Network Properties

Network Application Diagnostics B2M32DSA

Radek Mařík

Czech Technical University
Faculty of Electrical Engineering
Department of Telecommunication Engineering
Prague CZ
October 17, 2023

Outline

(1) Graph Matrices

- Linear Algebra Reminder
- Network Matrices
(2) Centrality Measures
- Path Based Centralities
- Spectral Centralities
- Example

Outline

(1) Graph Matrices

- Linear Algebra Reminder
- Network Matrices
(2) Centrality Measures
- Path Based Centralities
- Spectral Centralities
- Example

Algebra

- $\delta_{i j}$ is the Kronecker delta, which is 1 if $i=j$ and 0 otherwise.
- A field (CZ pole, komutativní těleso)is a set on which are defined addition, subtraction, multiplication, and division satisfying the field axioms (commutativity, associativity, a unit).
- $\mathbf{1}$ is the vector $(1,1,1, \ldots)$.
- The complex conjugate ($C Z$ komplexně sdružené číslo) of the complex number $z=x+i y$ is defined to by $\bar{z}=z^{*}=x-i y$.

Matrix ${ }^{[L 2 y 12, ~ G L 13]}$

- $[\ldots]_{i j}$ denotes (i, j) element of a matrix
- The conjugate of a matrix $\mathbf{A}=\left(a_{i j}\right) \in \mathbb{C}^{n \times m}$ is the matrix $\overline{\mathbf{A}}=\left(\bar{a}_{i j}\right) \in \mathbb{C}^{n \times m}$.
- The trace of an $n \times n$ (" n by n ") square matrix \mathbf{A} is

$$
\begin{align*}
\operatorname{Tr}(\mathbf{A}) & =\sum_{i=1}^{n} a_{i i}=a_{11}+a_{22}+\cdots+a_{n n} \tag{1}\\
\operatorname{Tr}(\mathbf{A}+\mathbf{B}) & =\operatorname{Tr}(\mathbf{A})+\operatorname{Tr}(\mathbf{B}) \tag{2}\\
\operatorname{Tr}(c \mathbf{A}) & =c \operatorname{Tr}(\mathbf{A}) \tag{3}\\
\operatorname{Tr}(\mathbf{A}) & =\operatorname{Tr}\left(\mathbf{A}^{T}\right) \tag{4}\\
\operatorname{Tr}(\mathbf{A B}) & =\operatorname{Tr}(\mathbf{B A}) \tag{5}
\end{align*}
$$

Matrix Transposition

- The transpose of a matrix $\mathbf{A} \in \mathbb{R}^{n \times m}\left(\mathbb{R}^{n \times m} \rightarrow \mathbb{R}^{m \times n}\right)$: $\left[\mathbf{A}^{T}\right]_{i j}=[\mathbf{A}]_{j i}$.
- Let \mathbf{A} and \mathbf{B} denote matrices whose sizes are appropriate for the following sums and products, let r denote any scalar, then
- $\left(\mathbf{A}^{T}\right)^{T}=\mathbf{A}$
- $(\mathbf{A}+\mathbf{B})^{T}=\mathbf{A}^{T}+\mathbf{B}^{T}$
- $(r \mathbf{A})^{T}=r \mathbf{A}^{T}$
- $(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T}$
- The conjugate transpose of a matrix $\mathbf{A} \in \mathbb{C}^{n \times m}:\left[\mathbf{A}^{*}\right]_{i j}=[\overline{\mathbf{A}}]_{j i}$.
- The square matrix \mathbf{A} is Hermitian if $\mathbf{A}^{*}=\mathbf{A}=\mathbf{A}^{H}$ and skew-Hermitian if $\mathbf{A}^{*}=-\mathbf{A}$.

Orthogonality

- A set of vectors $\left\{x_{1}, \ldots, x_{p}\right\}$ in \mathbb{R}^{n} is orthogonal if $x_{i}^{T} x_{j}=0$ whenever $i \neq j$ and orthonormal if $x_{i}^{T} x_{j}=\delta_{i j}$.
- A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is said to be orthogonal if $\mathbf{A}^{T} \mathbf{A}=\mathbf{I}$.
- A matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is said to be unitary if $\mathbf{A}^{*} \mathbf{A}=\mathbf{I}$.

Matrix Inversion ${ }^{[6 L 13]}$

- If \mathbf{A} and \mathbf{X} are in $\mathbb{R}^{n \times n}$ and satisfy $\mathbf{A X}=\mathbf{I}$, then \mathbf{X} is the inverse of \mathbf{A} and is denoted by \mathbf{A}^{-1}.
- $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$
- $\left(\mathbf{A}^{-1}\right)^{T}=\left(\mathbf{A}^{T}\right)^{-1} \equiv \mathbf{A}^{-T}$

Matrix Eigenvalues ${ }^{\text {[GL13] }}$

- The eigenvalues of $\mathbf{A} \in \mathbb{C}^{n \times n}$ are zeros of the characteristic polynomial $p(x)=\operatorname{det}(\mathbf{A}-x \mathbf{I})$.
- Every $n \times n$ matrix has n eigenvalues.
- We denote the set of A's eigenvalues by

$$
\begin{aligned}
\lambda(\mathbf{A}) & =\{x: \operatorname{det}(\mathbf{A}-x \mathbf{I})=0\} \\
\lambda_{\max }(\mathbf{A}) & =\max (\lambda(\mathbf{A})) \quad \lambda_{\min }(\mathbf{A})=\min (\lambda(\mathbf{A}))
\end{aligned}
$$

