
Microprocessors

Raspberry Pi Pico, Micropython

Stanislav Vítek
Department of Radioelectronics
Czech Technical University in Prague

General-purpose Processors
Programmable devices

Microprocessor

Microcontroller
Main components

Program and data memory

General data path
Register set

General ALU

Application-specific processors (ASIC)
Optimized data path

Special functional blocks
2

Dedicated Processors

Application-specific digital circuit

Main components

Components necessary to perform a single program

No program memory

Advantages

Small

Fast
Low power consumption

3

Embedded Systems
Dedicated functionality

Real-time operation
Small size and low weight

Low power consumption

Harsh environments

Operation critical in terms of security
Cost-effective

4

Raspberry Pi Pico

All previous Raspberry Pi boards, such as Raspberry Pi 3 Model B+, Raspberry Pi 4
Model B, or smaller Raspberry Pi Zero, were equipped with Broadcom processors
(BCM2835, BCM2836, BCM2711, etc.).

Raspberry Pi Pico is equipped with RP2040, a microcontroller designed by
Raspberry Pi, the first proprietary processor from Raspberry Pi Foundation.

RP2040 is based on two ARM Cortex-M0+ cores with a clock frequency of up to
133 MHz and is manufactured using 40 nm technology.

The RP2040 MCU also has MicroPython support and a UF2 bootloader in ROM for
easy program loading.

5

6

Raspberry Pi Pico
RP2040 Microcontroller

2 MB SPI Flash memory

Micro-USB type B port for power and programming
40 DIP-type input and output pins with edge soldering

3-pin ARM serial debugging interface (SWD)

12 MHz crystal oscillator

Boot select button
One user LED (connected to GPIO 25, on the W model with a Wi-Fi controller)

3.3V Buck-Boost SMPS converter

7

RP2040 Microcontroller
Two ARM Cortex-M0+ cores

Clock frequency up to 133 MHz
264 KB embedded SRAM memory

30 GPIO pins

Up to 16 MB Flash memory external to the chip

Four-channel ADC with 12-bit resolution
Programmable I/O (PIO)

Additional peripherals - 2x UART, 2x SPI controller, 2x I2C controller, 16 PWM
channels, USB 1.1 controller

8

9

ARM Cortex-M0+

Core communication interface

External AHB-Lite interface -> bus fabric
Debug Access Port (DAP)

Single-cycle I/O Port -> SIO peripherals

Core configuration

32-bit, Little Endian, 8 MPU (Memory Protection Unit)

Debug support (2-wire SWD interface)

26 ext. interrupts, 34 WIC (Wake-up Interrupt Controller)
All registers reset upon restart

10

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#section_sio

ARM Cortex-M0+ Architecture

11

Clock Sources

clk_ref

Internal Ring Oscillator (ROSC), can be switched to external crystal oscillator (XOSC)

6-12 MHz

clk_sys

Initially powered from clk_ref, then typically switched to PLL

125 MHz

clk_peri

Typically powered from clk_sys, but allows peripherals to be independent (clk_sys
can be changed in software)
12-125 MHz 12

Clock Sources

clk_usb, clk_adc

Reference clocks for USB and ADC

48 MHz

clk_rtc

RTC divides the clock to get a 1s reference

46875 Hz

For more details, refer to the documentation.

13

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#reg-clocks-CLK_SYS_CTRL

14

Memory

15

Peripherals
GPIO pins

UART (x2)

SPI (x2)

I2C (x2)
16 PWM channels

8 PIO state machines

USB 1.1 controller

AHB DMA controller
Timer

Real-Time Counter (RTC)

PIO (x2)
16

GPIO

30 programmable input/output pins

26×2 external interrupt handlers

30 input/output programmable I/O pins

26 external interrupt handlers

Pin layout is similar to most other RP boards

17

GPIO
Some pins are better suited for special purposes, such as:

GP0-3 are Quad-SPI pins

GP4-11 can function as an I2C controller

GP14-15 are the UART0 controller

GP16-17 are the UART1 controller

GP25 and GP28 have an onboard LED

GP26 and GP27 are the two 5 V-tolerant pins

Each GPIO pin has an associated 6-bit input pad and 12-bit ADC. They are
grouped into banks and each bank can be independently configured.

18

GPIO Pin Characteristics
3.3 V I/O
5 V-tolerant inputs

Software-configurable input pull-ups and pull-downs

Programmable rise/fall input edges

Separate drive enables for each pin (only one pin per bank supports UART
functionality)

Input sensing, selectable between 3 levels and a glitch filter

19

Voltage Levels
GPIO pins operate at 3.3 V, so it's safe to use 3.3 V devices.

