
What is a web service?

Definition: A Web service is a software system designed to support interop-
erable machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically WSDL). Other systems
interact with the Web service in a manner prescribed by its description using
SOAP messages, typically conveyed using HTTP with an XML serialization
in conjunction with other Web-related standards.

— W3C, Web Services Glossary
https://www.w3.org/TR/ws-arch/\#whatis

Two Major Classes

We can identify two major classes of Web services:

� REST-compliant Web services, in which the primary purpose of the
service is to manipulate XML representations of Web resources using a
uniform set of ”stateless” operations; and

� arbitrary Web services, in which the service may expose an arbitrary set
of operations.

— W3C, Web Services Architecture (2004)
https://www.w3.org/TR/ws-arch/\#relwwwrest

From SOAP to REST

� First technology for interactive web applications used AJAX – Asynchronous
Javascript And Xml, but processing of XML is not convenient in Javascript

� Raise of using JavaScript Object Notation – JSON

– Simple testing

– Plenty of helping apps: Postman, Insomnia, curl, web browser

– Javascript is simpler to start with than Java (e.g. there are more JS program-
mers and they are cheaper)

Web Service API Distribution

Basic terms

� Uniform Resource Identifier (URI) is a string of characters used to identify a
resource. (e.g., http://www.fel.cvut.cz/cz/education/)

1

Figure 1: Interest in web service APIs. Source: https://blog.wishtack.com/
rest-apis-best-practices-and-security/

� The Hypertext Transfer Protocol (HTTP) is an application protocol for
distributed, collaborative, hypermedia information systems. It is the foundation of
data communication for the World Wide Web.

– initiated by Tim Berners-Lee at CERN in 1989

� Representational State Transfer (REST) is an architectural style for dis-
tributed hypermedia systems.

– defined in 2000 by Roy Fielding in his doctoral dissertation

1 HTTP

HTTP protocol basics

� HTTP is a client-server application-level protocol

� Typically runs over a TCP/IP connection

� Extensible – e.g., video, image support

� Stateless

� Cacheable

� Requires reliable transport protocol – no UDP

2

Figure 2: HTTP request example. Source: https://www.ntu.edu.sg/home/
ehchua/programming/webprogramming/HTTP_Basics.html

Figure 3: HTTP request example. Source: https://www.ntu.edu.sg/home/
ehchua/programming/webprogramming/HTTP_Basics.html

HTTP Request

� Message header

– Request line – identifies HTTP method, URI and protocol version

– Request headers

� Message body

HTTP Response

� Message header

– Status line – identifies protocol version and response status code

– Response headers

� Message body

HTTP Headers
Typical, often used HTTP headers

3

Request Response

Content � Content-Type � Content-Type
� Content-Length � Content-Length
� Content-Encoding � Content-Encoding
� Accept

Caching � If-Modified-Since � Last-Modified
� If-Match � ETag

Miscellaneous � Cookie � Set-Cookie
� Host � Location
� Authorization
� User-Agent

HTTP Methods

GET

� Used to retrieve resource at request URI

� Safe and idempotent

� Cacheable

� Can have side effects, but not expected

� Can be conditional or partial (If-Modified-Since, Range)

POST

� Requests server to create new resource from the specified body

� Can be used also to update resources

� Should respond with 201 status and location of newly created resource on success

� Neither safe nor idempotent

� No caching

HTTP Methods

PUT

� Requests server to store the specified entity under the request URI

� Server may possibly create a resource if it does not exist

� Usually used to update resources

4

� Idempotent, unsafe

DELETE

� Used to ask server to delete resource at the request URI

� Idempotent, unsafe

� Deletion does not have to be immediate

HTTP Response Status Codes

� 1xx – rarely used

� 2xx – success

– 200 OK – requests succeeded, usually contains data

– 201 Created – returns a Location header for new resource

– 202 Accepted – server received request and started processing

– 204 No Content – request succeeded, nothing to return

� 3xx – redirection

– 304 Not Modified – resource not modified, cached version can be used

HTTP Response Status Codes

� 4xx – client error

– 400 Bad Request – malformed syntax

– 401 Unauthorized – authentication required

– 403 Forbidden – server has understood, but refuses request

– 404 Not Found – resource not found

– 405 Method Not Allowed – specified method is not supported

– 409 Conflict – resource conflicts with client data

– 415 Unsupported Media Type – server does not support media type

� 5xx – server error

– 500 Internal Server Error – server encountered error and failed to process
request