- The eigenvalue equation expressed as the matrix multiplication

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{v}
$$

- Applying the matrix \mathbf{A} to the eigenvector \mathbf{v} only scales the eigenvector by the scalar value λ.
- Symmetry of a matrix A guarantees that all of its eigenvalues are real and that there is an orthonormal basis of eigenvectors.
- Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ with eigenvalues λ and eigenvectors \mathbf{v}. Then \mathbf{A}^{k} has eigenvalues λ^{k} and eigenvectors \mathbf{v} for any positive integer $k=$

Schur Decomposition ${ }^{[6 L 13]}$

Theorem 1 (Symmetric Schur Decomposition, Theorem 8.1.1 [GL13], p.440)

If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, then there exists a real orthogonal \mathbf{Q} such that

$$
\mathbf{Q}^{T} \mathbf{A} \mathbf{Q}=\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

Moreover, for $k=1: n, \mathbf{A Q}(:, k)=\lambda_{k} \mathbf{Q}(:, k)$.

Theorem 2 (Schur Decomposition, Theorem 7.1.3 [GL13], p.351)

If $\mathbf{A} \in \mathbb{C}^{n \times n}$, then there exists a unitary $\mathbf{Q} \in \mathbb{C}^{n \times n}$ such that

$$
\mathbf{Q}^{H} \mathbf{A} \mathbf{Q}=\mathbf{T}=\mathbf{\Lambda}+\mathbf{N}
$$

where $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $\mathbf{N} \in \mathbb{C}^{n \times n}$ is strictly upper triangular.

Outline

(1) Graph Matrices

- Linear Algebra Reminder
- Network Matrices
(2) Centrality Measures
- Path Based Centralities
- Spectral Centralities
- Example

Adjacency Matrix

- The adjacency matrix \mathbf{A} of a simple graph is the $N \times N$ matrix with element $A_{i j}$ such that

$$
A_{i j}= \begin{cases}1 & \text { if there is an edge between vertices } j \text { and } i, \\ 0 & \text { otherwise }\end{cases}
$$

- The adjacency matrix of a directed network has matrix elements

$$
A_{i j}= \begin{cases}1 & \text { if there is an edge from } j \text { to } i, \\ 0 & \text { otherwise }\end{cases}
$$

Cocitation Matrix ${ }^{[\text {New10] }}$

- Convenient to turn a directed network into an undirected one for the purposes of analysis
- The cocitation of two vertices i and j in a directed network is the number of vertices that have outgoing edges pointing to both i and j.
- The cocitation of two papers is the number of other papers that cite both.
- $A_{i k} A_{j k}=1$ if i and j are both cited by k and zero otherwise.
- The cocitations $C_{i j}$ of i and j is

$$
C_{i j}=\sum_{k=1}^{N} A_{i k} A_{j k}=\sum_{k=1}^{N} A_{i k} A_{k j}^{T}
$$

- The cocitation matrix \mathbf{C} is the $N \times N$ matrix with elements $C_{i j}$, i.e.

$$
\mathbf{C}=\mathbf{A} \mathbf{A}^{T}
$$

- \mathbf{C} is a symmetric matrix: $\mathbf{C}^{T}=\left(\mathbf{A A}^{T}\right)^{T}=\mathbf{A} \mathbf{A}^{T}=\mathbf{C}$

Bibliographic Coupling ${ }^{[\text {New1] }]}$

- The bibliographic coupling of two vertices in a directed networkis the number of other vertices to which both point.
- For instance in a citation network: the bibliographic coupling of two papers i and j is the number of other papers that are cited by both i and j.
- $A_{k i} A_{k j}=1$ if i and j both cite k and zero otherwise.
- The bibliographic coupling $B_{i j}$ of i and j is

$$
B_{i j}=\sum_{k=1}^{N} A_{k i} A_{k j}=\sum_{k=1}^{N} A_{i k}^{T} A_{k j}
$$

- The bibliographic coupling matrix \mathbf{B} is the $n \times n$ matrix with elements $B_{i j}$, i.e.

$$
\mathbf{B}=\mathbf{A}^{T} \mathbf{A}
$$

- \mathbf{B} is a symmetric matrix: $\mathbf{B}^{T}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{T}=\mathbf{A}^{T} \mathbf{A}=\mathbf{B}$

Bi-adjacency Matrix ${ }^{[\text {New } 10, ~ B J P 17] ~}$

Bipartite networks

- also called two-mode networks in SNA ${ }^{\text {[New10] }}$
- $V=V_{1} \cup V_{2}, V_{1} \cap V_{2}=\emptyset$
- movies \times actors
- articles \times authors
- timestamps \times active Wifi access points (AP)
- people \times groups
- Let $N_{1}=\left|V_{1}\right|$ and $N_{2}=\left|V_{2}\right|$, then the bi-adjacency matrix $\mathbf{B}^{[B J P 17]}$ is $N_{1} \times N_{2}$ matrix having elements

$$
B_{i j}= \begin{cases}1 & \text { if there is an edge between vertices } n_{i} \in V_{1} \text { and } n_{j} \in V_{2} \\ 0 & \text { otherwise }\end{cases}
$$

- Also called incidence matrix ${ }^{[\text {New10] }}$, bipartite adjacency matrix ${ }^{[B M 08][\mathrm{c}}$

Adjacency and Bi-adjacency Matrix Mewo. B1PTIT

$$
\mathbf{A}=\left(\begin{array}{cc}
\emptyset_{\left|V_{1}\right|} & \mathbf{B} \\
\mathbf{B}^{T} & \emptyset_{\left|V_{2}\right|}
\end{array}\right)
$$

