Temporal Logics

Radek Mařík

Czech Technical University
Faculty of Electrical Engineering
Department of Telecommunication Engineering
Prague CZ

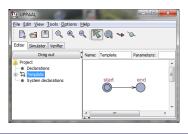
Outline

- UPPAAL Tool
 - Modeling and Verification Procedure
- 2 Fundamentals of Temporal Logics
 - Processing Paths and Time
 - CTL* Logic
 - CTL Logic
 - LTL Logic
- UPPAAL
 - Requirements Specification in UPPAAL
 - Model Language
 - Model Verification Properties
 - Time in UPPAAL
 - Urgent Transitions UPPAAL
- 4 UPPAAL Examples
 - Trains Crossing a Bridge
 - Game NIM
 - Game Requirements Specification NIM

Outline

- UPPAAL Tool
 - Modeling and Verification Procedure
- 2 Fundamentals of Temporal Logics
 - Processing Paths and Time
 - CTL* Logic
 - CTL Logic
 - LTL Logic
- UPPAAI
 - Requirements Specification in UPPAAL
 - Model Language
 - Model Verification Properties
 - Time in UPPAAL
 - Urgent Transitions UPPAAL
- 4 UPPAAL Examples
 - Trains Crossing a Bridge
 - Game NIM
 - Game Requirements Specification NIM

Automaton Creation

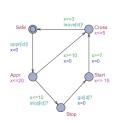


Automaton

- Starting position (double circle)
- "Add Location" to add a position
- "Selection Tool" for naming the position
- "Add Edge" to add an edge, bend the edges with the mouse around the ends
- the lower table "Position" and "Description" for error analysis

System

- System ... a network of parallel timed automata (processes).
- **Process** . . . an instance of a parameterized pattern.



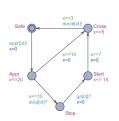
Process

- Position ...
 - name,
 - invariants
- Edges ...
 - guard conditions (x >= 7),
 - synchronization (go[id]?),
 - assignment (x=0),

System Composition [UPP09]

System

- System ... a network of parallel timed automata (processes).
- Process ... an instance of a parameterized pattern.



Process

- Position . . .
 - name,
 - invariants
- Edges ...
 - guard conditions (x >= 7),
 - synchronization (go[id]?),
 - assignment (x = 0),

(Automaton) Template Description [UPP09]

Parameterized timed automaton

- name,
- parameters,

Local declarations

- variables,
- synchronization channels,
- constants

(Automaton) Template Description [UPP09]

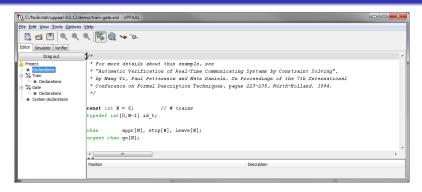
Parameterized timed automaton

- name,
- parameters,

Local declarations

- variables,
- synchronization channels,
- constants

System Description [UPP09]



Global Declarations

- global integer variables,
- global clock,
- synchronization channels,
- constants

System Definitions [UPP09]

```
pool activated1, activated2;
urgent chan pushed1, pushed2;
urgent chan closed1, closed2;
poor1 = Door(activated1, pushed1, closed1, closed2);
poor2 = Door(activated2, pushed2, closed2, closed1);
User1 = User(activated1, pushed1);
User2 = User(activated2, pushed2);
system Door1, Door2, User1, User2;
```

Process Assignment

- a process instance declaration,
- patterns with fully/partially specified parameters,

System Definition

• a list of system processes,

System Definitions [UPP09]

```
pool activated1, activated2;
urgent chan pushed1, pushed2;
urgent chan closed1, closed2;
poor1 = Door(activated1, pushed1, closed1, closed2);
poor2 = Door(activated2, pushed2, closed2, closed1);
User1 = User(activated1, pushed1);
User2 = User(activated2, pushed2);
system Door1, Door2, User1, User2;
```

Process Assignment

- a process instance declaration,
- patterns with fully/partially specified parameters,

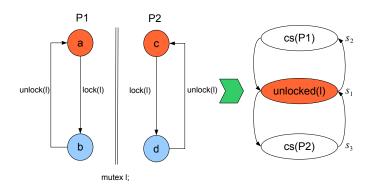
System Definition

• a list of system processes,

Outline

- UPPAAL Tool
 - Modeling and Verification Procedure
- 2 Fundamentals of Temporal Logics
 - Processing Paths and Time
 - CTL* Logic
 - CTL Logic
 - LTL Logic
- UPPAAI
 - Requirements Specification in UPPAAL
 - Model Language
 - Model Verification Properties
 - Time in UPPAAL
 - Urgent Transitions UPPAAL
- 4 UPPAAL Examples
 - Trains Crossing a Bridge
 - Game NIM
 - Game Requirements Specification NIM

Transitions between Configurations in Kripke's structure [Voj10]



Path in Kripke's structure [Voj10]

Path

- Path π ... in Kripke's structure M is an infinite sequence of states $\pi = s_0 s_1 s_3 \ldots$ such that, $\forall i \in N..R(s_i, s_{i+1})$.
- ullet $\Pi(M,s)$...a set of all paths in M that start in ${\sf v}$ $s\in S$
- Suffix π^i of the path $\pi = s_0 s_1 s_3 \dots s_i s_{i+1} s_{i+2}$ is a the path $\pi^i = s_i s_{i+1} s_{i+2}$ starting in s_i .
- $s_i = \pi[i]$

Concept of Time [Voj10]

Time Abstraction

- Logical time ... works with (partial) ordering of states/events in system behavior.
- Physical time ... measurement of time elapsed between two states/events.

Time in Model Verification

- Linear time ... allows you to express only about a given *linear path* in state space.
 - \bullet On all paths, x must be followed by y.
 - ullet On all paths, x must be followed by y or z.
- **Branching time** ... allows to quantify (existentially and universally) possible futures starting with a given state. The state space is observed as an expanded *infinite tree*.
 - \bullet There is a path where the following next state is x

Time Abstraction

- Logical time ... works with (partial) ordering of states/events in system behavior.
- Physical time ... measurement of time elapsed between two states/events.

Time in Model Verification

- **Linear time** ... allows you to express only about a given *linear path* in state space.
 - \bullet On all paths, x must be followed by y.
 - ullet On all paths, x must be followed by y or z.
- **Branching time** ... allows to quantify (existentially and universally) possible futures starting with a given state. The state space is observed as an expanded *infinite tree*.
 - There is a path where the following next state is x.

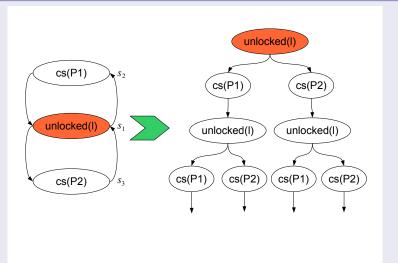
Outline

- UPPAAL Too
 - Modeling and Verification Procedure
- 2 Fundamentals of Temporal Logics
 - Processing Paths and Time
 - CTL* Logic
 - CTL Logic
 - LTL Logic
- UPPAAL
 - Requirements Specification in UPPAAL
 - Model Language
 - Model Verification Properties
 - Time in UPPAAL
 - Urgent Transitions UPPAAL
- 4 UPPAAL Examples
 - Trains Crossing a Bridge
 - Game NIM
 - Game Requirements Specification NIM

13 / 67

Computation Tree [Voj10]

Describes the properties of the processing progress.



Consists of

- atomic statements
- logical connectors
- path quantifiers
- temporal operators

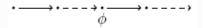
Path Quantifiers

describe the branching structure of a computation tree

- E ... there exists a processing path from the given state.
- A ... for all processing paths from the given state.

• $X\varphi$ (next time, \bigcirc)... the property φ is fulfilled in the second (next)

• $F\varphi$ (in future, \Diamond)...the property φ is valid in a state of the path.



Path Quantifiers

describe the branching structure of a computation tree

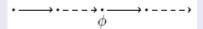
- E ... there exists a processing path from the given state.
- A ... for all processing paths from the given state.

Temporal Operators

determine the properties of a given path in the computation tree

• $X\varphi$ (next time, \bigcirc)... the property φ is fulfilled in the second (next) state of the path.

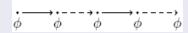
• $F\varphi$ (in future, \Diamond)...the property φ is valid in a state of the path.