5

2 RESTful web services

Understanding REST

� REST is an architectural style, not standard

� It was designed for distributed systems to address architectural properties such
as performance, scalability, simplicity, modifiability, visibility, portability, and
reliability

� REST architectural style is defined by 6 principles/architectural constraints (e.g.,
client-server, stateless)

� System/API that conforms to the constraints of REST can be called RESTful

REST principles

1. Client-server

2. Uniform interface

� Resource-based

� Manipulation of resource through representation

� Self-descriptive messages

� Hypermedia as the engine of application state

3. Stateless interactions

4. Cacheable

5. Layered system

6. Code on demand (optional)

Building RESTful API

� Can be built on top of existing web technologies

� Reusing semantics of HTTP 1.1 methods

– Safe and idempotent methods

– Typically called HTTP verbs in context of services

– Resource oriented, correspond to CRUD operations

– Satisfies uniform interface constraint

� HTTP Headers to describe requests & responses

� Content negotiation

6

HTTP Verb CRUD Collection (e.g. /categories) Specific Item (e.g. /categories/{id})
POST Create 201 Created1 405 Method Not Allowed /409 Conflict3

GET Read 200 OK, list of categories 200 OK, single category/404 Not Found4

PUT Update/Replace 405 Method Not Allowed2 200 OK/204 No Content/404 Not Found4

PATCH Update/Modify 405 Method Not Allowed2 200 OK/204 No Content/404 Not Found4

DELETE Delete 405 Method Not Allowed2 200 OK/204 No Content/404 Not Found4

Table 1: Recommended return values of HTTP methods in combination with the resource
URIs.

Recommended Interaction of HTTP Methods w.r.t. URIs

�
1 – returns Location header with link to /categories/{id} containing new ID

�
2 – unless you want to update/replace/modify/delete whole collection

�
3 – if resource already exists

�
4 – if ID is not found or invalid

Naming conventions

� resources should have name as nouns, not as verbs or actions

� plural if possible to apply

� URI should follow a predictable (i.e., consistent usage) and hierarchical structure
(based on structure-relationships of data)

Correct usages
POST /customers/12345/orders/121/items GET /customers/12345/orders/121/items/3
GET|PUT|DELETE /customers/12345/configuration

Anti-patterns
GET /services?op=update customer&id=12345&format=json PUT /customers/12345/update

HTTP Verbs – GET

GET /eshop/rest/categories HTTP/1.1
Host: localhost:8080
Accept: application/json
Cache-Control: no-cache

HTTP/1.1 200
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Content-Type: application/json;charset=UTF-8

[{
"id": 2,
"name": "CPU"

}, {
"id": 7,

7

"name": "Graphic card"
}, {

"id": 11,
"name": "RAM"

}]

HTTP Verbs – POST

POST /eshop/rest/categories HTTP/1.1
Host: localhost:8080
Content-Type: application/json
Cookie: EAR_JSESSIONID=18162708908C126C0BA5A3D3081CCAC9
Cache-Control: no-cache

{
"name": "Motherboard"

}

HTTP/1.1 201
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Location: http://localhost:8080/eshop/rest/categories/151

HTTP Verbs – PUT

PUT /eshop/rest/products/8 HTTP/1.1
Host: localhost:8080
Content-Type: application/json
Cookie: EAR_JSESSIONID=18162708908C126C0BA5A3D3081CCAC9

{
"id":8,
"name":"MSI GeForce GTX 1050 Ti 4GT OC",
"amount":50,
"price":4490.0,
"categories":[{