Bipartite network and its bi-adjacency Matrix

 TODO
Incidence Matrix ${ }^{\text {Dires. Nemol }}$

- The incidence matrix \mathbf{B} by ${ }^{[\text {Diee5] }}$ of a simple undirected graph $G(V, E)$ with N vertices $V=\left\{v_{1}, \ldots, v_{N}\right\}$ and M edges $E=\left\{e_{1}, \ldots, e_{M}\right\}$ over the 2-element field $F_{2}=\{0,1\}$ is defined as the $N \times M$ matrix with elements $B_{i j}$ such that

$$
B_{i j}= \begin{cases}1 & \text { if } v_{i} \in e_{j} \\ 0 & \text { otherwise }\end{cases}
$$

- The edge incidence matrix by Newman ${ }^{[\operatorname{New} 10]}$ of a simple undirected graph $G(V, E)$ with N vertices and M edges is an $M \times N$ matrix \mathbf{B} with elements $B_{i j}$

$$
B_{i j}= \begin{cases}+1 & \text { if end } 1 \text { of edge } i \text { is attached to vertex } j \\ -1 & \text { if end } 2 \text { of edge } i \text { is attached to vertex } j \\ 0 & \text { otherwise }\end{cases}
$$

- Each edge has two arbitrarily designated ends, end 1 and end 2.
- Each row of the matrix has exactly one +1 and one -1 element.

Projection

- A possible way how to analyze bipartite graphs using simple graph methods.
- Significant information on the given network might be lost.

Definition 1 (Based on Definition 3 [BJP17], p.3)

Let $G\left(V_{1}, V_{2}, E\right)$ be a bipartite graph. The one-mode projection of the bipartite graph G for the vertex V_{i} with respect to the vertex set V_{j}, $i, j \in\{1,2\}, i \neq j$ is the unipartite (one-mode) network $G^{\prime}\left(V_{i}, E^{\prime}\right)$ where $V\left(G^{\prime}\right)=U$ and $u v \in E\left(G^{\prime}\right)$ if $N(u) \cap N(v) \neq \emptyset$.

Projection of a bipartite network - items and groups

TODO

Projection Properties I ${ }^{\text {Newol] }}$

- Let \mathbf{B} be a bi-adjacency matrix of $G\left(V_{1}, V_{2}, E\right)$, then the total number $P_{i j}^{(1)}$ of vertexes $v \in V_{2}$ to which both $i, j \in V_{1}$ belong is

$$
P_{i j}^{(1)}=\sum_{k=1}^{\left|V_{2}\right|} B_{i k} B_{j k}=\sum_{k=1}^{\left|V_{2}\right|} B_{i k} B_{k j}^{T}
$$

- The product $B_{i k} B_{j k}$ will be 1 if and only if i and j are both linked to the same vertex k from the other vertex set
- Example: relations of items and their groups
- In matrix form

$$
\mathbf{P}^{(\mathbf{1})}=\mathbf{B B}^{T}
$$

Projection Properties II

- $P_{i i}^{(1)}$ is the number of vertexes $j \in V_{2}$ to which $i \in V_{1}$ is linked

$$
P_{i j}^{(1)}=\sum_{k=1}^{\left|V_{2}\right|} B_{i k}^{2}=\sum_{k=1}^{\left|V_{2}\right|} B_{i k}
$$

- assuming $B_{i k} \in\{0,1\}$
- The other one-mode projection onto V_{2}

$$
\mathbf{P}^{(\mathbf{2})}=\mathbf{B}^{T} \mathbf{B}
$$

Undirected Graph - Node Degree ${ }^{[\text {Neww10] }}$

- The degree of a vertex in a undirected graph

$$
k_{i}=\sum_{j=1}^{N} A_{i j}
$$

- The number of ends of edges

$$
2 M=\sum_{i=1}^{N} k_{i}
$$

- The number of edges

$$
M=\frac{1}{2} \sum_{i=1}^{N} k_{i}=\frac{1}{2} \sum_{i j} A_{i j}
$$

Undirected Graph - Density ${ }^{\text {Nomol }}$

- The mean degree c of a vertex in a undirected graph

$$
c=\frac{1}{N} \sum_{i=1}^{N} k_{i}=\frac{2 M}{N}
$$

- The maximum possible number of edges in a simple graph

$$
\binom{N}{2}=\frac{1}{2} N(N-1)
$$

- The connectance or density ρ of a graph is the fraction of edges that are actually present $(0 \leq \rho \leq 1)$.

$$
\rho=\frac{M}{\binom{N}{2}}=\frac{2 M}{N(N-1)}=\frac{c}{N-1}
$$

Directed Graph - Vertex Degree ${ }^{[\text {New10] }}$

- The in-degree $k_{i}^{\text {in }}$ and out-degree $k_{j}^{\text {out }}$ of a vertex in a undirected graph

$$
k_{i}^{\text {in }}=\sum_{j=1}^{N} A_{i j}, \quad k_{j}^{\text {out }}=\sum_{i=1}^{N} A_{i j}
$$

- The number of edges

$$
M=\sum_{i=1}^{N} k_{i}^{\text {in }}=\sum_{j=1}^{N} k_{j}^{\text {out }}=\sum_{i j} A_{i j}
$$