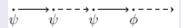
CTL* Operators [Wik10, Voj10]

Temporal Operators

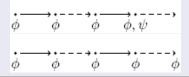
• $G\varphi$ (globally, \square). . . The property φ is satisfied in all states of the given path.



• $\psi U \varphi$ (until)... The property φ is valid in some path state, and the property ψ is valid at least in all previous states of this path.



• $\psi R \varphi$ (release)... The property φ must be valid until (and including) the state when the ψ property becomes satisfied, if such a state exists.



Let AP be a nonempty set of atomic propositions.

Syntax of state formulas that are true in a given state

- If $p \in AP$, then p is a state formula.
- If φ a ψ are state formulae, then $\neg \varphi$, $\varphi \lor \psi$, $\varphi \land \psi$ are state fomulae.
- If φ is a path formula, potom $E\varphi$ a $A\varphi$ are state formulae.

Syntax of path formulae that are true in states along a specific path

- \bullet If φ is a state formula, then φ is also a path formula.
- If φ and ψ are path formulae, then $\neg \varphi$, $\varphi \lor \psi$, $\varphi \land \psi$, $X\varphi$, $F\varphi$, $G\varphi$, $\varphi U \psi$ a $\varphi R \psi$ are path formulae.

CTL* is the set of state formulae generated by the above rules.

Let AP be a nonempty set of atomic propositions.

Syntax of state formulas that are true in a given state

- If $p \in AP$, then p is a state formula.
- If φ a ψ are state formulae, then $\neg \varphi$, $\varphi \lor \psi$, $\varphi \land \psi$ are state fomulae.
- If φ is a path formula, potom $E\varphi$ a $A\varphi$ are state formulae.

Syntax of path formulae that are true in states along a specific path

- ullet If φ is a state formula, then φ is also a path formula.
- If φ and ψ are path formulae, then $\neg \varphi$, $\varphi \lor \psi$, $\varphi \land \psi$, $X\varphi$, $F\varphi$, $G\varphi$, $\varphi U \psi$ a $\varphi R \psi$ are path formulae.

CTL* is the set of state formulae generated by the above rules.

- Let be Kripke's structure $M = (S, T, \mathcal{I}, s_0, L)$ over a set of atomic propositions AP.
- For the state formula φ over AP, we denote $M, s \models \varphi$ the fact,
- For the path formula φ over AP, we denote $M, \pi \models \varphi$ the fact,
- Let $s \in S$, π be a path in M, φ_1 , φ_2 are state formulae over AP,

- Let be Kripke's structure $M = (S, T, \mathcal{I}, s_0, L)$ over a set of atomic propositions AP.
- For the state formula φ over AP, we denote $M, s \models \varphi$ the fact, that φ is satisfied in $s \in S$.
- For the path formula φ over AP, we denote $M, \pi \models \varphi$ the fact,
- Let $s \in S$, π be a path in M, φ_1 , φ_2 are state formulae over AP,

- Let be Kripke's structure $M = (S, T, \mathcal{I}, s_0, L)$ over a set of atomic propositions AP.
- For the state formula φ over AP, we denote $M, s \models \varphi$ the fact, that φ is satisfied in $s \in S$.
- For the path formula φ over AP, we denote $M, \pi \models \varphi$ the fact, that φ is satisfied along the path π in M.
- Let $s \in S$, π be a path in M, φ_1 , φ_2 are state formulae over AP,

- Let be Kripke's structure $M = (S, T, \mathcal{I}, s_0, L)$ over a set of atomic propositions AP.
- For the state formula φ over AP, we denote $M, s \models \varphi$ the fact, that φ is satisfied in $s \in S$.
- For the path formula φ over AP, we denote $M, \pi \models \varphi$ the fact, that φ is satisfied along the path π in M.
- Let $s \in S$, π be a path in M, φ_1 , φ_2 are state formulae over AP, $p \in AP$, and ψ_1 , ψ_2 are path formulae over AP. Then, we define a relation \models inductively as follows:
 - $M, s \models p$ iff $p \in L(s)$.
 - $M, s \models \neg \varphi_1$ iff $M, s \not\models \varphi_1$.
 - $M, s \models \varphi_1 \lor \varphi_2$ iff $M, s \models \varphi_1$ or $M, s \models \varphi_2$.
 - $M, s \models \varphi_1 \land \varphi_2$ iff $M, s \models \varphi_1$ and $M, s \models \varphi_2$.
 - $M, s \models E\psi_1$ iff $\exists \pi \in \Pi(M, s).M, s \models \psi_1$.
 - $M, s \models A\psi_1$ iff $\forall \pi \in \Pi(M, s).M, s \models \psi_1$.

- Let be Kripke's structure $M = (S, T, \mathcal{I}, s_0, L)$ over a set of atomic propositions AP.
- For the state formula φ over AP, we denote $M, s \models \varphi$ the fact, that φ is satisfied in $s \in S$.
- For the path formula φ over AP, we denote $M, \pi \models \varphi$ the fact, that φ is satisfied along the path π in M.
- Let $s \in S$, π be a path in M, φ_1 , φ_2 are state formulae over AP, $p \in AP$, and ψ_1 , ψ_2 are path formulae over AP. Then, we define a relation \models inductively as follows:
 - $M, s \models p$ iff $p \in L(s)$.
 - $M, s \models \neg \varphi_1$ iff $M, s \not\models \varphi_1$.
 - $M, s \models \varphi_1 \lor \varphi_2$ iff $M, s \models \varphi_1$ or $M, s \models \varphi_2$.
 - $M, s \models \varphi_1 \land \varphi_2$ iff $M, s \models \varphi_1$ and $M, s \models \varphi_2$.
 - $M, s \models E\psi_1$ iff $\exists \pi \in \Pi(M, s).M, s \models \psi_1$.
 - $M, s \models A\psi_1$ iff $\forall \pi \in \Pi(M, s).M, s \models \psi_1$.

- Let be Kripke's structure $M = (S, T, \mathcal{I}, s_0, L)$ over a set of atomic propositions AP.
- For the state formula φ over AP, we denote $M, s \models \varphi$ the fact, that φ is satisfied in $s \in S$.
- For the path formula φ over AP, we denote $M, \pi \models \varphi$ the fact, that φ is satisfied along the path π in M.
- Let $s \in S$, π be a path in M, φ_1 , φ_2 are state formulae over AP, $p \in AP$, and ψ_1 , ψ_2 are path formulae over AP. Then, we define a relation \models inductively as follows:
 - $M, s \models p$ iff $p \in L(s)$.
 - $M, s \models \neg \varphi_1$ iff $M, s \not\models \varphi_1$.
 - $M, s \models \varphi_1 \lor \varphi_2$ iff $M, s \models \varphi_1$ or $M, s \models \varphi_2$.
 - $M, s \models \varphi_1 \land \varphi_2$ iff $M, s \models \varphi_1$ and $M, s \models \varphi_2$.
 - $M, s \models E\psi_1$ iff $\exists \pi \in \Pi(M, s).M, s \models \psi_1$.
 - $M, s \models A\psi_1$ iff $\forall \pi \in \Pi(M, s).M, s \models \psi_1$.

- Let be Kripke's structure $M = (S, T, \mathcal{I}, s_0, L)$ over a set of atomic propositions AP.
- For the state formula φ over AP, we denote $M, s \models \varphi$ the fact, that φ is satisfied in $s \in S$.
- For the path formula φ over AP, we denote $M, \pi \models \varphi$ the fact, that φ is satisfied along the path π in M.
- Let $s \in S$, π be a path in M, φ_1 , φ_2 are state formulae over AP, $p \in AP$, and ψ_1 , ψ_2 are path formulae over AP. Then, we define a relation \models inductively as follows:
 - $M, s \models p$ iff $p \in L(s)$.
 - $M, s \models \neg \varphi_1$ iff $M, s \not\models \varphi_1$.
 - $M, s \models \varphi_1 \lor \varphi_2$ iff $M, s \models \varphi_1$ or $M, s \models \varphi_2$.
 - $M, s \models \varphi_1 \land \varphi_2$ iff $M, s \models \varphi_1$ and $M, s \models \varphi_2$.
 - $M, s \models E\psi_1$ iff $\exists \pi \in \Pi(M, s).M, s \models \psi_1$.
 - $M, s \models A\psi_1$ iff $\forall \pi \in \Pi(M, s).M, s \models \psi_1$.

