

In case of Y = {1, . . . , 100} and the MAE loss ℓ(y, y′) = |y − y′| we have ℓmin = 0 and
ℓmax = 99. We further have γ = 0.95, ε = 1 and |H| = 1000. Hence,

m ≥ log(2 · 1000)− log(1− 0.95)

2 · 12
(99− 0)2 ≈ 51 928.8 .

That is, the minimal number of training examples we need is m = 51 929.

Assignment 3 (6p). A non-negative random variable X ⩾ 0 has exponential distribution
p(x) = be−bx, where b is an unknown parameter.
a) Explain how to estimate this parameter from an i.i.d. training set T m = {xj ∈ R+ |
j = 1, . . . ,m} by using the maximum likelihood estimator .
b) The random variable Y is a mixture

Y = λX1 + (1− λ)X2

of two exponentially distributed variables with unknown parameters b1, b2 and unknown
mixture weight 0 < λ < 1. Explain how to estimate all mixture parameters from an
i.i.d. training set T m = {yj ∈ R+ | j = 1, . . . ,m} by using the EM-algorithm.

Solution:
a) The maximum likelihood estimator is

eML(T m) = argmax
b

1

m

∑
x∈T m

log pb(x).

Substituting the model, we get the task

− b

m

∑
x∈T m

x+ log b→ max
b

.

Setting the derivative of the objective function w.r.t. b to zero, we get the solution b = 1/x̄,
where x̄ denotes the average of the training examples.
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b) The EM algorithm starts with some initialisation λ(0), b(0)1 , b0)2 of the model and iterates
the following steps.

E-step: For each example y ∈ T m, compute the posterior probability of the first
component, i.e.

αy =
λpb1(x)

λpb1(x) + (1− λ)pb2(x)
,

by using the current estimate of the model parameters. The posterior probability
of the second component is 1− αy.

M-step: We have to solve the task
1

m

∑
y∈T m

[
αy log λpb1(y) + (1− αy) log(1− λ)pb2(y)

]
→ max

λ,b1,b2

This task decomposes into independent optimisation tasks for λ, b1 and b2. We
obtain

λ(t+1) =
1

m

∑
y∈T m

αy, b
(t+1)
1 =

∑
y∈T m αy∑
y∈T m αyy

and a similar expression for b(t+1)
2 , where αy is replaced by 1− αy.

The algorithm is stopped if the change in the α-s becomes smaller than some predefined
threshold.

Assignment 4 (4p). Consider a homogeneous Markov model for sequences s = (s1, . . . , sn)
with elements from a finite set K. Its joint distribution is given by

p(s) = p(s1)
n∏

i=2

p(si | si−1),

where p(s1 = k) is the marginal distribution for the first element of the sequence and
p(si = k | si−1 = k′) is the matrix of transition probabilities. Given a state k∗ ∈ K, we
want to know its expected number of occurrences in a sequence generated by the model.
Give an algorithm for computing this expectation.
Hint: Use the fact that the expected value of a sum of random variables is equal to the
sum of their expected values.

Solution:
The expected number of occurrences can be written as

Es∼p(s)n(k
∗) = Es∼p(s)

n∑
i=1

Jsi = k∗K =
n∑

i=1

p(si = k∗)

For this we need to compute the marginal probabilities of the state k∗ in all positions
i = 1, . . . , n. We can compute all marginal probabilities by dynamic matrix-vector mul-
tiplication from left to right with run-time complexity O(nK2), then pick the needed
ones and sum them.
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Assignment 5 (6p). Consider the following simple neural network having n inputs:

ŷ(x,w) = σ

(
n∑

i=1

wi xi

)
,

where σ is the logistic sigmoid function:

σ(s) =
1

1 + e−s
.

The network is trained using Stochastic Gradient Descent where the training set can be
described as T m = {(xi, yi) ∈ (Rn × {0, 1}) | i = 1, . . . ,m}. The loss function is the
binary cross-entropy:

ℓ(y, ŷ) = −y log ŷ − (1− y) log(1− ŷ).

(1) Use the back-propagation algorithm and derive the gradient for a single sample:

∇ℓ(w) =

(
∂ℓ

∂w1

,
∂ℓ

∂w2

, . . . ,
∂ℓ

∂wn

)
.

(2) Reuse the neuron activity computed during the forward pass and simplify the
result.

Solution:
(1) Describe messages for all layers (including loss):

(a) cross entropy backward message:

∂ℓ

∂ŷ
= −y

ŷ
+

1− y

1− ŷ
,

(b) sigmoid backward message:

∂σ

∂s
=

e−s

(1 + e−s)2
,

(c) linear layer parameter message:

∂s

∂wi

= xi.

Define δs passing errors in backward direction:

δloss =
∂ℓ

∂ŷ
,

δsigmoid = δloss
∂σ

∂s
.