- The mean in-degree $c_{\text {in }}$ and the mean out-degree $c_{\text {out }}$ of a vertex in a undirected graph are equal:

$$
c_{\mathrm{in}}=\frac{1}{N} \sum_{i=1}^{N} k_{i}^{\mathrm{in}}=\frac{1}{N} \sum_{j=1}^{N} k_{j}^{\mathrm{out}}=c_{\mathrm{out}}=c=\frac{M}{N}
$$

Paths in Simple Graph ${ }^{[\text {New1] }}$

- The element $A_{i j}$ is 1 if there is an edge from i to j, and 0 otherwise in simple graphs.
- The product $A_{i k} A_{k j}$ is 1 if there is a path of length 2 from j to i via k, and 0 otherwise.
- The total number $N_{i j}^{(2)}$ of paths of length two from j to i via any other vertex is

$$
N_{i j}^{(2)}=\sum_{k=1}^{N} A_{i k} A_{k j}=\left[\mathbf{A}^{2}\right]_{i j}
$$

- Paths of length three from j to i via l and k in that order

$$
N_{i j}^{(3)}=\sum_{k=1}^{N} A_{i k} A_{k \ell} A_{\ell j}=\left[\mathbf{A}^{3}\right]_{i j}
$$

- Paths of an arbitrary length r

$$
N_{i j}^{(r)}=\left[\mathbf{A}^{r}\right]_{i j}
$$

Cycles in Simple Graph

- The number of paths of length r that start and end at the same vertex i is $\left[\mathbf{A}^{r}\right]_{i i}$.
- The total number L_{r} of cycles ("loops") of length r anywhere in a network is (the sum over all possible starting vertexes i)

$$
L_{r}=\sum_{i=1}^{N}\left[\mathbf{A}^{r}\right]_{i i}=\operatorname{Tr} \mathbf{A}^{r}
$$

- The loop $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$ is considered different from the loop $2 \rightarrow 3 \rightarrow 1 \rightarrow 2$.
- The loops $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$ and $1 \rightarrow 3 \rightarrow 2 \rightarrow 1$ traversed in opposite directions are distinct, too.

Cycles in Simple Graph and Eigenvalues ${ }^{[N e w 10]}$

- Undirected graph
- The adjacency matrix \mathbf{A} is symmetric, i.e. $\mathbf{A}=\mathbf{Q K Q}^{T}$, where \mathbf{Q} is the orthogonal matrix of eigenvectors and \mathbf{K} is the diagonal matrix of eigenvalues κ_{i} of \mathbf{A}.
- $\mathbf{A}^{r}=\left(\mathbf{Q K} \mathbf{Q}^{T}\right)^{r}=\mathbf{Q K}^{r} \mathbf{Q}^{T}$
- $L_{r}=\operatorname{Tr} \mathbf{A}^{r}=\operatorname{Tr}\left(\mathbf{Q K}^{r} \mathbf{Q}^{T}\right)=\operatorname{Tr}\left(\mathbf{Q}^{T} \mathbf{Q K}^{r}\right)=\operatorname{Tr} \mathbf{K}^{r}=\sum_{i} \kappa_{i}^{r}$
- Directed networks
- Every real matrix can be written in the form $\mathbf{A}=\mathbf{Q T Q}^{T}$, where \mathbf{Q} is an orthogonal matrix and
\mathbf{T} is an upper triangular matrix using the Schur decomposition.
- Since \mathbf{T} is triangular, its diagonal elements are its eigenvalues.
- The eigenvalues are the same as the eigenvalues of \mathbf{A}.

$$
\begin{align*}
\mathbf{A x}=\mathbf{Q T Q}^{T} \mathbf{x} & =\kappa \mathbf{x} \quad \cdots \times \mathbf{Q}^{T} \tag{6}\\
\mathbf{T Q}^{T} \mathbf{x} & =\kappa \mathbf{Q}^{T} \mathbf{x} \tag{7}
\end{align*}
$$

- $L_{r}=\operatorname{Tr} \mathbf{A}^{r}=\operatorname{Tr}\left(\mathbf{Q T}^{r} \mathbf{Q}^{T}\right)=\operatorname{Tr}\left(\mathbf{Q}^{T} \mathbf{Q T}^{r}\right)=\operatorname{Tr} \mathbf{T}_{\vec{p}}^{r}=\sum_{i} \kappa_{i \underline{\underline{1}} r}^{r}$

Outline

(1) Graph Matrices

- Linear Algebra Reminder
- Network Matrices
(2) Centrality Measures
- Path Based Centralities
- Spectral Centralities
- Example

Centrality Measures / Ranking ${ }^{[B E 06, ~ W e n 13]}$

Measuring the importance/prominence of a node within the network

- Degree Centrality (Node Activity)
- Betweenness Centrality (Intermediate Position)
- Closeness Centrality (Distance to other nodes)
- Eigenvector Centrality (Important nodes have important friends)
- Power Centrality (Close to hubs)
- Page Rank

Evaluation of the location actors in the network

- Insight into various roles and groupings in a network
- Connectors, mavens, leaders, bridges, isolates, broker, hubs
- Where are the clusters and who is in them,
- Who is in the core of the network? Who is on the periphery?
- What is a single point of failure?

Degree Centrality ${ }^{[\text {Freec9, Beoc, Wenlis] }}$

What is the degree of an actor? How active is an actor?

Degree centrality

is a count of the number of edges incident upon a given vertex

Degree centrality for actor i

- where \mathbf{A} is the adjacency matrix
- 1 is a vector of 1 with size N

Normalized degree centrality for actor i

Degree Centrality ${ }^{[F r e e 9, ~ B E 00, ~ W e h 13] ~}$

What is the degree of an actor? How active is an actor?

