PAL labs 9

$$
16 / 11 / 2022
$$

Let's denote Levenshtein distance of two words x and y as $d(x, y)$. We know that for three words u, v, w it holds that $d(u, v)=d_{1}$, $d(v, w)=d_{2}$. Decide upper and lower bound on the value of $d(u, w)$ w.r.t. d_{1}, d_{2} ? There is only one alphabet for all the words.

Let's denote Hamming distance of words v and w of the alphabet A as $H D(v, w)$, similarly, denote Levenshtein distances as $L D(v, w)$. Decide which of the following cases may happen and if a case may happen, show an example of two words v and w of length at least 5 such that an (in)equality holds.
a) $H D(v, w)<L D(v, w)$,
b) $H D(v, w)=L D(v, w)$,
c) $H D(v, w)>L D(v, w)$.

There are two finite sets of strings, M_{1} and M_{2}, over the alphabet A. Describe how you wold construct a finite automaton accepting all words w over the alphabet A such that at least one prefix of the word w is a member of M_{1} and at least one suffix of w is a member of M_{2}. Recall that a whole word is considered to be its own prefix and suffix. Construct an example for $\left|M_{1}\right|=\left|M_{2}\right|=2$.

Find in the text T all occurences of the substrings which Hamming distance form the pattern P is at most k. Apply the dynamic programming approach. a) $\mathrm{T}=$ ccacbaabccacc, $\mathrm{P}=a b c b a, \mathrm{k}=2$

Find in the text T all occurences of the substrings which Levenshtein distance form the pattern P is at most k. Apply the dynamic programming approach.
b) $\mathrm{T}=010011101000010101000, \mathrm{P}=11100, \mathrm{k}=1$

Construct an NFA which finds each word from the set M in a text over the alphabet A.
a) $A=\{a, b, c\}, M=\{a, b, b a, b c, a a a, b a b, c c c, a b b c, a b c c\}$.

Construct a DFA which finds each word from the set M (from the previous task) in a text over the alphabet A.

We say that two string X and Y over an alphabet have reduced Levenshtein distance equal to k if and only if k is the minimal number of edit operation to get X from Y. Insert and Delete are the only allowed edit operations. Describe an algorithm which will compute reduced Levenshtein distance of X and Y using dynamic programming.