- Let be Kripke's structure $M = (S, T, \mathcal{I}, s_0, L)$ over a set of atomic propositions AP.
- For the state formula φ over AP, we denote $M, s \models \varphi$ the fact, that φ is satisfied in $s \in S$.
- For the path formula φ over AP, we denote $M, \pi \models \varphi$ the fact, that φ is satisfied along the path π in M.
- Let $s \in S$, π be a path in M, φ_1 , φ_2 are state formulae over AP, $p \in AP$, and ψ_1 , ψ_2 are path formulae over AP. Then, we define a relation \models inductively as follows:
 - $M, s \models p$ iff $p \in L(s)$.
 - $M, s \models \neg \varphi_1$ iff $M, s \not\models \varphi_1$.
 - $M, s \models \varphi_1 \lor \varphi_2$ iff $M, s \models \varphi_1$ or $M, s \models \varphi_2$.
 - $M, s \models \varphi_1 \land \varphi_2$ iff $M, s \models \varphi_1$ and $M, s \models \varphi_2$.
 - $M, s \models E\psi_1$ iff $\exists \pi \in \Pi(M, s).M, s \models \psi_1$.
 - $M, s \models A\psi_1$ iff $\forall \pi \in \Pi(M, s).M, s \models \psi_1$.

- Let be Kripke's structure $M = (S, T, \mathcal{I}, s_0, L)$ over a set of atomic propositions AP.
- For the state formula φ over AP, we denote $M, s \models \varphi$ the fact, that φ is satisfied in $s \in S$.
- For the path formula φ over AP, we denote $M, \pi \models \varphi$ the fact, that φ is satisfied along the path π in M.
- Let $s \in S$, π be a path in M, φ_1 , φ_2 are state formulae over AP, $p \in AP$, and ψ_1 , ψ_2 are path formulae over AP. Then, we define a relation \models inductively as follows:
 - $M, s \models p$ iff $p \in L(s)$.
 - $M, s \models \neg \varphi_1$ iff $M, s \not\models \varphi_1$.
 - $M, s \models \varphi_1 \lor \varphi_2$ iff $M, s \models \varphi_1$ or $M, s \models \varphi_2$.
 - $M, s \models \varphi_1 \land \varphi_2$ iff $M, s \models \varphi_1$ and $M, s \models \varphi_2$.
 - $M, s \models E\psi_1$ iff $\exists \pi \in \Pi(M, s).M, s \models \psi_1$.
 - $M, s \models A\psi_1$ iff $\forall \pi \in \Pi(M, s).M, s \models \psi_1$.

- Let be Kripke's structure $M = (S, T, \mathcal{I}, s_0, L)$ over a set of atomic propositions AP.
- For the state formula φ over AP, we denote $M, s \models \varphi$ the fact, that φ is satisfied in $s \in S$.
- For the path formula φ over AP, we denote $M, \pi \models \varphi$ the fact, that φ is satisfied along the path π in M.
- Let $s \in S$, π be a path in M, φ_1 , φ_2 are state formulae over AP, $p \in AP$, and ψ_1 , ψ_2 are path formulae over AP. Then, we define a relation \models inductively as follows:
 - $M, s \models p$ iff $p \in L(s)$.
 - $M, s \models \neg \varphi_1$ iff $M, s \not\models \varphi_1$.
 - $M, s \models \varphi_1 \lor \varphi_2$ iff $M, s \models \varphi_1$ or $M, s \models \varphi_2$.
 - $M, s \models \varphi_1 \land \varphi_2$ iff $M, s \models \varphi_1$ and $M, s \models \varphi_2$.
 - $M, s \models E\psi_1$ iff $\exists \pi \in \Pi(M, s).M, s \models \psi_1$.
 - $M, s \models A\psi_1$ iff $\forall \pi \in \Pi(M, s).M, s \models \psi_1$.

CTL* Path Semantics [Voj10]

To continue defining the relation \=:

- $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1, s_0 = \pi[0]$.
- $M, \pi \models \neg \psi_1$ iff $M, \pi \not\models \psi_1$.
- $M, \pi \models \psi_1 \lor \psi_2$ iff $M, \pi \models \psi_1$ or $M, \pi \models \psi_2$.
- $M, \pi \models \psi_1 \land \psi_2$ iff $M, \pi \models \psi_1$ and $M, \pi \models \psi_2$.
- $M, \pi \models X\psi_1$ iff $M, \pi^1 \models \psi_1$.
- $M, \pi \models F\psi_1$ iff $\exists i > 0.M, \pi^i \models \psi_1$.
- $M, \pi \models G\psi_1$ iff $\forall i > 0.M, \pi^i \models \psi_1$.
- $M, \pi \models \psi_1 U \psi_2$ iff $\exists i > 0.M, \pi^i \models \psi_2$
- $M, \pi \models \psi_1 R \psi_2$ iff $\forall i \geq 0. (\forall 0 \leq j < i.M, \pi^j \not\models \psi_1 \Rightarrow M, \pi^i \models \psi_2$.

CTL* Path Semantics [Voj10]

- To continue defining the relation =:
 - $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1, s_0 = \pi[0]$.
 - $M, \pi \models \neg \psi_1$ iff $M, \pi \not\models \psi_1$.
 - $M, \pi \models \psi_1 \lor \psi_2$ iff $M, \pi \models \psi_1$ or $M, \pi \models \psi_2$.
 - $M, \pi \models \psi_1 \wedge \psi_2$ iff $M, \pi \models \psi_1$ and $M, \pi \models \psi_2$.
 - $M, \pi \models X\psi_1$ iff $M, \pi^1 \models \psi_1$.
 - $M, \pi \models F\psi_1$ iff $\exists i > 0.M, \pi^i \models \psi_1$.
 - $M, \pi \models G\psi_1$ iff $\forall i > 0.M, \pi^i \models \psi_1$.
 - $M, \pi \models \psi_1 U \psi_2$ iff $\exists i > 0.M, \pi^i \models \psi_2$
 - $M, \pi \models \psi_1 R \psi_2$ iff $\forall i \geq 0. (\forall 0 \leq j < i.M, \pi^j \not\models \psi_1 \Rightarrow M, \pi^i \models \psi_2$.

- To continue defining the relation =:
 - $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1, s_0 = \pi[0]$.
 - $M, \pi \models \neg \psi_1$ iff $M, \pi \not\models \psi_1$.
 - $M, \pi \models \psi_1 \lor \psi_2$ iff $M, \pi \models \psi_1$ or $M, \pi \models \psi_2$.
 - $M, \pi \models \psi_1 \land \psi_2$ iff $M, \pi \models \psi_1$ and $M, \pi \models \psi_2$.
 - $M, \pi \models X\psi_1$ iff $M, \pi^1 \models \psi_1$.
 - $M, \pi \models F\psi_1$ iff $\exists i > 0.M, \pi^i \models \psi_1$.
 - $M, \pi \models G\psi_1$ iff $\forall i > 0.M, \pi^i \models \psi_1$.
 - $M, \pi \models \psi_1 U \psi_2$ iff $\exists i > 0.M, \pi^i \models \psi_2$
 - $M, \pi \models \psi_1 R \psi_2$ iff $\forall i \geq 0. (\forall 0 \leq j < i.M, \pi^j \not\models \psi_1 \Rightarrow M, \pi^i \models \psi_2$.

- To continue defining the relation =:
 - $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1, s_0 = \pi[0]$.
 - $M, \pi \models \neg \psi_1$ iff $M, \pi \not\models \psi_1$.
 - $M, \pi \models \psi_1 \lor \psi_2$ iff $M, \pi \models \psi_1$ or $M, \pi \models \psi_2$.
 - $M, \pi \models \psi_1 \land \psi_2$ iff $M, \pi \models \psi_1$ and $M, \pi \models \psi_2$.
 - $M, \pi \models X\psi_1$ iff $M, \pi^1 \models \psi_1$.
 - $M, \pi \models F\psi_1$ iff $\exists i > 0.M, \pi^i \models \psi_1$.
 - $M, \pi \models G\psi_1$ iff $\forall i > 0.M, \pi^i \models \psi_1$.
 - $M, \pi \models \psi_1 U \psi_2$ iff $\exists i > 0.M, \pi^i \models \psi_2$
 - $M, \pi \models \psi_1 R \psi_2$ iff $\forall i > 0. (\forall 0 < i < i.M, \pi^j \not\models \psi_1 \Rightarrow M, \pi^i \models \psi_2$.

