Assignment \# 2: Random Graphs

October 6, 2020

Goals:

- Acquire ability to estimate complex-network properties;
- Learn to generate synthetic networks of given properties;
- Learn to assess basic characteristics of complex networks, such as their node-degree distributions.

Assignment:

1. Generate characteristic complex networks:
(a) Regular graph,
(b) Sparse Erdos-Renyi graph,
(c) Watts-Strogatz graph,
(d) Barabasi-Albert graph.

For every type of graph, choose suitable parameters and generate 2 graphs:
(a) with 25 nodes/vertices,
(b) with 10000 nodes/vertices;
2. Visualize every 25 -node graph - choose the most suitable method;
3. Create a histogram of node/vertex degrees for every 25 -node graph;
4. Discuss (in a written form) the results and their (in)consistency with theoretical distributions.

Advice:

1. Refer to your previous assignment for visualization;
2. To get a list of all degrees of nodes/vertices in a graph G, you can use
```
list_of_degrees = list(nx.degree(G).values())
```

3. To set a histogram axis to logarithmic scale, you can do
```
plt.xscale('log') # for x-axis
2 plt.yscale('log') # for y-axis
```

4. To generate random graph, you can utilize methods from nx library (refer to documentation)

- nx.random_regular_graph,
- nx.erdos_renyi_graph,
- nx.watts_strogatz_graph,
- nx.barabasi_albert_graph.