5 V-tolerant inputs allow direct connection of 5 V signals.

Voltage input threshold for logic 1: typically 2.0 V, minimum 1.65 V.
Voltage input threshold for logic 0: typically 0.8 V, maximum 0.99 V.

20

UART

Two UARTs, UART0 and UART1, available for serial communication.

UART0: GP0 (TX), GP1 (RX)

UART1: GP4 (TX), GP5 (RX)

UART baud rate up to 2 Mbps.

Each UART module contains a 16-byte hardware FIFO for transmit and receive.

21

SPI

Two SPI controllers, SPI0 and SPI1, support Serial Peripheral Interface
communication.

SPI0: GP16 (CE0), GP17 (CE1), GP18 (MOSI), GP19 (MISO), GP20 (SCK)

SPI1: GP10 (CE0), GP11 (CE1), GP12 (MOSI), GP13 (MISO), GP14 (SCK)

Data rates up to 50 Mbps.

22

I2C

Two I2C controllers support I2C communication.

I2C0: GP0 (SDA), GP1 (SCL)

I2C1: GP2 (SDA), GP3 (SCL)

Data rates up to 400 kHz.

23

PWM

16 PWM channels.

GP0-GP15 and GP26-GP27 can act as PWM pins.

Independent counters and clocks for each channel.

24

USB 1.1 Controller
Implements Low-speed (1.5 Mbps) USB 1.1 protocol.
Requires an external crystal (12 MHz) connected to XOSC.

Includes a data FIFO for endpoints.

Supports one USB output (D-).

Optionally allows USB voltage to be provided from a GPIO.

25

AHB DMA Controller
Provides DMA (Direct Memory Access) capability.

Has 8 DMA channels, which can be used to move data between peripherals.

The AHB DMA controller can perform burst data transfers.

AHB-Lite interface connects to main bus fabric and can transfer data between
memory and peripherals.

26

Timer
One timer module available.

Suitable for basic timer and delay functions.

Each timer has a 16-bit counter and can generate an interrupt when the counter
reaches a specified value.

The timer can run from the reference clock, sys clock, or any general-purpose clock.

27

Real-Time Counter (RTC)
A 1 Hz counter that provides a reference clock source.

The RTC counts from 0 to 31,768 and then wraps back to 0.

It generates a tick interrupt at 1 Hz.
The RTC provides calibration registers for fine-tuning its frequency.

28

PIO (Programmable Input/Output)
8 PIO state machines are available.

Each PIO state machine can operate independently.
The PIO is used to provide deterministic and tightly controlled I/O operations.

It's highly flexible and can be used for various custom serial protocols, high-speed
interfacing, and generating complex waveforms.
Provides direct, low-level, hardware-timed control of I/O signals.

29

PIO (Programmable Input/Output)
PIO in the RP2040 can be programmed at a lower level even within Micropython.
PIO assembler instructions: JMP, WAIT, IN, OUT, PUSH, PULL, MOV, IRQ, and SET

Instructions are focused on bit manipulation

Each instruction takes exactly one clock cycle
They do not implement any arithmetic operations

The only logical operation is bitwise complement

The rp2 module provides a wrapper for assembler instructions.
For example, the set() function creates a wrapper for the SET instruction, which
toggles the state of a GPIO pin independently of the main processor.

Examples can be found on GitHub.

30

https://github.com/micropython/micropython/blob/master/ports/rp2/modules/rp2.py
https://github.com/raspberrypi/pico-micropython-examples

31

RP2040 Datasheet
For more detailed information on RP2040 and Raspberry Pi Pico, you can refer to the
official RP2040 Datasheet.

32

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

RP2040 Software Ecosystem 1/2
The Raspberry Pi Pico and RP2040 microcontroller are supported by a rich software
ecosystem, which includes the following:

1. C/C++ SDK: Official SDK for low-level access and high-performance applications.

2. MicroPython: Popular among developers who prefer Python.

3. Thonny: A beginner-friendly integrated development environment (IDE).

4. CircuitPython: A variant of MicroPython that simplifies hardware programming.

33

RP2040 Software Ecosystem 2/2

5. Visual Studio Code: An advanced development environment for those who prefer
a full-featured IDE.

6. PlatformIO: An open-source ecosystem for IoT development.

7. Rust: For developers interested in a systems programming language.

8. Pico Explorer: A display, input, and audio add-on for Raspberry Pi Pico.

9. Pico Display: A MicroPython library for controlling a Pico Display Pack.

34

MicroPython
Raspberry Pi Pico supports MicroPython, which is a lightweight Python
implementation optimized for microcontrollers.