- To continue defining the relation =:
 - $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1, s_0 = \pi[0]$.
 - $M, \pi \models \neg \psi_1$ iff $M, \pi \not\models \psi_1$.
 - $M, \pi \models \psi_1 \lor \psi_2$ iff $M, \pi \models \psi_1$ or $M, \pi \models \psi_2$.
 - $M, \pi \models \psi_1 \land \psi_2$ iff $M, \pi \models \psi_1$ and $M, \pi \models \psi_2$.
 - $M, \pi \models X\psi_1$ iff $M, \pi^1 \models \psi_1$.
 - $M, \pi \models F\psi_1$ iff $\exists i > 0.M, \pi^i \models \psi_1$.
 - $M, \pi \models G\psi_1$ iff $\forall i > 0.M, \pi^i \models \psi_1$.
 - $M.\pi \models \psi_1 U \psi_2$ iff $\exists i > 0.M, \pi^i \models \psi_2$
 - $M, \pi \models \psi_1 R \psi_2$ iff $\forall i > 0. (\forall 0 < i < i.M, \pi^j \not\models \psi_1 \Rightarrow M, \pi^i \models \psi_2$.

- To continue defining the relation =:
 - $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1, s_0 = \pi[0]$.
 - $M, \pi \models \neg \psi_1$ iff $M, \pi \not\models \psi_1$.
 - $M, \pi \models \psi_1 \lor \psi_2$ iff $M, \pi \models \psi_1$ or $M, \pi \models \psi_2$.
 - $M, \pi \models \psi_1 \land \psi_2$ iff $M, \pi \models \psi_1$ and $M, \pi \models \psi_2$.
 - $M, \pi \models X\psi_1$ iff $M, \pi^1 \models \psi_1$.
 - $M, \pi \models F\psi_1$ iff $\exists i > 0.M, \pi^i \models \psi_1$.
 - $M, \pi \models G\psi_1$ iff $\forall i > 0.M, \pi^i \models \psi_1$.
 - $M.\pi \models \psi_1 U \psi_2$ iff $\exists i > 0.M, \pi^i \models \psi_2$
 - $M, \pi \models \psi_1 R \psi_2$ iff $\forall i > 0. (\forall 0 < i < i.M, \pi^j \not\models \psi_1 \Rightarrow M, \pi^i \models \psi_2$.

- To continue defining the relation =:
 - $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1, s_0 = \pi[0]$.
 - $M, \pi \models \neg \psi_1$ iff $M, \pi \not\models \psi_1$.
 - $M, \pi \models \psi_1 \lor \psi_2$ iff $M, \pi \models \psi_1$ or $M, \pi \models \psi_2$.
 - $M, \pi \models \psi_1 \land \psi_2$ iff $M, \pi \models \psi_1$ and $M, \pi \models \psi_2$.
 - $M, \pi \models X\psi_1$ iff $M, \pi^1 \models \psi_1$.
 - $M, \pi \models F\psi_1$ iff $\exists i > 0.M, \pi^i \models \psi_1$.
 - $M, \pi \models G\psi_1$ iff $\forall i > 0.M, \pi^i \models \psi_1$.
 - $M.\pi \models \psi_1 U \psi_2$ iff $\exists i > 0.M, \pi^i \models \psi_2$
 - $M, \pi \models \psi_1 R \psi_2$ iff $\forall i > 0. (\forall 0 < i < i.M, \pi^j \not\models \psi_1 \Rightarrow M, \pi^i \models \psi_2$.

- To continue defining the relation =:
 - $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1, s_0 = \pi[0]$.
 - $M, \pi \models \neg \psi_1$ iff $M, \pi \not\models \psi_1$.
 - $M, \pi \models \psi_1 \lor \psi_2$ iff $M, \pi \models \psi_1$ or $M, \pi \models \psi_2$.
 - $M, \pi \models \psi_1 \land \psi_2$ iff $M, \pi \models \psi_1$ and $M, \pi \models \psi_2$.
 - $M, \pi \models X\psi_1$ iff $M, \pi^1 \models \psi_1$.
 - $M, \pi \models F\psi_1$ iff $\exists i > 0.M, \pi^i \models \psi_1$.
 - $M, \pi \models G\psi_1$ iff $\forall i > 0.M, \pi^i \models \psi_1$.
 - $M.\pi \models \psi_1 U \psi_2$ iff $\exists i > 0.M, \pi^i \models \psi_2$
 - $M, \pi \models \psi_1 R \psi_2$ iff $\forall i > 0. (\forall 0 < i < i.M, \pi^j \not\models \psi_1 \Rightarrow M, \pi^i \models \psi_2$.

- To continue defining the relation \=:
 - $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1, s_0 = \pi[0]$.
 - $M, \pi \models \neg \psi_1$ iff $M, \pi \not\models \psi_1$.
 - $M, \pi \models \psi_1 \lor \psi_2$ iff $M, \pi \models \psi_1$ or $M, \pi \models \psi_2$.
 - $M, \pi \models \psi_1 \land \psi_2$ iff $M, \pi \models \psi_1$ and $M, \pi \models \psi_2$.
 - $M, \pi \models X\psi_1$ iff $M, \pi^1 \models \psi_1$.
 - $M, \pi \models F\psi_1$ iff $\exists i > 0.M, \pi^i \models \psi_1$.
 - $M, \pi \models G\psi_1$ iff $\forall i > 0.M, \pi^i \models \psi_1$.
 - $M, \pi \models \psi_1 U \psi_2$ iff $\exists i > 0.M, \pi^i \models \psi_2$ and $\forall 0 \leq i \leq i.M. \pi^j \models \psi_1$.
 - $M, \pi \models \psi_1 R \psi_2$ iff $\forall i > 0. (\forall 0 < i < i.M, \pi^j \not\models \psi_1 \Rightarrow M, \pi^i \models \psi_2$.

- To continue defining the relation \=:
 - $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1, s_0 = \pi[0]$.
 - $M, \pi \models \neg \psi_1$ iff $M, \pi \not\models \psi_1$.
 - $M, \pi \models \psi_1 \lor \psi_2$ iff $M, \pi \models \psi_1$ or $M, \pi \models \psi_2$.
 - $M, \pi \models \psi_1 \land \psi_2$ iff $M, \pi \models \psi_1$ and $M, \pi \models \psi_2$.
 - $M, \pi \models X\psi_1$ iff $M, \pi^1 \models \psi_1$.
 - $M, \pi \models F\psi_1$ iff $\exists i > 0.M, \pi^i \models \psi_1$.
 - $M, \pi \models G\psi_1$ iff $\forall i > 0.M, \pi^i \models \psi_1$.
 - $M, \pi \models \psi_1 U \psi_2$ iff $\exists i > 0.M, \pi^i \models \psi_2$ and $\forall 0 \leq i \leq i.M. \pi^j \models \psi_1$.
 - $M, \pi \models \psi_1 R \psi_2$ iff $\forall i > 0. (\forall 0 < i < i.M, \pi^j \not\models \psi_1 \Rightarrow M, \pi^i \models \psi_2$.

- All CTL* operators can be derived from \vee , \neg , X, U, and E:
 - Let $p \in AP$, $true \equiv p \vee \neg p$ (and $false \equiv \neg true$)
 - $\varphi \wedge \psi \equiv \neg (\neg \varphi \vee \neg \psi)$,
 - $F\varphi \equiv trueU\varphi$,
 - $G\varphi \equiv \neg F \neg \varphi$,
 - $\varphi R \psi \equiv \neg (\neg \varphi U \neg \psi)$,
 - $A\varphi \equiv \neg E \neg \varphi$.

- All CTL* operators can be derived from \vee , \neg , X, U, and E:
 - Let $p \in AP$, $true \equiv p \vee \neg p$ (and $false \equiv \neg true$)
 - $\varphi \wedge \psi \equiv \neg (\neg \varphi \vee \neg \psi)$.
 - $F\varphi \equiv trueU\varphi$.
 - $G\varphi \equiv \neg F \neg \varphi$.
 - $\varphi R \psi \equiv \neg (\neg \varphi U \neg \psi)$.
 - $A\varphi \equiv \neg E \neg \varphi$.

- All CTL* operators can be derived from \vee , \neg , X, U, and E:
 - Let $p \in AP$, $true \equiv p \vee \neg p$ (and $false \equiv \neg true$)
 - $\varphi \wedge \psi \equiv \neg (\neg \varphi \vee \neg \psi)$.
 - $F\varphi \equiv trueU\varphi$.
 - $G\varphi \equiv \neg F \neg \varphi$.
 - $\varphi R \psi \equiv \neg (\neg \varphi U \neg \psi)$.
 - $A\varphi \equiv \neg E \neg \varphi$.

