
Microprocessors

Multiprocessing, threads

Stanislav Vítek
Department of Radioelectronics
Czech Technical University in Prague

Thread

Thread: An independent execution of a sequence of instructions.

It is individually performed computational flow.
Typically a small program that is focused on a particular part.

Thread runs within the process.

It shares the same memory space as the process.

Threads running within the same memory space of the process.

2

Single-threaded and multithreaded processes

3

Thread runtime environment

Each thread has its own separate space for variables.

Thread identifier and space for synchronization variables.

Program counter (PC) or Instruction Pointer (IP) -- address of the performing
instruction.

Indicates where the thread is in its program sequence.

Memory space for local variables (stack).

4

Where Threads Can be Used?
Threads are lightweight variants of processes that share the memory space.
Useful cases for using threads:

More efficient usage of available computational resources:
When a process waits for resources, another thread within the same
process can utilize the dedicated time for process execution.

Multi-core processors can speed up computation using parallel
algorithms.

Handling asynchronous events:
During blocked I/O operation, another thread can be dedicated to I/O
operations, while others handle computations.

5

Examples of Threads Usage
Input/output operations:

Input operations can take significant portions of the run-time.
Dedicated CPU time can be utilized for computationally demanding
operations during communication.

Interactions with Graphical User Interface (GUI):
Graphical interface requires immediate response for a pleasant user
interaction.
Computationally demanding tasks should not decrease interactivity.

6

Threads and Processes
Process:

Computational flow.
Has its own memory space.

Entity (object) of the OS.

Synchronization using OS
(IPC).

CPU allocated by OS
scheduler.
Time to create a process.

Threads of a process:

Computational flow.

Running in the same memory space of the
process.

Synchronization by exclusive access to
variables.
CPU allocated within the dedicated time to
the process.

Creation is faster than creating a process.

7

Multi-thread and Multi-process Applications
Multi-thread application:

Application can enjoy a higher degree of interactivity.
Easier and faster communication between threads using the same memory
space.

Does not directly support scaling parallel computation to distributed
computational environments.

Even on single-core single-processor systems, multi-threaded applications may
better utilize the CPU.

8

Threads in the Operating System
Threads are running within the process.
Regarding the implementation, threads can be:

User space of the process:
Threads are implemented by a user-specified library.

Threads do not need special support from the OS.

Threads are scheduled by the local scheduler provided by the library.

Threads typically cannot utilize more processors (multi-core).
OS entities:

Scheduled by the system scheduler.

May utilize multi-core or multi-processor computational resources.

9

Threads in the User Space

10

Threads as Operating System Entities

11

User Threads vs Operating System Threads
User Threads:

Do not need support from the OS.

Creation does not need an expensive system call.

Execution priority of threads is managed within the assigned process time.
Threads cannot run simultaneously (pseudo-parallelism).

Operating System Threads:
Threads can be scheduled in competition with all threads in the system.
Threads can run simultaneously (on multi-core or multi-processor systems --
true parallelism).

Thread creation is a bit more complex (system call).

12

Combining User and OS Threads

13

Models of Multi-Thread Applications

When to use Threads

Threads are advantageous whenever the application meets any of the following
criteria:

It consists of several independent tasks.
It can be blocked for a certain amount of time.

It contains a computationally demanding part (while keeping interactivity).

It has to promptly respond to asynchronous events.

It contains tasks with lower and higher priorities than the rest of the
application.

The main computation part can be speeded up by a parallel algorithm using
multi-core processors. 14

Typical Multi-Thread Applications
Servers:

Serve multiple clients simultaneously.

May require access to shared resources and many I/O operations.

Computational application:
With multi-core or multi-processor systems, the application runtime can be
decreased.

Real-time applications:
Utilize specific schedulers to meet real-time requirements.

More efficient than complex asynchronous programming.

15

Models of Multithreading Applications
Models address the creation and division of work among threads.

Boss/Worker:
The main thread controls the division of work to other threads.

Peer:
Threads run in parallel without a specified manager.

Pipeline:
Data processing by a sequence of operations.

16

Boss/Worker Model

17

Boss/Worker Model - Roles
The main thread is responsible for managing requests.

i. Receive a new request.

ii. Create a thread for serving the particular request (or pass the request to an
existing thread).

iii. Wait for a new request.