You can easily program the Pico using MicroPython to create your IoT applications.

MicroPython provides access to all the RP2040's features, including GPIO, UART,
SPI, I2C, PWM, PIO, and more.

It's an efficient way to get started with IoT development on Raspberry Pi Pico.

35

Micropython

Micropython Documentation

Micropython Introduction Tutorial

Micropython is not the only Python implementation for microcontrollers.

CircuitPython, a derivative of Micropython, maintained by Adafruit, with differences

MicroPython for BBC micro:bit

36

https://docs.micropython.org/en/latest/rp2/general.html
https://docs.micropython.org/en/latest/rp2/tutorial/intro.html
https://circuitpython.org/
https://github.com/adafruit/circuitpython#differences-from-micropython
https://python.microbit.org/v/3

General RPi Control

machine Module

Abstract layer for hardware communication (common across multiple controllers)

import machine

machine.freq() # get the current frequency of the CPU
machine.freq(240000000) # set the CPU frequency to 240 MHz

Module rp2

RP2040 specific functions

import rp2

37

https://docs.micropython.org/en/latest/library/machine.html#module-machine
https://docs.micropython.org/en/latest/library/rp2.html#module-rp2

Machine Module

The module contains specific functions related to hardware on a particular board.

Most functions of the module allow direct and unrestricted access to hardware
blocks of the system (such as the processor, timers, buses, etc.) and their control.

Incorrect usage can lead to malfunctions, locking up, and in extreme cases,
hardware damage.

On suitable hardware, MicroPython offers the possibility to write interrupt handlers
in the Python language. Interrupt handlers, also known as Interrupt Service
Routines (ISRs), are defined as callback functions. These are executed in response
to events such as timer triggers or changes in voltage on a pin.

38

https://docs.micropython.org/en/latest/reference/isr_rules.html#isr-rules

Memory Access
The module defines three objects for direct memory access.

machine.mem8

Write/read 8 bits of memory.

machine.mem16

Write/read 16 bits of memory.

machine.mem32

Write/read 32 bits of memory.

39

Memory Access Example
Example specific to the STM32 platform

import machine
from micropython import const

GPIOA = const(0x48000000)
GPIO_BSRR = const(0x18)
GPIO_IDR = const(0x10)

Set PA2 high
machine.mem32[GPIOA + GPIO_BSRR] = 1 << 2

Read PA3
value = (machine.mem32[GPIOA + GPIO_IDR] >> 3) & 1

40

Device Reset 1/2

machine.reset()

Resets the device with the same effect as an external Reset signal.

machine.soft_reset()

Soft reset of the interpreter, removes all Python objects and resets the Python
heap.

Tries to preserve the way the user is connected to the MicroPython REPL (e.g.,
serial, USB, Wi-Fi).

machine.reset_cause()

Returns the cause of the reset.

Causes are described by constants. 41

https://docs.micropython.org/en/latest/library/machine.html#machine-constants

Device Reset 2/2

machine.bootloader([value])

Resets the device and enters its bootloader.
Typically used to put the device in a state where new firmware can be
programmed.

Some ports support passing an optional argument, value , which can control
which bootloader to enter or what to pass to it.

42

Interrupts
Interrupts are handled by
software components called
Interrupt Service Routines
(ISRs).

When an interrupt occurs,
the processor starts
executing code within this
routine.

After completing the task in
the routine, the processor
resumes executing code
from where it left off.

43

Interrupts
Interrupts can be disabled (turned off) and re-enabled.

Some subsystems require interrupts for proper operation, so disabling them for an
extended period can jeopardize the core's functionality (e.g., watchdog).

Interrupts should only be disabled for a minimal duration and then re-enabled to
their previous state.

import machine

Disable interrupts
state = machine.disable_irq()

Do a small amount of time-critical work here

Enable interrupts
machine.enable_irq(state)

44

Interrupts

machine.disable_irq()

Disables interrupt requests.

Returns the previous IRQ state, which should be considered as an opaque value.
This return value should be passed to the enable_irq() function to restore
interrupts to their previous state before calling disable_irq() .

machine.enable_irq(state)

Re-enables interrupt requests.

The state parameter should be the value returned from the last call to the
disable_irq() function.

45

Power

machine.freq([Hz])

Returns the processor frequency in Hz. On some ports, this function can also be
used to set the processor frequency by providing the Hz value.

machine.idle()

Halts the processor clock, which is useful for reducing power consumption at any
time during short or long periods.