- All CTL* operators can be derived from \vee , \neg , X, U, and E:
 - Let $p \in AP$, $true \equiv p \vee \neg p$ (and $false \equiv \neg true$)
 - $\varphi \wedge \psi \equiv \neg (\neg \varphi \vee \neg \psi)$.
 - $F\varphi \equiv trueU\varphi$.
 - $G\varphi \equiv \neg F \neg \varphi$.
 - $\varphi R \psi \equiv \neg (\neg \varphi U \neg \psi)$.
 - $A\varphi \equiv \neg E \neg \varphi$.

- All CTL* operators can be derived from \vee , \neg , X, U, and E:
 - Let $p \in AP$, $true \equiv p \vee \neg p$ (and $false \equiv \neg true$)
 - $\varphi \wedge \psi \equiv \neg (\neg \varphi \vee \neg \psi)$.
 - $F\varphi \equiv trueU\varphi$.
 - $G\varphi \equiv \neg F \neg \varphi$.
 - $\varphi R \psi \equiv \neg (\neg \varphi U \neg \psi)$,
 - $A\varphi \equiv \neg E \neg \varphi$.

- All CTL* operators can be derived from \vee , \neg , X, U, and E:
 - Let $p \in AP$, $true \equiv p \lor \neg p$ (and $false \equiv \neg true$)
 - $\varphi \wedge \psi \equiv \neg (\neg \varphi \vee \neg \psi)$,
 - $F\varphi \equiv trueU\varphi$,
 - $G\varphi \equiv \neg F \neg \varphi$,
 - $\varphi R \psi \equiv \neg (\neg \varphi U \neg \psi)$,
 - $A\varphi \equiv \neg E \neg \varphi$.

Outline

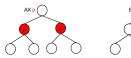
- - Modeling and Verification Procedure
- Pundamentals of Temporal Logics
 - Processing Paths and Time
 - CTL* Logic
 - CTL Logic
 - LTL Logic
- - Requirements Specification in UPPAAL
 - Model Language
 - Model Verification Properties
 - Time in UPPAAL
 - Urgent Transitions UPPAAL
- - Trains Crossing a Bridge
 - Game NIM
 - Game Requirements Specification NIM

October 17, 2023

- CTL is a sublogic of CTL*
 - path formulae are limited to $X\varphi$, $F\varphi$, $G\varphi$, $\varphi U\psi$, and $\varphi R\psi$,
 - ullet where φ and ψ are state formulae.
- Therefore only 10 modal CTL operators:
 - \bullet AX and EX
 - \bullet AF and EF
 - \bullet AG and EG

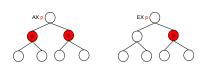
October 17, 2023

- CTL is a sublogic of CTL*
 - path formulae are limited to $X\varphi$, $F\varphi$, $G\varphi$, $\varphi U\psi$, and $\varphi R\psi$,
 - ullet where arphi and ψ are state formulae.
- Therefore only 10 modal CTL operators:
 - \bullet AX and EX

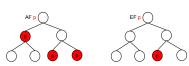


- ullet AF and EF
- AG and EG

- CTL is a sublogic of CTL*
 - path formulae are limited to $X\varphi$, $F\varphi$, $G\varphi$, $\varphi U\psi$, and $\varphi R\psi$,
 - \bullet where φ and ψ are state formulae.
- Therefore only 10 modal CTL operators:
 - \bullet AX and EX



 \bullet AF and EF



AG and EG

- CTL is a sublogic of CTL*
 - path formulae are limited to $X\varphi$, $F\varphi$, $G\varphi$, $\varphi U\psi$, and $\varphi R\psi$,
 - ullet where arphi and ψ are state formulae.
- Therefore only 10 modal CTL operators:
 - ullet AX and EX

 \bullet AF and EF

ullet AG and EG

- Modal CTL operators:
 - \bullet AU and EU
 - \bullet AR and ER
- There are 3 basic CTL modal operators EX, EG, and EU:

•
$$AX\varphi \equiv \neg EX \neg \varphi$$

•
$$EF\varphi \equiv E[trueU\varphi]$$

•
$$AG\varphi \equiv \neg EF \neg \varphi$$

•
$$AF\varphi \equiv \neg EG \neg \varphi$$

•
$$A[\varphi U\psi]$$

 $\equiv \neg E[\neg \psi U(\neg \varphi \wedge \neg \psi)] \wedge \neg EG \neg \psi$

•
$$A[\varphi R\psi] \equiv \neg E[\neg \varphi U \neg \psi]$$

•
$$E[\varphi R\psi] \equiv \neg A[\neg \varphi U \neg \psi]$$

- Modal CTL operators:
 - ullet AU and EU

- \bullet AR and ER
- There are 3 basic CTL modal operators EX, EG, and EU:

•
$$AX\varphi \equiv \neg EX \neg \varphi$$

•
$$EF\varphi \equiv E[trueU\varphi]$$

•
$$AG\varphi \equiv \neg EF \neg \varphi$$

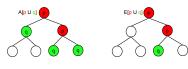
•
$$AF\varphi \equiv \neg EG \neg \varphi$$

$$\begin{array}{l} \bullet \;\; A[\varphi U\psi] \\ \equiv \neg E[\neg \psi U(\neg \varphi \wedge \neg \psi)] \wedge \neg EG \neg \psi \end{array}$$

•
$$A[\varphi R\psi] \equiv \neg E[\neg \varphi U \neg \psi]$$

•
$$E[\varphi R\psi] \equiv \neg A[\neg \varphi U \neg \psi]$$

- Modal CTL operators:
 - \bullet AU and EU

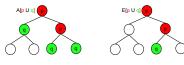


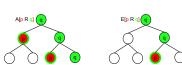


- There are 3 basic CTL modal operators EX, EG, and EU:
 - $AX\varphi \equiv \neg EX\neg \varphi$
 - $EF\varphi \equiv E[trueU\varphi]$
 - $AG\varphi \equiv \neg EF \neg \varphi$
 - $AF\varphi \equiv \neg EG \neg \varphi$

- $A[\varphi U\psi]$ $\equiv \neg E[\neg \psi U(\neg \varphi \wedge \neg \psi)] \wedge \neg EG\neg \psi$
- $A[\varphi R\psi] \equiv \neg E[\neg \varphi U \neg \psi]$
- $E[\varphi R\psi] \equiv \neg A[\neg \varphi U \neg \psi]$

- Modal CTL operators:
 - \bullet AU and EU

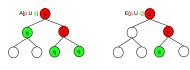




- There are 3 basic CTL modal operators EX, EG, and EU:
 - $AX\varphi \equiv \neg EX\neg \varphi$
 - $EF\varphi \equiv E[trueU\varphi]$
 - $AG\varphi \equiv \neg EF \neg \varphi$
 - $AF\varphi \equiv \neg EG \neg \varphi$

- $\bullet \ A[\varphi U\psi] \\ \equiv \neg E[\neg \psi U(\neg \varphi \wedge \neg \psi)] \wedge \neg EG \neg \psi$
- $A[\varphi R\psi] \equiv \neg E[\neg \varphi U \neg \psi]$
- $E[\varphi R\psi] \equiv \neg A[\neg \varphi U \neg \psi]$

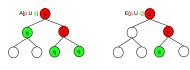
- Modal CTL operators:
 - ullet AU and EU

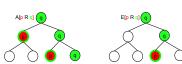


- There are 3 basic CTL modal operators EX, EG, and EU:
 - $AX\varphi \equiv \neg EX\neg \varphi$
 - $EF\varphi \equiv E[trueU\varphi]$
 - $AG\varphi \equiv \neg EF \neg \varphi$
 - $AF\varphi \equiv \neg EG \neg \varphi$

- $\bullet \ A[\varphi U\psi] \\ \equiv \neg E[\neg \psi U(\neg \varphi \wedge \neg \psi)] \wedge \neg EG \neg \psi$
- $A[\varphi R\psi] \equiv \neg E[\neg \varphi U \neg \psi]$
- $E[\varphi R\psi] \equiv \neg A[\neg \varphi U \neg \psi]$