The elements of the gradient of loss w.r.t. the parameters of the linear layer
are then defined as:

∂ℓ

∂wi

= δsigmoid
∂s

∂wi

.
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(2) The sigmoid backward message can be expressed using the sigmoid itself:

∂σ

∂s
=

1 + e−s

(1 + e−s)2
− 1

(1 + e−s)2
= σ(s)− σ2(s) = ŷ(1− ŷ).

We can now simplify:

δsigmoid =

(
−y

ŷ
+

1− y

1− ŷ

)
· ŷ(1− ŷ) = −y(1− ŷ) + (1− y)ŷ = ŷ − y.

Finally we get:
∂ℓ

∂wi

= (ŷ − y)xi.

Assignment 6 (4p). Consider a regression problem with multiple training datasets T m =
{(xi, yi) | i = 1, . . . ,m} of size m generated by using

y = f(x) + ϵ, (5)

where ϵ is noise with E(ϵ) = 0 and Var(ϵ) = σ2. Derive the bias-variance decomposition
for the 1-nearest-neighbor regression. The response of the 1-NN regressor is defined as:

hm(x) = yn(x) = f(xn(x)) + ϵ,

where n(x) gives the index of the nearest neighbor of x in T m. For simplicity assume that
all xi are the same for all training datasets T m in consideration, hence, the randomness
arises from the noise ϵ, only.

Give the squared bias:

Ex

[(
gm(x)− f(x)

)2]
= Ex

[(
ET m

[
hm(x)

]
− f(x)

)2]
and variance:

Varx,T m

(
hm(x)

)
.

Solution: The squared bias is:

Ex

[(
ET m [hm(x)]− f(x)

)2]
= Ex

[(
ET m,ϵ

[
f(xn(x)) + ϵ

]
− f(x)

)2]
=

Ex

[(
ET m

[
f(xn(x))

]
+ Eϵ [ϵ]− f(x)

)2]
= Ex

[(
f(xn(x))− f(x)

)2]
,

where the first expected value vanished due to the fixed xi assumption.
The variance is similarly:

Varx,T m

(
hm(x)

)
= Varx,T m,ϵ

(
f(xn(x)) + ϵ

)
= Varϵ

(
ϵ
)
= σ2.

Assignment 7 (7p). Consider a linear classifier h : X ×X → Y ×Y predicting a pair of
labels (y1, y2) ∈ Y × Y from a pair of inputs (x1, x2) ∈ X × X based on the rule

h(x1, x2;θ) = argmax
y1∈Y,y2∈Y

(⟨ϕ(x1),wy1⟩+ ⟨ϕ(x2),wy2⟩+ g(y1, y2)) (6)

where ϕ : X → Rn is a feature map, wy ∈ Rn, y ∈ Y , are vectors and g : Y × Y → R
is a function. The vector θ ∈ Rn|Y|+|Y|2 encapsulates all parameters of the classifier,
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that is, the vectors {wy ∈ Rn | y ∈ Y} and the function values {g(y, y′) ∈ R | y ∈
Y , y′ ∈ Y}. Let T m = {(xj

1, x
j
2, y

j
1, y

j
2) ∈ (X × X × Y × Y) | j = 1, . . . ,m} and

S l = {(xj
1, x

j
2, y

j
1, y

j
2) ∈ (X × X × Y × Y) | j = 1, . . . , l} be a set of training and

testing examples, respectively, both being drawn from i.i.d. random variables with the
distribution p(x1, x2, y1, y2).

a) Describe a variant of the Perceptron algorithm which finds the parameters θ such
that the classifier (6) predicts all examples from T m correctly provided such parameters
exists.

b) Assume that Y = {0, . . . , 9} and that we want to measure the prediction accuracy of
h by computing the absolute deviation between the sum of the correct and the predicted
labels. To this end, we define a loss function ℓ(y1, y2, ŷ1, ŷ2) = |y1 + y2 − ŷ1 − ŷ2| and
its expected value

R(h) = E(x1,x2,y1,y2)∼p

[
ℓ
(
y1, y2, h1(x1), h2(x2)

)]
.

As the distribution p(x1, x2, y1, y2) is unknown we estimate R(h) by the test error

RSl(h) =
1

l

l∑
j=1

ℓ(yj1, y
j
2, h1(x

j
1), h2(x

j
2)) .

What is the minimal number of the test examples l which we need to collect in order to
guarantee with probability γ that RSl(h) deviates from R(h) by ε at most ? Write l as a
function of ε and γ.
Solution:
a)

1: wy ← 0, y ∈ Y and g(y, y′)← 0, (y, y′) ∈ Y2

2: Find (x̄1, x̄1, ȳ1, ȳ2) ∈ T m such that

(ȳ1, ȳ2) ̸= (ŷ1, ŷ2) ∈ argmax
y1∈Y,y2∈Y

(⟨ϕ(x̄1),wy1⟩+ ⟨ϕ(x̄2),wy2⟩+ g(y1, y2))

If such (x̄1, x̄1, ȳ1, ȳ2) does not exist then stop and return θ = (wy, y ∈
Y and g(y, y′), (y, y′) ∈ Y2).