Degree centrality

is a count of the number of edges incident upon a given vertex.

Degree centrality for actor i

- where \mathbf{A} is the adjacency matrix
- 1 is a vector of 1 with size N

Normalized degree centrality for actor i

Degree Centrality ${ }^{[\text {Freeq9, Be00, Wenis] }}$

What is the degree of an actor? How active is an actor?

Degree centrality

is a count of the number of edges incident upon a given vertex.

Degree centrality for actor i

$$
c_{i}^{d}=\sum_{j} a_{i j}=\mathbf{A} \mathbf{1}
$$

- where \mathbf{A} is the adjacency matrix
- 1 is a vector of 1 with size N.

Normalized degree centrality for actor i

Degree Centrality ${ }^{\text {[Freeq9, Be00, Wehis] }}$

What is the degree of an actor? How active is an actor?

Degree centrality

is a count of the number of edges incident upon a given vertex.
Degree centrality for actor i

$$
c_{i}^{d}=\sum_{j} a_{i j}=\mathbf{A} \mathbf{1}
$$

- where \mathbf{A} is the adjacency matrix
- $\mathbf{1}$ is a vector of 1 with size N.

Normalized degree centrality for actor i

$$
{c^{\prime}}_{i}^{d}=\frac{\sum_{j} a_{i j}}{N-1}=\frac{\mathbf{A 1}}{N-1}
$$

Examples of degree centrality

Examples for degree centrality c_{i} and normalized degree centrality $c^{\prime}{ }_{i}$:

Examples of degree centrality ${ }^{[\text {Wenl3] }}$

Examples for degree centrality c_{i} and normalized degree centrality c_{i}^{\prime} :

Star

$c_{1}^{d}=4 \quad c_{1}^{\prime d}=1$
$c_{2}^{d}=1 \quad c^{\prime d}=0.25$
$c_{3}^{d}=1 \quad c^{\prime}{ }_{3}^{d}=0.25$
$c_{4}^{d}=1 \quad c^{\prime}{ }_{4}^{d}=0.25$
$c_{5}^{d}=1 \quad c^{\prime \prime}{ }_{5}^{d}=0.25$

Examples of degree centrality ${ }^{[\text {Wenl3] }}$

Examples for degree centrality c_{i} and normalized degree centrality c_{i}^{\prime} :

Star

$c_{1}^{d}=4 \quad c_{1}^{\prime d}=1$
$c_{2}^{d}=1 \quad c^{\prime d}=0.25$
$c_{3}^{d}=1 \quad c^{\prime d}=0.25$
$c_{4}^{d}=1 \quad c^{\prime d}=0.25$
$c_{5}^{d}=1 \quad c_{5}^{\prime d}=0.25$

Line

$$
\begin{array}{ll}
\text { (5)-(3) (2) } \\
c_{1}^{d}=2 & c^{\prime d}=0.5 \\
c_{2}^{d}=2 & c_{2}^{d}=0.5 \\
c_{3}^{d}=2 & c_{3}^{\prime d}=0.5 \\
c_{4}^{d}=1 & c_{4}^{\prime d}=0.25 \\
c_{5}^{d}=1 & c_{5}^{\prime d}=0.25
\end{array}
$$

Examples of degree centrality ${ }^{[\text {Wenli3] }}$

Examples for degree centrality c_{i} and normalized degree centrality $c^{\prime}{ }_{i}$:

Star

$c_{1}^{d}=4 \quad c_{1}^{\prime d}=1$
$c_{2}^{d}=1 \quad c^{\prime d}=0.25$
$c_{3}^{d}=1 \quad c^{\prime d}=0.25$
$c_{4}^{d}=1 \quad c^{\prime d}=0.25$
$c_{5}^{d}=1 \quad c^{\prime}{ }_{5}^{d}=0.25$

Line

$$
\begin{array}{ll}
\text { (5)-(3) } \\
c_{1}^{d}=2 & c^{\prime d}=0.5 \\
c_{2}^{d}=2 & c_{2}^{d}=0.5 \\
c_{3}^{d}=2 & c_{3}^{\prime d}=0.5 \\
c_{4}^{d}=1 & c_{4}^{\prime d}=0.25 \\
c_{5}^{d}=1 & c_{5}^{\prime d}=0.25
\end{array}
$$

Circle

$$
\begin{aligned}
c_{1}^{d}=2 & c_{1}^{\prime}{ }_{1}^{d}=0.5 \\
c_{2}^{d}=2 & c_{2}^{\prime d}=0.5 \\
c_{3}^{d}=2 & c_{3}^{\prime d}=0.5 \\
c_{4}^{d}=2 & c_{4}^{\prime d}{ }_{4}^{d}=0.5 \\
c_{5}^{d}=2 & c_{5}^{\prime d}=0.5
\end{aligned}
$$

(all actors identical)

Closeness centrality ${ }^{[F r e c 9, ~ D o d i 09]}$

- Idea: Nodes are more central if they can reach other nodes 'easily.'
- Measures average shortest path from a node to all other nodes.
- Closeness Centrality for node i as

$$
c_{i}^{c}=\frac{N-1}{\sum_{j, j \neq i}(\text { distance from } i \text { to } j)}
$$

- Range is 0 (no friends) to 1 (a single hub).

Closeness centrality ${ }^{[\text {[Ferc9, Doodoce] }}$

- Idea: Nodes are more central if they can reach other nodes 'easily.'
- Measures average shortest path from a node to all other nodes.
- Closeness Centrality for node i as

$$
c_{i}^{c}=\frac{N-1}{\sum_{j, j \neq i}(\text { distance from } i \text { to } j)}
$$

- Range is 0 (no friends) to 1 (a single hub).