"id":7,
"name":"Graphic card"

}],
"removed":false

}

HTTP/1.1 204
Cache-Control: no-cache, no-store, max-age=0, must-revalidate

HTTP Verbs – DELETE

DELETE /eshop/rest/products/8 HTTP/1.1
Host: localhost:8080
Cookie: EAR_JSESSIONID=18162708908C126C0BA5A3D3081CCAC9
Cache-Control: no-cache

HTTP/1.1 204
Cache-Control: no-cache, no-store, max-age=0, must-revalidate

8

Figure 4: A model (developed by Leonard Richardson) that breaks down the principal
elements of a REST approach into three steps about resources, http verbs, and
hypermedia controls. Source: http://martinfowler.com/articles/
richardsonMaturityModel.html

Demo

Let’s examine SpaceX REST API.
https://documenter.getpostman.com/view/2025350/RWaEzAiG\#intro

The Richardson Maturity Model

� provides a way to evaluate compliance of API to REST constraints

2.1 HATEOAS

HATEOAS

� Hypermedia as the Engine of Application State

� Final level of the Richardson Maturity Model

� Client needs zero or little prior knowledge of an API

� Client just needs to understand hypermedia

� Server provides links to further endpoints

� Often difficult to implement

– Not many usable libraries

9

HATEOAS Example
*EAR e-shop does not support HATEOAS.

{
"id": 2,
"name": "CPU",
"links": [{

"rel": "self",
"href": "http://localhost:8080/eshop/rest/categories/2"

}, {
"rel": "edit",
"href": "http://localhost:8080/eshop/rest/categories/2"

}, {
"rel": "products",
"href": "http://localhost:8080/eshop/rest/categories/2/products"

}]
}

We are using the Atom link format.

REST Documentation – Source

@Path("demos")
public class JavaEE8Resource {

@GET
public Response ping(){

return Response
.ok("ping")
.build();

}

@GET
@Path("{id}")
public SampleObject objects(@PathParam("id") Integer id) {

return new SampleObject(id, "NAZDAR!");
}

}

REST Documentation – Output

� Documentation of REST is done in two (similar) formats: Swagger or OpenApi

� https://download.eclipse.org/microprofile/microprofile-open-api-3.
1 → spec, Annotations

openapi: 3.0.0
info:
title: Deployed Resources
version: 1.0.0

servers:
- url: http://pidibook:8080/DemoRest1
description: Default Server.

paths:
/resources/demo:
get:
operationId: ping

10

responses:
default:...

/resources/demo/objects:
get:
operationId: objects
responses:
default:
content:
’*/*’:
schema:
$ref: ’\#/components/schemas/SampleObject’

components:
schemas:
SampleObject:
type: object
properties:
demoInt:
type: integer

demoString:
type: string

3 Linked Data

Linked Data

� Method of publishing structured data allowing to interlink them with other data

� Builds upon the original ideas of the Web

– Interconnected resources, but this time, machine-readable

� Knowledge-based systems, context-aware applications, precise domain description,
knowledge inference

� Still possible to build REST APIs, but resources have global identifiers now

� Attributes and relationships also globally identifiable and may have well-defined
meaning

Linked Data Example

{
"@context": {
"name": "http://www.w3.org/2000/01/rdf-schema#label",
"description": "http://purl.org/dc/terms/description",
"products": "http://onto.fel.cvut.cz/ontologies/eshop/has-product"

},
"@id": "http://onto.fel.cvut.cz/eshop/categories/cpu",
"products": {
"@id": "https://ark.intel.com/products/97455/Intel-Core-i3-7100-Processor-3M-Cache

-3-90-GHz",
"name": "Intel Core i3-7100"

},
"description": "Category of Central Processing Units for computers.",
"name": "CPU"

}

11

REST in Spring

@RestController
public class CarController {

@Inject private CarService carService;

@GetMapping("/cars")
public Cars allCars(@RequestParam(value = "name", defaultValue = "World") String

name) {
return carService.listAllCars();