Output/results of the assigned request can be controlled by:
The particular thread (worker) solving the request.

The main thread using synchronization mechanisms (e.g., event queue).

18

Thread Pool
The main thread creates threads upon receiving a new request.
Overhead with the creation of new threads can be reduced using the Thread Pool
with already created threads.

The created threads wait for new tasks.

19

Thread Pool
Properties of the thread pool to consider:

Number of pre-created threads

Maximal number of requests in the queue

Definition of behavior if the queue is full and no threads are available
E.g., block incoming requests.

20

Peer Model

21

Peer Model Properties
It does not contain the main thread.

The first thread creates all other threads and then:
Becomes one of the other threads (equivalent).
Suspends its execution and waits for other threads.

Each thread is responsible for its input and output.

22

Data Stream Processing -- Pipeline

23

Pipeline Model -- Properties and Example
A long input stream of data with a sequence of operations (a part of processing).
Each input data unit must be processed by all parts of the processing operations.

At a particular time, different input data units are processed by individual
processing parts, and the input units must be independent.

24

Producer--Consumer Model
Passing data between units can be realized using a memory buffer.

Or just a buffer of references (pointers) to particular data units.

Producer: Thread that passes data to another thread.

Consumer: Thread that receives data from another thread.

Access to the buffer must be synchronized (exclusive access).

Using the buffer does not necessarily mean the data are copied.

25

Synchronization Mechanisms

26

Mutex - A Locker of Critical Section
Mutex is a shared variable accessible from particular threads.
Basic operations that threads may perform on the mutex:

Lock: Acquired the mutex to the calling thread.
If the mutex cannot be acquired by the thread (because another thread
holds it), the thread is blocked and waits for mutex release.

Unlock: Unlock the already acquired mutex.
If there is one or several threads trying to acquire the mutex (by calling
lock on the mutex), one of the threads is selected for mutex acquisition.

27

Generalized Models of Mutex

Recursive: The mutex can be locked multiple times by the same thread.

Try: The lock operation immediately returns if the mutex cannot be acquired.

Timed: Limit the time to acquire the mutex.

Spinlock: The thread repeatedly checks if the lock is available for acquisition.

Thread is not set to blocked mode if the lock cannot be acquired.

28

Spinlock 1/2
Under certain circumstances, it may be advantageous not to block the thread during
the acquisition of the mutex (lock).

Performing a simple operation on shared data/variable on a system with true
parallelism (using a multi-core CPU).

Blocking the thread, suspending its execution, and passing the allocated CPU time
to another thread may result in significant overhead.

Other threads quickly perform other operations on the data, and thus, the shared
resource would be quickly accessible.

29

Spinlock 2/2
During locking, the thread actively tests if the lock is free.

It wastes CPU time that can be used for productive computation elsewhere.

Similarly to a semaphore, such a test has to be performed by the TestAndSet
instruction at the CPU level.
Adaptive mutex combines both approaches to use spinlocks to access resources
locked by the currently running thread and block/sleep if such a thread is not
running.

It does not make sense to use spinlocks on single-processor systems with
pseudo-parallelism.

30

Condition Variable
Condition variable allows signaling a thread from another thread.
The concept of condition variable allows the following synchronization operations:

Wait: The variable has been changed/notified.

Timed waiting for a signal from another thread.
Signaling another thread waiting for the condition variable.

Signaling all threads waiting for the condition variable.
All threads are awakened, but access to the condition variable is protected
by the mutex that must be acquired, and only one thread can lock the
mutex.

31

Example -- Condition Variable
Example of using a condition variable with a lock (mutex) to allow exclusive access
to the condition variable from different threads.

Mutex mtx; // shared variable for both threads
CondVariable cond; // shared condition variable

// Thread 1 // Thread 2
Lock(mtx); Lock(mtx);
// Before code, wait for Thread 2 ... // Critical section
CondWait(cond, mtx); // wait for cond // Signal on cond
... // Critical section CondSignal(cond, mtx);
UnLock(mtx); UnLock(mtx);

32

Parallelism and Functions
In a parallel environment, functions can be called multiple times.

Regarding parallel execution, functions can be:
Reentrant: At a single moment, the same function can be executed multiple
times simultaneously.
Thread-Safe: The function can be called by multiple threads simultaneously.