Meaning

- Unclear what the exact values of this measure tells us because of its ad-hocness.
- General problem with simple centrality measures: what do they exactly mean?
- Perhaps, at least, we obtain an ordering of nodes in terms of 'importance.'

Betweenness centrality ${ }^{\text {[Doodog] }}$

- Betweenness centrality is based on shortest paths in a network.
- Idea: If the quickest way between any two nodes on a network disproportionately involves certain nodes, then they are 'important' in terms of global cohesion.
- For each node i, count, over all pairs of nodes x and y, how many shortest paths pass through i.
- Call frequency of shortest paths passing through node i the betweenness of i, B_{i}.
- Note: Exclude shortest paths between i and other nodes.
- Note: works for weighted and unweighted networks.
- Role played by shortest paths justified by small-world phenomenon (Milgram's experiment).

Betweenness Centrality - Complexity ${ }^{[D o d o c]}$

- Consider a network with N nodes and M edges (possibly weighted).
- Computational goal: Find $\binom{N}{2}$ shortest paths between all pairs of nodes.
- Traditionally Floyd-Warshall algorithm used.
- Computation time grows as $O\left(N^{3}\right)$.
- See also:
(1) Dijkstra's algorithm for finding the shortest path between two specific nodes, and
(2) Johnson's algorithm which outperforms Floyd-Warshall for sparse networks:

$$
O\left(M N+N^{2} \log N\right)
$$

- Newman (2001) and Brandes (2001) independently derived much faster algorithms.
- Computation times grow as:
(1) $O(M N)$ for unweighted graphs, and
(2) $O\left(M N+N^{2} \log N\right)$ for weighted graphs.

Shortest path between node i and all others ${ }^{[D o d 09]}$

- Consider unweighted networks.
- Use breadth-first search:
(1) Start at node i, giving it a distance $d=0$ from itself.
(2) Create a list of all of i 's neighbors and label them being at a distance $d=1$.
(3) Go through list of most recently visited nodes and find all of their neighbors.
4 Exclude any nodes already assigned a distance.
(5) Increment distance d by 1 .
(6) Label newly reached nodes as being at distance d.
(7) Repeat steps 3 through 6 until all nodes are visited.
- Record which nodes link to which nodes moving out from i (former are 'predecessors' with respect to i 's shortest path structure).
- Runs in $O(M)$ time and gives N shortest paths.
- Find all shortest paths in $O(M N)$ time
- Much, much better than naive estimate of $O\left(M N^{2}\right)$.

Newman's Betweenness algorithm ${ }^{\text {[Newol, Doocoes] }}$

(1) Set all nodes to have a value $c_{i j}=0, j=1, \ldots, N$ (c for count).
(2) Select one node i.
(3) Find shortest paths to all other $N-1$ nodes using breadth-first search.
(1) Record \# equal shortest paths reaching each node.
(5) Move through nodes according to their distance from i, starting with the furthest.
(0) Travel back towards i from each starting node j, along shortest path(s), adding 1 to every value of $c_{i k}$ at each node k along the way.
(3) Whenever more than one possibility exists, a portion according to total number of short paths coming through predecessors.
(8) Exclude starting node j and i from increment.
(0) Repeat steps 2-8 for every node i and obtain betweenness as

$$
B_{j}=\sum_{i=1}^{N} c_{i j}
$$

Newman's Betweenness - notes ${ }^{[N e w o l, ~ D o d o c e] ~}$

- For a pure tree network, $c_{i j}$ is the number of nodes beyond j from i 's vantage point.
- For edge betweenness, use exact same algorithm but now
(1) j indexes edges, and
(2) we add one to each edge as we traverse it.
- For both algorithms, computation time grows as $O(M N)$ and space for $O(N+M)$ integers (N nodes, M arcs).
- Both bounds infeasible for large networks, where typically $N \approx 10^{9}$ and $M \approx 10^{11}$.
- For sparse networks with relatively small average degree, we have a fairly digestible time growth of $O\left(N^{2}\right)$.

Newman's Betweenness - examples

Outline

(1) Graph Matrices

- Linear Algebra Reminder
- Network Matrices
(2) Centrality Measures
- Path Based Centralities
- Spectral Centralities
- Example

Important nodes have important friends ${ }^{\text {[Dodo9, New1]] }}$

- Define x_{i} as the "importance" of node i.
- Idea: x_{i} depends (somehow) on x_{j} if j is a neighbor of i.
- Recursive: importance is transmitted through a network.
- Simplest possibility is a linear combination:

$$
x_{i} \propto \sum_{j} A_{i j} x_{j}
$$

- Assume further that constant of proportionality, c, is independent of i.
- Above gives $\tilde{\mathbf{x}}=c \mathbf{A} \tilde{\mathbf{x}}$ or $\mathbf{A} \tilde{\mathbf{x}}=c^{-1} \tilde{\mathbf{x}}=\lambda \tilde{\mathbf{x}}$
- Eigenvalue equation based on adjacency matrix:
- The greatest eigenvalue and its related eigenvector fulfills only the additional requirement that all the entries in the eigenvector be positive (Perron-Frobenius theorem).
- Eigenvalue centrality of the vertex v in the network
\ldots The $v^{t h}$ component of the related eigenvector

Eigenvalue Centrality - Iterative Approach

- An initial guess about the centrality x_{i} of each vertex i.
- e.g. $x_{i}=1$ for all i
- One step to calculate a better estimate x_{i}^{\prime}

$$
x_{i}^{\prime}=\sum_{j} A_{i j} x_{j} \quad \text { i.e. } \mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}
$$