- Modal CTL operators:
 - ullet AU and EU

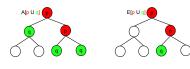


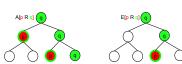


- There are 3 basic CTL modal operators EX, EG, and EU:
 - $AX\varphi \equiv \neg EX\neg \varphi$
 - $EF\varphi \equiv E[trueU\varphi]$
 - $AG\varphi \equiv \neg EF \neg \varphi$
 - $AF\varphi \equiv \neg EG\neg \varphi$

- $A[\varphi U\psi]$ $\equiv \neg E[\neg \psi U(\neg \varphi \wedge \neg \psi)] \wedge \neg EG \neg \psi$
- $A[\varphi R\psi] \equiv \neg E[\neg \varphi U \neg \psi]$
- $\boldsymbol{E}[\boldsymbol{\varphi}\boldsymbol{R}\boldsymbol{\psi}] \equiv \neg A[\neg \varphi U \neg \psi]$

- Modal CTL operators:
 - ullet AU and EU

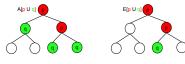


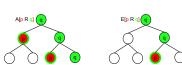


- There are 3 basic CTL modal operators EX, EG, and EU:
 - $AX\varphi \equiv \neg EX\neg \varphi$
 - $EF\varphi \equiv E[trueU\varphi]$
 - $AG\varphi \equiv \neg EF \neg \varphi$
 - $AF\varphi \equiv \neg EG \neg \varphi$

- $\bullet \ A[\varphi U\psi] \\ \equiv \neg E[\neg \psi U(\neg \varphi \wedge \neg \psi)] \wedge \neg EG \neg \psi$
- $A[\varphi R\psi] \equiv \neg E[\neg \varphi U \neg \psi]$
- $\boldsymbol{E}[\boldsymbol{\varphi}\boldsymbol{R}\boldsymbol{\psi}] \equiv \neg A[\neg \varphi U \neg \psi]$

- Modal CTL operators:
 - \bullet AU and EU

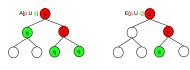


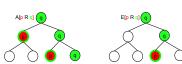


- There are 3 basic CTL modal operators EX, EG, and EU:
 - $AX\varphi \equiv \neg EX\neg \varphi$
 - $EF\varphi \equiv E[trueU\varphi]$
 - $AG\varphi \equiv \neg EF \neg \varphi$
 - $AF\varphi \equiv \neg EG \neg \varphi$

- $A[\varphi U\psi]$ $\equiv \neg E[\neg \psi U(\neg \varphi \wedge \neg \psi)] \wedge \neg EG\neg \psi$
- $A[\varphi R\psi] \equiv \neg E[\neg \varphi U \neg \psi]$
- $E[\varphi R\psi] \equiv \neg A[\neg \varphi U \neg \psi]$

- Modal CTL operators:
 - ullet AU and EU





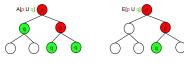
- There are 3 basic CTL modal operators EX, EG, and EU:
 - $AX\varphi \equiv \neg EX\neg \varphi$
 - $EF\varphi \equiv E[trueU\varphi]$
 - $AG\varphi \equiv \neg EF \neg \varphi$
 - $AF\varphi \equiv \neg EG \neg \varphi$

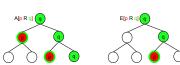
•
$$A[\varphi U\psi]$$

 $\equiv \neg E[\neg \psi U(\neg \varphi \wedge \neg \psi)] \wedge \neg EG\neg \psi$

- $A[\varphi R\psi] \equiv \neg E[\neg \varphi U \neg \psi]$
- $\boldsymbol{E}[\boldsymbol{\varphi}\boldsymbol{R}\boldsymbol{\psi}] \equiv \neg A[\neg \varphi U \neg \psi]$

- Modal CTL operators:
 - ullet AU and EU





- There are 3 basic CTL modal operators EX, EG, and EU:
 - $AX\varphi \equiv \neg EX\neg \varphi$
 - $EF\varphi \equiv E[trueU\varphi]$
 - $AG\varphi \equiv \neg EF \neg \varphi$
 - $AF\varphi \equiv \neg EG \neg \varphi$

$$\bullet \ A[\varphi U\psi] \\ \equiv \neg E[\neg \psi U(\neg \varphi \wedge \neg \psi)] \wedge \neg EG\neg \psi$$

- $A[\varphi R\psi] \equiv \neg E[\neg \varphi U \neg \psi]$
- $E[\varphi R\psi] \equiv \neg A[\neg \varphi U \neg \psi]$

Outline

- UPPAAL Tool
 - Modeling and Verification Procedure
- 2 Fundamentals of Temporal Logics
 - Processing Paths and Time
 - CTL* Logic
 - CTL Logic
 - LTL Logic
- UPPAAL
 - Requirements Specification in UPPAAL
 - Model Language
 - Model Verification Properties
 - Time in UPPAAL
 - Urgent Transitions UPPAAL
- 4 UPPAAL Examples
 - Trains Crossing a Bridge
 - Game NIM
 - Game Requirements Specification NIM

October 17, 2023

- LTL is a sublogic of CTL*
 - It only allows formulas of the form $A\varphi$, in which state subformulae are atomic propositions.
 - LTL formula is created according to the following grammar:
 - $\varphi := A\psi$ (A is often omitted)
 - $\psi ::= p \mid \neg \psi \mid \psi \lor \psi \mid \psi \land \psi \mid X\psi \mid F\psi \mid G\psi \mid \psi U\psi \mid \psi R\psi$,
 - where $p \in AP$.
 - LTL provides expressions about specific paths in a given Kripke's structure
 - i.e. ignores branching

LTL, CTL, CTL * [Voj10]

- LTL and CTL cannot be compared:
 - For example, CTL cannot express the LTL formula A(FGp)
 - For example, LTL cannot express the CTL formula AG(EFp)
- CTL* covers both LTL and CTL
 - disjunction $(A(FGp)) \vee (AG(EFp))$ cannot be expressed in either LTL or CTL.

Outline

- UPPAAL Tool
 - Modeling and Verification Procedure
- 2 Fundamentals of Temporal Logic
 - Processing Paths and Time
 - CTL* Logic
 - CTL Logic
 - LTL Logic
- UPPAAL
 - Requirements Specification in UPPAAL
 - Model Language
 - Model Verification Properties
 - Time in UPPAAL
 - Urgent Transitions UPPAAL
- 4 UPPAAL Examples
 - Trains Crossing a Bridge
 - Game NIM
 - Game Requirements Specification NIM

BNF grammar of specification language [UPP10]

BNF grammar

- \bullet A[] Expression
- E <> Expression
- \bullet E[] Expression
- \bullet A <> Expression
- Expression --> Expression

- The expression process.location tests whether a certain process is in a

BNF grammar of specification language [UPP10]

BNF grammar

- A [Expression
- E <> Expression
- \bullet E[]Expression
- A <> Expression
- Expression --> Expression

Notes

- No expression can have side effects.
- The expression *process.location* tests whether a certain process is in a given position.

Examples of Specification Language [UPP10]

BNF grammar

- A[]1 < 2
 - Invariantly 1 < 2
- \bullet E <> p1.cs and p2.cs
 - ullet True, if the system can reach a state in which processes p1 and p2 are in their position cs
- \bullet A <> p1.csimplynotp2.cs
 - Invariantly process p1 in position cs implies that process p2 is not in position cs.
- \bullet A[]not deadlock
 - Invariantly, the process does not contain a deadlock

Examples of Specification Language [UPP10]

BNF grammar

- A[]1 < 2
 - Invariantly 1 < 2
- E <> p1.cs and p2.cs
 - \bullet True, if the system can reach a state in which processes p1 and p2 are in their position cs
- \bullet A <> p1.csimplynotp2.cs
 - Invariantly process p1 in position cs implies that process p2 is **not** in position cs.
- \bullet A[] not dead lock
 - Invariantly, the process does not contain a deadlock

Examples of Specification Language [UPP10]

BNF grammar

- A[]1 < 2
 - Invariantly 1 < 2
- \bullet E <> p1.cs and p2.cs
 - \bullet True, if the system can reach a state in which processes p1 and p2 are in their position cs
- A <> p1.csimplynotp2.cs
 - Invariantly process p1 in position cs implies that process p2 is **not** in position cs.
- A[] not dead lock
 - Invariantly, the process does not contain a deadlock

Examples of Specification Language [UPP10]

BNF grammar

- A[]1 < 2
 - Invariantly 1 < 2
- E <> p1.cs and p2.cs
 - \bullet True, if the system can reach a state in which processes p1 and p2 are in their position cs
- A <> p1.csimplynotp2.cs
 - Invariantly process p1 in position cs implies that process p2 is not in position cs.
- \bullet A[] not dead lock
 - Invariantly, the process does not contain a deadlock.