3: Update solution

wȳ1 ← wȳ1 + ϕ(x̄1)

wȳ2 ← wȳ2 + ϕ(x̄2)

wŷ1 ← wŷ1 − ϕ(x̄1)

wŷ2 ← wŷ2 − ϕ(x̄2)

g(ȳ1, ȳ2)← g(ȳ1, ȳ2) + 1

g(ŷ1, ŷ2)← g(ŷ1, ŷ2)− 1

4: Go to 2.
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b) From the Hoeffding inequality we can derive (lecture 2, slide 10) that

l =
log(2)− log(1− γ)

2 ε2
(ℓmax − ℓmin)

2

where ℓmin = min(y1,y2,ŷ1,ŷ2)∈Y4 |y1+y2−ŷ1−ŷ2| = 0 and ℓmax = min(y1,y2,ŷ1,ŷ2)∈Y4 |y1+
y2 − ŷ1 − ŷ2| = 18.

Assignment 8 (4p). A discrete random variable x ∈ N is Poisson distributed with

p(x = k) =
λke−λ

k!
,

where λ is a positive parameter.

a) Show that Poisson distributions form an exponential family. Express the natural pa-
rameter as a function of λ.

b) Deduce the maximum likelihood estimate for the natural parameter of a Poisson dis-
tribution, given an i.i.d. training set T m = {ki ∈ N | i = 1 . . . ,m}.

Solution:
a) We can write

p(x = k) =
1

k!
exp[k log λ− λ] = h(k) exp[kη − A(η)]

with η = log λ and A(η) = eη.

b) Substituting this into the log-likelihood of the training set, we get the task

ηk̄ − A(η)→ max
η

,

where k̄ denotes the average over the training set. The solution is η = log k̄.

Assignment 9 (3p). Consider a homogeneous Markov chain model with three states k =
1, 2, 3 and the transition probability matrix

Pk,k′ = 0.5

1 0 0
1 1 0
0 1 2


It starts in state k = 1. Compute the marginal probabilities for its state after three transi-
tions.

Solution: We need to compute π3 = P 3π0 with πT
0 = (1, 0, 0) and obtain πT

3 = 1
8
(1, 3, 4).

Assignment 10 (3p). A convolutional layer transforms an input volume Win ×Hin × C
into an output volume Wout ×Hout ×D, where Win and Hin define spatial dimensions of
the input and C is the number of input channels. Similarly Wout and Hout denote spatial
dimensions of the output and D the number of filters. Consider stride S, zero padding P
and filters having receptive field of F × F units.

a) Give the types and the total number of parameters of the layer.
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b) Consider padding P preserving the size of the output in the W dimension, i.e., Win =
Wout. Give P as a function of F , S and Win.
Solution:
a) There are F 2CD weights and D biases.

b) The padding have to be set to P = (W−1)·S+F−W
2

to preserve spatial dimensions of the
input.

Assignment 11 (5p). Consider the squared logarithmic loss:

ℓ
(
y, h(x)

)
=
[
log
(
1 + y

)
− log

(
1 + h(x)

)]2
,

where y is the target and h(x) the output of the regressor for input x. Give the pseudo
code for the corresponding Gradient Boosting Machine using this loss (including the
gradient) and discuss differences to the squared loss GBM.
Solution: We need the following derivative:

∂l

∂h(x)
= −2

[
log
(
1 + y

)
− log

(
1 + h(x)

)] 1

1 + h(x)
.

Then the GBM is defined as follows:

(1) Initialize f0(x) = 0 or f0(x) = argminγ

∑m
i=1 ℓ(yi, γ)

(2) For k = 1 to K:
(a) Compute:

gk =

[
∂ℓ(yi, fk−1(xi))

∂fk−1(xi)

]m
i=1

=

[
−2
[
log
(
1 + y

)
− log

(
1 + fk−1(xi)

)] 1

1 + fk−1(xi)

]m
i=1

(b) Fit a regression model b(·; θ) to −gk using squared loss:

θk = argmin
θ

m∑
i=1

[(−gk)i − b(xi; θ)]
2

(c) Choose a fixed step size βk = β > 0 or use line search:

βk = argmin
β>0

m∑
i=1

ℓ
(
yi, fk−1(xi) + βb(xi; θk)

)
(d) Set fk(x) = fk−1(x) + βkb(x; θk)

(3) Return hm(x) = fK(x)