- Repeat t times: $\mathbf{x}(t)=\mathbf{A}^{t} \mathbf{x}(0)$
- Express $\mathbf{x}(0)$ as a linear combination of the eigenvectors v_{i} of \mathbf{A} : $\mathbf{x}(0)=\sum_{i} c_{i} \mathbf{v}_{i}$.

$$
\mathbf{x}(t)=\mathbf{A}^{t} \sum_{i} c_{i} \mathbf{v}_{i}=\sum_{i} c_{i} \mathbf{A}^{t} \mathbf{v}_{i}=\sum_{i} c_{i} \kappa_{i}^{t} \mathbf{v}_{i}=\kappa_{1}^{t} \sum_{i} c_{i}\left[\frac{\kappa_{i}}{\kappa_{1}}\right]^{t} \mathbf{v}_{i}
$$

- κ_{i} are the eigenvalues of \mathbf{A}, κ_{1} is the largest of them.
- Since $\kappa_{i} / \kappa_{1}<1$ for all $i \neq 1$, all terms in the sum other then the first decay exponentially as t becomes large: $\mathbf{x}(t) \rightarrow c_{1} \kappa_{1} \mathbf{v}_{1}$ as $t_{3} \rightarrow \infty$.

Eigenvalue Centrality - Properties ${ }^{[\text {New10] }}$

- Eigenvalue centrality by Bonacich in $1987{ }^{\text {[Bon87] }}$

$$
\mathbf{A} \mathbf{x}=\kappa_{1} \mathbf{x} \quad x_{i}=\kappa_{1}^{-1} \sum_{j} A_{i j} x_{j}
$$

- The centrality x_{i} of vertex i is proportional to the sum of the centralities of i 's neighbors:
- a vertex has many neighbors,
- a vertex has important neighbors.
- The eigenvector centralities of all vertices are non-negative.
- If $x_{i}(0) \geq 0$ and $A_{i j} \geq 0$ then $x_{i}(t) \geq 0$.
- Eigenvector centrality works well for undirected networks.
- Issues with directed networks
- Asymmetric adjacency matrix has two sets of eigenvectors, left and right, i.e hence two leading eigenvectors.
- In most cases the right eigenvector should be used
- to prefer the case in which centralities are driven by vertices pointing to a given vertex (and not to which vertices the given vertex points to)
- Zero x_{i} are propagated as zero \Longrightarrow strong components taken only.

Katz Centrality ${ }^{[K a t 53]}$

- To resolve the issue with zero eigenvalue centralities x_{i}

Katz Centrality

- Proposed by Katz in 1953

$$
\begin{align*}
\mathbf{C}_{\mathrm{Katz}} & =\alpha \mathbf{A}+\alpha^{2} \mathbf{A}^{2}+\cdots+\alpha^{k} \mathbf{A}^{k}+\cdots \tag{9}\\
\mathbf{C}_{\text {Katz }}(i) & =\sum_{k=1}^{\infty} \sum_{j=1}^{N} \alpha^{k}\left[\mathbf{A}^{k}\right]_{i j} \tag{10}
\end{align*}
$$

- $\mathbf{C}_{\text {Katz }}(i)$ denotes Katz centrality of a node i.
- The attenuation factor $\alpha \ldots$. discounted paths (walks)
- A link in the distance k is attenuated by α^{k}.
- If $\alpha<1 /\left|\kappa_{1}\right|$, where κ_{1} is the largest eigenvalue of \mathbf{A}, then

$$
\overrightarrow{\mathbf{c}}_{\text {Katz }}=\left(\left(\mathbf{I}-\alpha \mathbf{A}^{T}\right)^{-1}-\mathbf{I}\right) \mathbf{1}
$$

Alpha Centrality ${ }^{[1001 . N e m 0]}$

- Proposed by Bonacich in $2001{ }^{\text {[BLou] }}$
- A generalization of Katz centrality

$$
x_{i}=\alpha \sum A_{i j} x_{j}+\beta \quad \mathbf{x}=\alpha \mathbf{A} \mathbf{x}+\beta \mathbf{1}
$$

where α and β are positive constants.

- Each vertex has a non-zero positive centrality because of small $\beta>0$
- Rearranging for \mathbf{x}

$$
\mathbf{x}=\beta(\mathbf{I}-\alpha \mathbf{A})^{-1} \cdot \mathbf{1}=(\mathbf{I}-\alpha \mathbf{A})^{-1} \cdot \mathbf{1}
$$

- using $\beta=1$ to care about relative values of centralities only.
- $\mathbf{C}_{\text {Alpha }}=\alpha^{0} \mathbf{A}^{0}+\mathbf{C}_{\text {Katz }}=\mathbf{I}+\mathbf{C}_{\text {Katz }}$
- Choice of a value of α
- If $\alpha \rightarrow 0$, then all $x_{i} \rightarrow \beta=1$
- If $\alpha \rightarrow 1 / \kappa_{1}$, then a divergence $\ldots \operatorname{det}\left(\mathbf{A}-\alpha^{-1} \mathbf{I}\right)_{b}=0$

Centrality Measures - Importance of Nodes ${ }^{\text {[Rocl2] }}$

- Low \rightarrow middle \rightarrow high values
- A Degree centrality,
- Node Activity
- B Closeness centrality,
- Distance to other nodes
- C Betweenness centrality,
- Intermediate Position
- D Eigenvector centrality,
- Important nodes have important friends
- E Katz centrality,
- The relative influence of a node within a network
- F Alpha centrality
- Important nodes have important friends for asymmetric relations