Peripherals continue to work, and execution resumes as soon as any interrupt is
triggered (on many ports, this includes a system timer interrupt occurring at
regular intervals in milliseconds).

46

Power

machine.lightsleep([time_ms])

machine.deepsleep([time_ms])

Halts program execution and attempts to enter a low-power state.

If time_ms is provided, it's the maximum time in milliseconds for which the sleep
will last. Otherwise, sleep may last indefinitely.

Program execution can be resumed at any time with or without a time limit if
events requiring processing occur. Such wakeup events or sources should be
configured before sleeping, such as a pin change or RTC timeout.

47

Power 3/4
The exact behavior and power-saving capabilities of lightsleep and deepsleep modes
are highly hardware-dependent, but some general features are as follows:

lightsleep preserves RAM and state. After waking up, execution continues from the
point where sleep was requested, and all subsystems are functional.

deepsleep must not preserve RAM or any other system state (e.g., peripherals or
network interfaces). After waking up, execution is resumed from the main script,
similar to a hard or power-on reset. The reset_cause() function returns the value
machine.DEEPSLEEP , which can be used to distinguish a deep sleep wake-up from

other resets.

48

Power 4/4

machine.wake_reason()

Returns the reason for waking up from sleep.

Wakeup reasons are described by constants.

Additional Functions

Other useful functions are summarized on this page.

49

https://docs.micropython.org/en/latest/library/machine.html#machine-constants
https://docs.micropython.org/en/latest/library/machine.html#miscellaneous-functions

Timer
The RP2040 system timer peripheral provides a global microsecond time base and
generates interrupts for it.

Simultaneously, a software timer is available in unlimited quantity (if memory
allows).
The timer is described by the machine.Timer class.

from machine import Timer

tim = Timer(period=5000, mode=Timer.ONE_SHOT, callback=lambda t:print(1))
tim.init(period=2000, mode=Timer.PERIODIC, callback=lambda t:print(2))

50

https://docs.micropython.org/en/latest/library/machine.Timer.html#machine.Timer

GPIO
GPIO is described by the machine.Pin class.

from machine import Pin

p0 = Pin(0, Pin.OUT) # create output pin on GPIO0
p0.on() # set pin to "on" (high) level
p0.off() # set pin to "off" (low) level
p0.value(1) # set pin to on/high

p2 = Pin(2, Pin.IN) # create input pin on GPIO2
print(p2.value()) # get value, 0 or 1

p4 = Pin(4, Pin.IN, Pin.PULL_UP) # enable internal pull-up resistor
p5 = Pin(5, Pin.OUT, value=1) # set pin high on creation

51

https://docs.micropython.org/en/latest/library/machine.Pin.html#machine-pin

GPIO with interrupt
import time
from machine import Pin

pin_button = Pin(14, mode=Pin.IN, pull=Pin.PULL_UP)
pin_led = Pin(16, mode=Pin.OUT)

def button_isr(pin):
 pin_led.value(not pin_led.value())

pin_button.irq(trigger=Pin.IRQ_FALLING, handler=button_isr)

while True:
 ...

52

ADC
ADC is described by machine.ADC

from machine import ADC
import utime

sensor_temp = ADC(4)
conversion_factor = 3.3 / (65535)

while True:
 reading = sensor_temp.read_u16() * conversion_factor
 temperature = 27 - (reading - 0.706)/0.001721
 print(temperature)
 utime.sleep(2)

53

https://docs.micropython.org/en/latest/library/machine.ADC.html

UART

UART is described by the machine.UART class.

RP2040 has two UART peripherals (UART0 and UART1).

Programmable data length (5-8 bits) and the number of stop bits (1 or 2).

FIFO in both directions up to 32 bytes.

Interrupts can be used to monitor data arrival or departure, device status,
communication error, or data reception timeout.

Both devices can be configured on various pairs of TX and RX pins.

UART0: GP0-GP1, GP12-GP13, GP16-GP17
UART1: GP4-GP5, GP8-GP9

54

https://docs.micropython.org/en/latest/library/machine.UART.html

UART
from machine import Pin, UART
import time

uart = UART(1, baudrate=9600, tx=Pin(4), rx=Pin(5))
uart.init(bits=8, parity=None, stop=2)

led = Pin("LED", Pin.OUT)

while True:
 uart.write('t')
 if uart.any():
 data = uart.read()
 if data== b'm':
 led.toggle()
 time.sleep(1)

55

56