To achieve these properties:
Reentrant function does not write to static data and does not work with global
data.

Thread-safe function strictly accesses global data using synchronization
primitives.

33

Main Issues with Multithreading Applications
The main issues/troubles with multiprocessing applications are related to
synchronization.

Deadlock: A thread waits for a resource (mutex) that is currently locked by another
thread that is waiting for the resource (thread) already locked by the first thread.

Race condition: Access of several threads to shared resources (memory/variables),
and at least one of the threads does not use the synchronization mechanisms (e.g.,
critical section).

A thread reads a value while another thread is writing the value.

If reading/writing operations are not atomic, data are not valid.

34

Raspberry Pi Pico Dual Core Programming

with MicroPython

35

Raspberry Pi Pico
RP2040 based module has two
processing cores, Core 0 and
Core 1

Deafault mode:
Core 0 executes all the tasks

Core 1 remains idle or on
standby mode

MicroPython provides a _thread
package to handle the division
and running of our code on
separate cores.

36

https://docs.micropython.org/en/latest/library/_thread.html

Communication between cores

To make the cores to communicate with each other the Raspberry Pi Pico module is
featured with two individual FIFO structures.

Each core can access only one FIFO structure so both core have their own FIFO
structure to write codes which helps in avoiding race condition or writing to the
same memory location simultaneously.

Semaphores or Simple locks are provided with _thread module which is
responsible for synchronization between multiple threads.

The allocate_lock() function provided with _thread module is responsible for
returning a new lock object.

37

The _thread package
Our main Python code will automatically start on Core 0
We can then tell the _thread package to start another block of code on Core 1

def thread_function():
 # code to be running on Core 1

new_thread = _thread.start_new_thread(thread_function, args, [,kwargs])

thread_function is a reference to a standard Python function that contains the code
for the new thread. This must be followed by a tuple containing the function
arguments and then an optional dictionary or keyword arguments for the function.

38

Multi-Threading Example
from time import sleep
import _thread

def core0_thread(counter = 0):
 while True:
 print(counter)
 counter += 2
 sleep(1)

def core1_thread(counter = 1):
 while True:
 print(counter)
 counter += 2
 sleep(2)

second_thread = _thread.start_new_thread(core1_thread, ())

core0_thread()

39

Communication between threads
def core0_thread():
 global run_core_1
 # do something
 # signal core 1 to run
 run_core_1 = True
 # wait for core 1 to finish
 while run_core_1:
 pass

def core1_thread():
 global run_core_1
 while True:
 # wait for core 0 to signal start
 while not run_core_1:
 pass
 # do something
 # signal core 0 code finished

run_core_1 = False

second_thread = _thread.start_new_thread(core1_thread, ())
core0_thread()

40

Sharing resources

Sometimes we need to be very careful about who and when a thread can have
access to some data, or some resource, e.g. the SPI interface.

If both threads try to use or update the same resource at the same time we’ll
either get corrupted data or potentially crash part of our code.

Flag commented above is simple a works in well defined situations. When you
need more flexible control you need to use a Lock.

A Lock (or semaphore in concurrent programming) allows us to control access.

We create a Lock object and only the owner of the Lock can use the resource.

Every other thread has to wait for the Lock owner to release it before one of
the waiting threads can take ownership and get access to the resource.

41

Sharing resources - race condition
def core0_thread():
 while True:
 print('A')
 sleep(0.5)

def core1_thread():
 while True:
 print('B')
 sleep(0.5)

second_thread = _thread.start_new_thread(core1_thread, ())
core0_thread()

42

Sharing resources - using lock (mutex)
def core0_thread():
 global lock
 while True:
 lock.acquire()
 print('A'); sleep(0.5)
 lock.release()

def core1_thread():
 global lock
 while True:
 lock.acquire()
 print('B'); sleep(0.5)
 lock.release()

lock = _thread.allocate_lock()

second_thread = _thread.start_new_thread(core1_thread, ())
core0_thread()

43

Communication between threads using Queue (FIFO)
Queue() has a thread-safe implementation with all the required locking mechanism

it could basically pass a queue as an argument to the second thread

Core 0 thread:

q = queue.Queue()
_thread.start_new_thread(second_core_thread, (q))

while True:
 msg = q.get()

Core 1 thread (second_core_thread):

def writer(q):
 queue.put(....)

44