PageRank [BP98, BP12, New10]

- In some case, a high-centrality vertex should not distribute its centrality to other vertexes fully,
- e.g. Yahoo! referencing a personal page.
- The centrality of a given vertex is distributed to its neighbors as an amount proportional to its centrality divided by its out-degree.

$$
x_{i}=\alpha \sum_{j} A_{i j} \frac{x_{j}}{k_{j}^{\text {out }}}+\beta \quad \mathbf{x}=\alpha \mathbf{A} \mathbf{D}^{-1} \mathbf{x}+\beta \mathbf{1}
$$

- If $k_{j}^{\text {out }}=0$, then $A_{i j}=0$ for all i.
- In such cases, we set artificially $k_{j}^{\text {out }}=1$ to avoid the problem with the term when zero is divided by zero. The result is a zero centrality contribution.
- \mathbf{D} is the diagonal matrix with elements $D_{i i}=\max \left(k_{j}^{\text {out }}, 1\right)$
- By rearranging and setting $\beta=1$, and $\alpha<1 /\left|\kappa_{1}\right|, \kappa_{1}=\lambda_{\max }(\mathbf{A})$

$$
\mathbf{x}=\beta\left(\mathbf{I}-\alpha \mathbf{A} \mathbf{D}^{-1}\right)^{-1} \cdot \mathbf{1}=\mathbf{D}(\mathbf{D}-\alpha \mathbf{A})^{-1} \cdot \mathbf{1}
$$

Outline

(1) Graph Matrices

- Linear Algebra Reminder
- Network Matrices
(2) Centrality Measures
- Path Based Centralities
- Spectral Centralities
- Example

Egypt Data - Family Formation

Ny-wśr-Re	0.647
$H^{\text {¢ }}$-mrr-nbty	0.424
Nwb-ib-nbty	0.351
Śnh-wi-Pth	0.290
$R^{¢}-h w . f{ }^{\prime} I$	0.180
$R^{\text {c -nfr.f }}$	0.139
3hty-htp TPI	0.139
Ptḥ-špśś	0.082
Ph-r-nfr III	0.048
Srt-nbty I	0.048

People with the top 10 highest betweenness

Extended family size distribution

Summary

- Linear algebra remainder
- Network matrices
- Centrality Measures
- Path based centralities
- Spectral centralities

Competencies

- Define adjacency matrix, cocitation matrix, and bibliographic coupling
- Define bi-adjacency matrix, incidence matrxi, edge incidence matrix
- Define one-mode projection and its relation to bi-adjacency matrix.
- Show how to compute degree of vertex, the number of edges, the mean degree, and graph density based on the adjacency matrix for undirected and directed graphs.
- Show how to compute number of paths and cycles based on the adjacency matrix.
- Define degree centrality.
- Define closenes centrality.
- Define betweenness centrality.
- Describe an algorithm for betweenness centrality computation.
- Define eigenvalue centrality.
- Define Katz centrality.
- Define PageRank index.

References I

[BE06] Stephen P. Borgatti and Martin G. Everett. A graph-theoretic perspective on centrality. Social Networks, 28(4):466-484, 2006.
[BJP17] S. Banerjee, M. Jenamani, and D. K. Pratihar. Properties of a Projected Network of a Bipartite Network. ArXiv e-prints, July 2017.
[BL01] Phillip Bonacich and Paulette Lloyd. Eigenvector-like measures of centrality for asymmetric relations. Social Networks, 23(3):191-201, 2001.
[BM08] J.A. Bondy and U.S.R. Murty. Graph Theory. Springer, 2008.
[Bon87] Phillip Bonacich. Power and centrality: A family of measures. American Journal of Sociology, 92(5):1170-1182, 1987.
[BP98] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst., 30(1-7):107-117, April 1998.
[BP12] Sergey Brin and Lawrence Page. Reprint of: The anatomy of a large-scale hypertextual web search engine. Computer Networks, 56(18):3825-3833, 2012. The WEB we live in.
[Die05] Reinhard Diestel. Graph Theory. Springer, 2005.
[Dod09] Peter Dodds. Measures of centrality, complex networks, course 303a, spring, 2009, lecture notes. http://www.uvm.edu/~pdodds/teaching/courses/2009-01UVM-303/content/lectures.html, 2009.
[EK10] David Easley and Jon Kleinberg. Networks, Crowds, and Markets. Reasoning About a Highly Connected World. Cambridge University Press, July 2010.
[Fre79] Linton C. Freeman. Centrality in social networks: I. conceptual clarification. Social Networks, (1):215-239, 1979.
[GL13] Gene H. Golub and Charles F. Van Loan. Marix computations. The Johns Hopkins University Press, Baltimore, fourth edition, 2013.
[Kat53] Leo Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39-43, Mar 1953.

References II

[Lay12] David C. Lay. Linear Algebra and Its Applications. Addison-Wesley, fourth edition, 2012.
[New01] M. E. J. Newman. Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E, 64:016132, 2001.
[New10] M. Newman. Networks: an introduction. Oxford University Press, Inc., 2010.
[Roc12] Claudio Rocchini. Centrality. http://en.wikipedia.org/wiki/File:Centrality.svg, November 2012.
[Wat02] David S. Watkins. Fundamentals of Matrix Computations. Second edition, 2002.
[Weh13] Stefan Wehrli. Social network analysis, lecture notes, December 2013.