Outline

- UPPAAL Tool
 - Modeling and Verification Procedure
- 2 Fundamentals of Temporal Logic
 - Processing Paths and Time
 - CTL* Logic
 - CTL Logic
 - LTL Logic
- UPPAAL
 - Requirements Specification in UPPAAL
 - Model Language
 - Model Verification Properties
 - Time in UPPAAL
 - Urgent Transitions UPPAAL
- 4 UPPAAL Examples
 - Trains Crossing a Bridge
 - Game NIM
 - Game Requirements Specification NIM

Conditions over clocks [BDL05]

- ullet C ... clock set
- ullet B(C) ...a set of conjunctions over simple conditions of type
 - $\bullet x \bowtie c$
 - $x y \bowtie c$
 - where
 - $x, y \in C$,
 - $c \in \mathbb{N}$,
 - $\bowtie \in \{<, \leq, =, \geq, >\}$

Query Language [BDL05]

- State formulae ... describe individual states.
- Path formulae ... are evaluated along model paths and traces.
 - reachability,
 - safety,
 - liveness.

- an expression that can be evaluated for a given state without having to analyze the behavior of the model.
- a superset of guards, i.e. it has no side effect,
- unlike guards, the use of disjunctions is not limited.
- Test whether the process is in the given position ... $P.\ell$
 - \bullet $P \dots$ process
 - ℓ ... position
- deadlock ...
 - a special state formula, which is fulfilled for all blocked states,
 - A state is blocked if there is no action transition from that state or any delayed state successor.

Outline

- UPPAAL Tool
 - Modeling and Verification Procedure
- 2 Fundamentals of Temporal Logic
 - Processing Paths and Time
 - CTL* Logic
 - CTL Logic
 - LTL Logic
- UPPAAL
 - Requirements Specification in UPPAAL
 - Model Language
 - Model Verification Properties
 - Time in UPPAAL
 - Urgent Transitions UPPAAL
- 4 UPPAAL Examples
 - Trains Crossing a Bridge
 - Game NIM
 - Game Requirements Specification NIM

Reachability [BDL05]

- the simplest feature,
- ullet asks if there is a possibility that the given state formula arphi is satisfied in every reachable state.
- ullet i.e. there is a path from the initial state such that φ will be fulfilled once along this path.
- check the basic properties of the model
 - that at least the basic behavior can be achieved.
 - an example of a communication protocol with one transmitter and one receiver
 - it is possible to send a message by transmitter at all.
 - The message is eventually received by the receiver.
- in UPPAAL: E<> φ

Safety [BDL05]

- anything bad will never happen
- an example of a nuclear power plant model
 - the operating temperature is always (invariantly) below a certain threshold.
 - the container will never melt
- a variant: something is not possible to happen at all
- an example of playing a game
 - The safe state is that if we can still play the game, then there is no way to lose it.
- in UPPAAL:
 - is formulated positively
 - let φ be a state formula
 - A[] $\varphi \equiv \neg E \lozenge \neg \varphi \dots \varphi$ should be true in all reachable states
 - $E[]\varphi$... there is a path along which φ is always true

- something will eventually happen one day
- examples
 - pressing the on button on the remote control will cause the TV to turn on once.
 - in the communication protocol model:
 any message sent will be received eventually.
- in UPPAAL:
 - A<> $\varphi \equiv \neg E \Box \neg \varphi \dots \varphi$ will always be fulfilled eventually,
 - $\varphi \longrightarrow \psi \equiv A \square (\varphi \Rightarrow A \lozenge \psi) \dots$ whenever φ is fulfilled, then ψ will be met eventually.

Outline

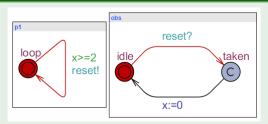
- - Modeling and Verification Procedure
- - Processing Paths and Time
 - CTL* Logic
 - CTL Logic
 - LTL Logic
- UPPAAL
 - Requirements Specification in UPPAAL
 - Model Language
 - Model Verification Properties
 - Time in UPPAAL
 - Urgent Transitions UPPAAL
- - Trains Crossing a Bridge
 - Game NIM
 - Game Requirements Specification NIM

October 17, 2023

Observer [BDL05]

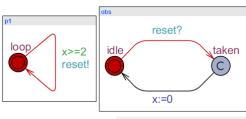
- an additional automaton
- detects events without having to change the model itself.

Example



- clock reset detection
- extra clock reset (x:=0)

Initial Variant of Example [B



```
// Place global declarations here.
clock x;
chan reset;
```

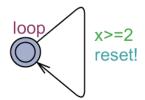
```
p// Place template instantiations here.
p1 = P1();
obs = Obs();

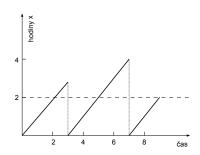
// List one or more processes to be comp
system p1, obs;
```

- The goal is to stay in position if the (invariant) condition on the clock applies and then leave the position.
- Option 1: no invariant

October 17, 2023

1. Variant of the Example [BDL05]

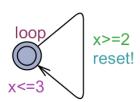


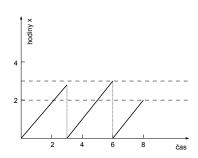


- The goal is to stay in position if the (invariant) condition on the clock applies and then leave the position.
- Option 1: no invariant
- A[] obs.taken imply x>=2
- E<> obs.idle and x>3

42 / 67

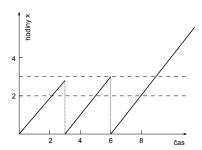
2. Variant of the Example





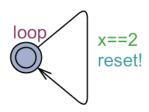
- The goal is to stay in position if the (invariant) condition on the clock applies and then leave the position.
- Option 2: with invariant
- A[] obs.taken imply (x>=2 and x<=3)
- E<> obs.idle and x>2
 - E<> obs.idle and x>3 ... is not satisfied
- A[] obs.idle imply x<=3

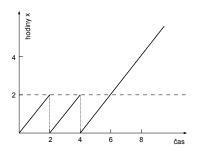
3. Variant of the Example [BDL05]



- The goal is to stay in position if the (invariant) condition on the clock applies and then leave the position.
- Option 3: without invariant with guards
- A[] x>3 imply not obs.taken...deadlock occurs
- A[] not deadlock ... is not satisfied

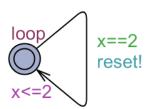
4. Variant of the Example [BDL05]

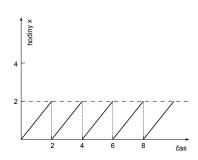




- The goal is to stay in position if the (invariant) condition on the clock applies and then leave the position.
- Option 4: without invariant with equality guards
- A[] x>2 imply not obs.taken ... deadlock occurs
- A[] not deadlock ... is not satisfied

5. Variant of the Example





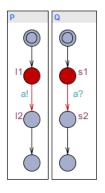
- The goal is to stay in position if the (invariant) condition on the clock applies and then leave the position.
- Option 5: with invariant and with equality guards
- A[] obs.taken imply x==2
- E<> obs.idle and x>2 ... is not satisfied
- A[] obs.idle imply x<=2

Outline

- UPPAAL Tool
 - Modeling and Verification Procedure
- 2 Fundamentals of Temporal Logic
 - Processing Paths and Time
 - CTL* Logic
 - CTL Logic
 - LTL Logic
- UPPAAL
 - Requirements Specification in UPPAAL
 - Model Language
 - Model Verification Properties
 - Time in UPPAAL
 - Urgent Transitions UPPAAL
- 4 UPPAAL Examples
 - Trains Crossing a Bridge
 - Game NIM
 - Game Requirements Specification NIM

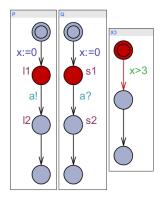
October 17, 2023

Example 1, processes P, Q [Dav05]



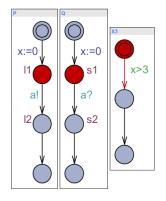
- The goal is to make the sync transition as soon as possible.
- i.e. as soon as both P and Q automata are ready (simultaneously in positions l_1 and s_1).
- How to choose a model when they get into positions at different time instants?