}
}

JAX-RS

@Path("v1/cars")
@Produces(MediaType.APPLICATION_JSON)
public class CarsResource {

@GET
public Cars allCars() {

return service.allCars();
}

@Path("{id}")
@GET
public Car oneCar(@PathParam("id") Integer id) {

return service.findById(id);
}

@Path("{id}")
@DELETE
public Response deleteOneCar(@PathParam("id") Integer id) {

service.remove(id);
return Response.noContent().build();

}

JAX-RS Client

Client client = javax.ws.rs.client.ClientBuilder.newClient();
WebTarget webTarget = client.target(BASE_URI).path("v1/cars");
webTarget.request(javax.ws.rs.core.MediaType.APPLICATION_JSON)

.get(Cars.class)

MicroProfile – REST Support

@RegisterRestClient(baseUri = "https://api.spacexdata.com/")
@Path("v3")
public interface SpaceXRestClient {

@GET
@Path("rockets/")
@Produces(MediaType.APPLICATION_JSON)
public List<RestRocket> all();

@GET
@Path("rockets/{rocket_id}")
@Produces(MediaType.APPLICATION_JSON)
public RestRocket rocket(@PathParam("rocket_id") String rocketId);

12

}
use:

@Inject
@RestClient
SpaceXRestClient spaceXRestClient;

{ spaceXRestClient.all(); }

REST – Security

� Same as HTML – HTTPS, passwords

� Usage of JWT (JSON Web Token), mainly makes sense for µServices (holds signed
roles, other information so some services don’t need user database)

� Necessary to use either reverse (https) proxy or CORS headers

� Security is a huge problem

– No way, how to protect access, easy to play with

– Double security – on client, on server

– Every single data must have REST, every dropdown list, every table, every
form

– Very difficult to check EVERYTHING – objects are returned and only parts
of them are allowed to change (e.g. mail, username, password, but not id,
roles). In some other cases it is allowed (e.g. by superadmin).

REST – Battlefield Experience

� Good support in Spring, JAX-RS, great in MicroProfile

� Good idea to add API version to url, e.g. /rest/v1/cars

� Use DTO frequently, always for list/array

� ID returned in URL – needs to be parsed

� Messages returned in HTTP header are in ASCII, e.g. no Czech messages

� Various errors return messages in various parts of the JS response object

� Using JavaScript Object Notation (JSON) between languages having nothing with
JS in µServices

� Generation of client from service description

13

Demo

JAX-RS, MicroProfile
� http://localhost:4848/openapi

� http://localhost:8080/JAXRSServer/rest/v1/cars

� http://localhost:8080/JAXRSServer/rest/v1/cars/0

� http://localhost:8080/JAXRSServer/rest/v1/cars/5

� http://aubiwork:8080/JAXRSClient/rest/v1/rockets/

� http://aubiwork:8080/JAXRSClient/rest/v1/rockets/by-id?id=falcon1

4 Conclusions

REST

Pros

� API first (agree on API, then code on both sides)

� Easy to build

� Easy to use

� Standard technologies – HTTP, JSON, XML

� Platform-independent (JS-based web pages, mobiles)

� Stateless, cacheable

Cons

� No standard for REST itself – APIs build in various ways

� No full generator for all the possibilities (lack in documentation)

� No “registry” of REST services

The End

Thank You

14

Resources

� Fielding, R.T., 2000. Architectural styles and the design of network-based software
architectures (Doctoral dissertation, University of California, Irvine),

� Fowler, M., 2010. Richardson Maturity Model: steps toward the glory of REST.
Online at http://martinfowler.com/articles/richardsonMaturityModel.html.

� Lanthaler, M. and Gütl, C., 2012, April. On using JSON-LD to create evolvable RESTful services.
In Proceedings of the Third International Workshop on RESTful Design (pp. 25-32). ACM.

� https://spring.io/understanding/REST

� https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview

� http://linkeddata.org/

15