Example 1, processes P, Q, X3 [Dav05]



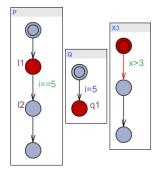
- The goal is to make the sync transition as soon as possible.
- i.e. as soon as both P and Q automata are ready (simultaneously in positions l_1 and s_1).
- How to choose a model when they get into positions at different time instants?
- Solution: urgent chan a

Example 1, processes P, Q, X3 [Dav05]



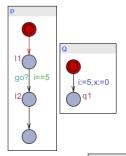
- The goal is to make the sync transition as soon as possible.
- i.e. as soon as both P and Q automata are ready (simultaneously in positions l_1 and s_1).
- How to choose a model when they get into positions at different time instants?
- Solution: urgent chan a

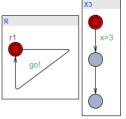
Example 2, processes P,Q,X3 [Dav05]



• The goal is to make a transition with the condition i == 5 once it is met..

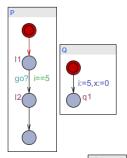
Example 2, processes P,Q,R,X3 [Dav05]

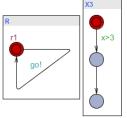




- The goal is to make the transition with the condition i == 5 as soon as possible.
- i.e. as soon as both P and Q automata are ready (simultaneously in positions l_1 and s_1).
- How to choose a model when they get into positions at different time instants?
- Solution:
- urgent chan go
- another process that emits an action go!

Example 2, processes P,Q,R,X3 [Dav05]





- The goal is to make the transition with the condition i == 5 as soon as possible.
- i.e. as soon as both P and Q automata are ready (simultaneously in positions l_1 and s_1).
- How to choose a model when they get into positions at different time instants?
- Solution:
- urgent chan go
- another process that emits an action go!

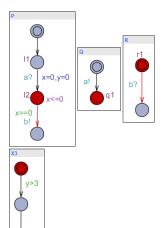
Urgent Channels [Dav05]

- urgent chan hurry
- Semantics:
- There is no delay if an edge with an urgent action can be executed.

•

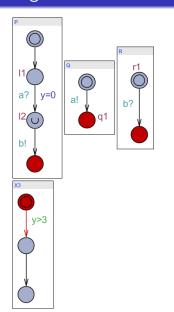
- Restrictions:
 - No clock guards are allowed on the edges of the urgent action.
 - Invariants and guards on data variables are allowed.

Urgent Position using Clocks [Dav05]



- Suppose we model a simple system M that accepts packages on channel a and immediately sends them to channel b
- \bullet P_1 models the system using the clock x

Urgent Position [Dav05]



- Suppose we model a simple system M that accepts packages on channel a and immediately sends them to channel b
- P_2 models the system using an urgent position
- P_1 and P_2 have the same behavior

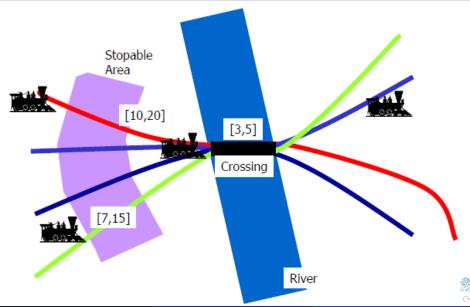
Urgent Position [Dav05]

- Semantics:
- There is no delay in the urgent position.
- 0
- Note:
 - Using urgent positions **reduces** the number of clocks in the model and thus the complexity.

Outline

- - Modeling and Verification Procedure
- - Processing Paths and Time
 - CTL* Logic
 - CTL Logic
 - LTL Logic
- - Requirements Specification in UPPAAL
 - Model Language
 - Model Verification Properties
 - Time in UPPAAL
 - Urgent Transitions UPPAAL
- 4 UPPAAL Examples
 - Trains Crossing a Bridge
 - Game NIM
 - Game Requirements Specification NIM

Example Idea [BDL05]



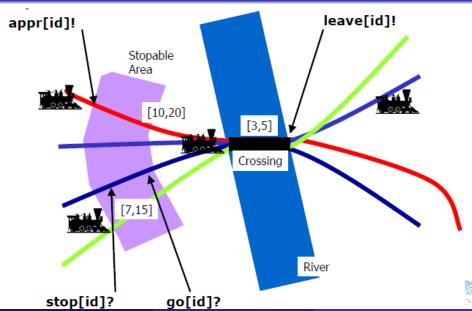
Textual Specifications

- Bridge access control for several trains.
- A bridge as a critically shared resource can only be crossed by one train.
- The system is defined as several trains and a controller.
- The train cannot be stopped immediately, it also takes time to start.

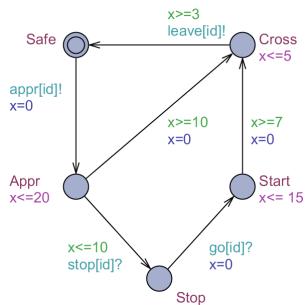
Time constraints and communication

- The train sends a **appr!** signal on time when it arrives at the bridge.
- Then the train has 10 time units to receive a stop signal,
 - this allows a safe stop in front of the bridge.
- After these 10 time units, it takes another 10 units for the train to reach the bridge if it is not stopped.
- If the train is stopped, the train will start after it receives the go! signal from the bridge controller.
- When the train leaves the bridge, it sends a signal leave!.

Synchronization Signals [BDL05]

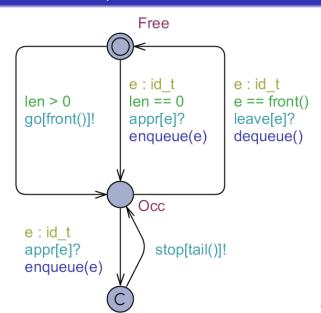


Train Template [BDL05]



< ≣ →

Bridge Controller Template [BDL05]



[BDL05] Model Verification

- E<> Gate.Occ
- E<> Train(0).Cross
- E<> Train(1).Cross
- E<> Train(0).Cross and Train(1).Stop
- E<> Train(0).Cross and (forall (i : id_t) i != 0 imply Train(i).Stop)
- A[] forall (i : id_t) forall (j : id_t) Train(i).Cross && Train(j).Cross imply i == j
- A[] Gate.list[N] == 0
- Train(0).Appr --> Train(0).Cross
- Train(1).Appr --> Train(1).Cross
- Train(2).Appr --> Train(2).Cross
- Train(3).Appr --> Train(3).Cross
- Train(4).Appr --> Train(4).Cross
- Train(5).Appr --> Train(5).Cross
- A[] not deadlock

Outline

- UPPAAL Tool
 - Modeling and Verification Procedure
- 2 Fundamentals of Temporal Logics
 - Processing Paths and Time
 - CTL* Logic
 - CTL Logic
 - LTL Logic
- UPPAAI
 - Requirements Specification in UPPAAL
 - Model Language
 - Model Verification Properties
 - Time in UPPAAL
 - Urgent Transitions UPPAAL
- **4** UPPAAL Examples
 - Trains Crossing a Bridge
 - Game NIM
 - Game Requirements Specification NIM

Simple Variant NIM

The Nim Number Game

Whoever takes the last proton wins!

Press the "I'm ready! Let's start!" button to begin!

- NIM is a game based on logic and strategy.
- 2 players are playing.
- The player removes one to MAX (2) items (matches, protons) from the series during his turn.
- The player who removes the last thing wins.

Classic Variant NIM

- NIM is a game based on logic and strategy.
- 2 players are playing.
- The players remove objects from different piles/rows.
- The player must remove at least one object during his turn.
- On his turn, the player removes any number of objects, all of which belong to one pile.
- Basic variants of the game:
 - Normal ... The player who removes the last thing wins.
 - Loss ... The player who removes the last thing loses.

Literatura I

- [BDL05] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on UPPAAL, updated 25th october 2005. Technical report, Department of Computer Science, Aalborg University, Denmark, October 2005.
- [Dav05] UPPAAL tutorial at rtss'05 (), December 2005.
- [UPP09] UPPAAL 4.0: Small tutorial, November 2009.
- [UPP10] Tool environment for validation and verification of real-time systems (UPPAAL pamphlet). http://www.it.uu.se/research/group/darts/papers/texts/uppaal-pamphlet.pdf, September 2010.
- [Voj10] Tomas Vojnar. Formal analysis and verification. Lecture handouts, http://www.fit.vutbr.cz/study/courses/FAV/public/, August 2010.
- [Wik10] Linear temporal logic. http://en.wikipedia.org/wiki/Linear_temporal_logic, November 2010.

